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Abstract. The translation planes of order 16 have been classified by Dempwolff and
Reifart [4). Using this classification, and in particular the spreads given in that paper, we
have conducted a complete computer search for the hyperovals (18-arcs) in each of these
planes. With few exceptions, the hyperovals obtained are hyperbolic (having two points
on the special line at infinity) and are of a type we call ranslation hyperovals. The only
exceptions occur in the plane over the semifield with kemel GF(2). In this plane there
also appear a class of elliptic (having no points on the special line at infinity) hyperovals
and two classes of hyperbolic hyperovals which are not translation hyperovals. The
automorphism groups of the hyperovals are also determined.

1. Introduction

In a projective plane of order n, an oval is a set of n+ 1 points, no three of
which are collinear. In a coordinatized Desarguesian plane, a conic is the set
of points whose coordinates satisfy a non-degenerate quadratic equation. While
every conic is easily seen to be an oval, the converse, proved in 1955 by B. Segre
[9] for Desarguesian planes of odd order, is a rather surprising result. Segre’s result
cannot be extended to non-Desarguesian planes nor to Desarguesian planes of even
order. Work on the classification problem for ovals in these planes has suffered
from the lack of examples. Besides Segre’s result the only complete determination
of ovals has been made in small order planes. Conics are essentially (see below)
the only ovals which arise in the unique planes of orders up to and including 8.
The ovals have all been determined in the four planes of order 9 (for a survey,
see Cherowitzo, Kiel, and Killgrove [2] ). The only other plane in which this
determination has been made is the Desarguesian plane of order 16 (Hall [6] ).
The current work extends this determination to the seven remaining translation
planes of order 16.

In the even order case, every oval can be uniquely extended to a set of n+ 2
points, no three of which are collinear. These sets are called hyperovals and the
additional point which is the intersection of all the tangents to the oval is called
the knot. As an oval can be recovered from a hyperoval by the removal of any
one of its points, it is clear that to determine all ovals we need only determine all
hyperovals in planes of even order. It is in this sense that the word “essentially”
was used above, i.e., in the Desarguesian planes of-even order up to 8, the conics
determine the set of hyperovals. Hyperovals are sets of type (0, 2), that is, every
line of the plane intersects a hyperoval in either O or 2 points. Lines can thus be
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classified as being either exterior or secant (respectively) with reference to a given
hyperoval.

Besides the Desarguesian planes, the translation planes are the most widely
studied class of projective planes. A translation plane P of order ¢ = p" is
a 2n-dimensional vector space W over GF(p) having a collection # (spread)
Voo, Vo, Vi, . . ., Vg1 Of n-dimensional pairwise disjointsubspaces which are called
components. The lines of P different from £, are the cosets w+ U wherew € W
and U is a component. The points off of £, are the elements of W, while those
on it can be identified with the components. Let V be an n-dimensional GF(p)-
vector space and let W = V @ V. If, by a suitable choice of basis, we have
Voo = {(0,v) |y €V}, Vo = {(v,0) |[veE V},and Vi = {(v,v) | v € V}, then
there are elements 1 = t;,13,...,t,-1 € GL(n,p) With V; = {(v,vt;) | v € V}
fori = 1,2,..,¢ — 1 and t;t;" is a fixed point free transformation on V' for
1<i<j<g—1. Theset M = {1,%3,13,...,t41} C GL(n,p) is called a
coordinate set .

Using the well known fact that Ag ~ GL(4,2), Dempwolff and Reifart [4]
were able to classify all the coordinate sets in Ag. They showed that there are
exactly eight classes, giving rise to eight translation planes: the Desarguesian
plane (DES), the semifield plane with kern GF(2) (SEMI2), the semifield plane
with kern GF(4) (SEMI4), the Hall plane (HALL), the Lorimer-Rahilly plane
(LMRH), the Johnson-Walker plane (JOWK), the derived semifield plane (DSFP),
and the Dempwolff plane (DEMP). The translation planes other than the Desar-
guesian one are called proper translation planes and have the property that every
collineation of the plane leaves the line £, invariant.

Two hyperovals are said to be projectively equivalent if there exists a collinea-
tion of the plane which maps one to the other. Our determination of hyperovals
is up to projective equivalence, but as the results indicate, this may be too fine a
classification; reflecting more the structure of the collineation"group of the plane
than the structure of the hyperovals.

In the non-Desarguesian translation planes the unique line at infinity may be
either a secant line or an exterior line of a given hyperoval in the plane. This gives
a crude classification of hyperovals as either hyperbolic, when the line at infinity
is a secant line, or elliptic, when it is an exterior line. In the proper translation
planes these types are projectively inequivalent.

2. Translation Hyperovals

In anticipation of the results, we will define and examine some of the properties
of a special type of hyperoval found in each of the planes that were examined. For
definitions and results not included here, a general reference is Dembowski [3] .

If Q is an oval in a projective plane, a line g is called a symmetry line of Q if
for each pair of distinct points A, B € Q\g there exists an elation T with axis g
which interchanges A and B and leaves Q invariant.
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Proposition 1. If an oval Q in a projective plane of order n (n > 4) has a
symmetry line g, then n is even and g is a tangent (0 2.

Proof: Consider the tangent line h to Q ata point P € Q\g,andletQ = hNg.
Suppose that there is a secant line # g through Q, with oval points C and D.
Then the elation 7 : C « D has center Q and is not the identity. Since 7 leaves
Q invariant, P must be a fixed point of 7, but this implies that P lies on g which
is a contradiction. Thus no secant line (other than possibly g) can pass through Q.
Since n > 4, there must exist more than two tangents to Q which pass through
Q. Therefore, nis even and Q is the knot of Q. Since only tangents pass through
the knot of an oval, g must be a tangent line. 1

Thus it is natural to define a translation oval as an oval in a projective plane of
even order having a tangent as a line of symmetry.

Proposition 2. In a proper translation plane the line of symmeltry of a translation
oval is £,.

Proof: Let Q be a translation oval with line of symmetry g in a translation plane.
Let T be an elation with axis g fixing Q. Being a collineation, 7 must leave £o,
invariant in a strict translation plane. Thus the center of 7is g N £. Let A, B, and
C be distinct points of Q\g. Let o be the elation so that o : A « B and let p be
the elation such that p : A « C. The centers of o and p are distinct since A does
not lie on g and they must both appear on g and on £; thus g = £.. |

A hyperoval which contains a translation oval is called a translation hyperoval .
Note that in the proper translation planes, translation hyperovals must be of hy-
perbolic type (see below). Also note that for a translation hyperoval the removal
of one of only two specific points will result in a translation oval.

In the affine plane obtained by the removal of £, from a translation plane, the
elations with axis £, become translations. If coordinates are introduced so that
one of the points of the restriction of a translation hyperoval to this affine plane is
the origin, then it is easy to see that the coordinates of the points of this restriction
are in one-to-one correspondence with the translations which leave the restriction
invariant. Thus, if Q* is the restriction of the translation hyperoval Q and (a, b) €
Q* then the translation 7 : (z,y) — (z + a,y + b) leaves Q* invariant provided
(0,0) e Q*.

The conics in Desarguesian planes are translation ovals. Payne {7] has deter-
mined all the translation ovals in finite Desarguesian planes of even order. In a
Desarguesian plane of order 2%, an oval is a translation oval if and only if the
plane can be coordinatized so that the oval contains the point (co) and its affine
points are given by y = 22", where (n,h) = 1.

Denniston [5] has shown that translation ovals exist in certain Andre planes.
These results together with those of the current work lead one to the natural con-
jecture that translation hyperovals exist in all translation planes of even order.
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3. Search Procedure

To reduce the search time, use was made of the collineation groups of each of the
planes examined. These groups were determined from the information in Demp-
wolff and Reifart [4] . In searching for hyperbolic hyperovals, we first determined
the orbits on the line at infinity of unordered pairs of points on that line. Then
choosing a representative from each orbit we searched for hyperovals passing
through this pair and also passing through the origin. This condition is not restric-
tive since by the use of an appropriate translation, every hyperoval is projectively
equivalent to one which has the same infinite points and passes through any spec-
ified affine point. The hyperovals containing such a triple of points have the same
hyperbolic type. In the elliptic case, we can again assume that the hyperovals pass
through the origin and since every line through the origin must contain another
affine point of the hyperoval, we can limit the search in a manner analogous to the
hyperbolic case. In particular, we choose the line z = 0 and consider the orbits of
its affine points under the group of collineations which fix this line and the origin.
We again search for hyperovals passing through an orbit representative and the
origin, and any such hyperovals are of the same elliptic type.

The search procedure used for both types of hyperovals was a straight for-
ward backtracking algorithm, For each plane considered, the coordinate set given
in Dempwolff and Reifart [4] was converted by the standard isomorphism (see
Tsuzuku [10]) to a set of matrices in PSL(4,2) which were then used to deter-
mine the spreads in coordinate form. From the spreads, the incidence matrix of
each plane was constructed and stored in a compact form. All incidence opera-
tions required by the program were performed by table look-up. A matrix, each
of whose rows correspond to a component of the spread, is used as a bookkeeping
device. The general algorithm is to systematically pick a point in a row, add it to
a list of previously selected points, determine all the points o each of the secant
lines which are the joins of the last point with each of the previous points on the
list and remove these points from the matrix. A check is made to see if all the
points of arty row have been eliminated without one being selected. If this occurs,
the last point added to the list is removed and another point in its row is selected;
otherwise a selection is made from the next row. If a point can be selected from
each row in this manner, this set together with the origin (which is not represented
in the matrix) forms a hyperoval. This algorithm finds the hyperovals of ellip-
tic type. The modification for hyperovals of hyperbolic type is simply to skip in
checking and selecting those two rows which contain the two infinite points and to
reject any point which would form a collinear triple passing through one of these
infinite points.

The programs were written in Turbo Pascal and run on a microcomputer. No at-
tempt was made to optimize the code nor was any attention paid to precise timing.
Searching each class took approximately two weeks on a S MHz machine.
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4. Results

The following is a brief description of the hyperovals found in each of the planes.
More detailed information is contained in the tables at the end of the next section.
There are no tables for the Desarguesian plane and the information about it is
included here only for the sake of completeness.

DES: There are two classes of hyperovals in the Desarguesian plane of order
16. The first class consists of the hyperovals arising from conics, and these are
translation hyperovals. The other class was first discovered using a computer by
Lunelli and Sce [8] in 1958. Hall [6] showed that these were the only two classes
of hyperovals in this plane. Hyperovals in the second class are not translation
hyperovals and they have the interesting property of admitting an automorphism
group which is transitive on the hyperoval.

SEMI2: The semifield plane with ke G F'(2) is the most interesting from the
point of view of hyperovals. There are 17 equivalence classes of hyperovals. Only
three of these classes are not translation hyperovals. This is the only plane in which
hyperovals of elliptic type exist. There is one class of these and each hyperoval of
this class is fixed by a single generalized homology of order 3. The 18 hyperovals
of class HLI have an algebraic description that is given in Cherowitzo [1] .

SEMI4: The semifield plane with kern G F/(4) is remarkable only in its paucity
of hyperoval types. There are three classes of “strictly” translation hyperovals,
that is to say, hyperovals whose automorphism group consists only of the group
of translations which fix the hyperoval. This plane exhibits the phenomenon of
“forbidden pairs”, i.e., pairs of infinite points through which no hyperoval passes.
There are 64 such pairs in this plane.

HALL: The Hall plane has 10 forbidden pairs and 15 equivalence classes of
translation hyperovals. There are three types of abstract automorphism groups
that appear for these hyperovals.

LMRH: There are no forbidden pairs and six classes of translation hyperovals
in the Lorimer-Rahilly plane. Three types of automorphism groups are exhibited.

JOWK: As in the LMRH plane there. are no forbidden pairs and six classes of
translation hyperovals in the Johnson-Walker plane. The distribution and types of
hyperovals in this plane are identical to those of the LMRH plane, which is to be
expected due to the close connection between these planes.

DSFP: The derived semifield plane has 19 forbidden pairs and 22 classes of
translation hyperovals. Only one of these classes consists of non-*strictly” trans-
lation hyperovals.

DEMP: The Dempwolff plane has no forbidden pairs and 15 classes of transla-
tion hyperovals. Only three classes consist of non-“strictly” translation hyper-
ovals.

Table A below records the total number of hyperovals (not just those through
the origin) in each of the planes.
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5. Tables

The arithmetic tables (Tables 1-8) are provided to permit the reconstruction of
the planes that were investigated. Table 1 gives the addition table to be used for
all the planes (the elementary abelian group of order 16). Tables 2-8 provide the
multiplicative loops of the quasifields which define the various planes. In each
case the plane can be reconstructed in the standard manner by the use of Hall
coordinates. It should be noted that these are left quasifields so that the affine
points of the non-vertical lines of the planes are given by the equations of the
form y = zm + b. To conserve space these tables are not bordered.

Table A
Total Number of Hyperovals

DES 119,857,920
SEMI2 102,912
SEMI4 82,944
HALL 89,280
LMRH 70,848
JOWK 70,848
DSFP 73,440
DEMP 68,832

Tables 9-15 give the results of the searches in each of the planes. Under the
heading “UType” we provide a crude classification of the hyperovals as either
hyperbolic (H) or elliptic (E). A further refinement of the hyperbolic hyperovals is
given by considering the orbits of pairs of infinite points. The orbit size is given in
parentheses and a representative of the orbit is listed below. For each type “Class”
refers to a projective equivalence class of hyperovals, and “#" is the number of
hyperovals in this class. An entry of “@” indicates that there are no hyperovals of
this type. The affine coordinates of a representative of the class are provided under
“Representative”. The infinite points of these class representatives are the orbit
representatives of the respective type. Finally, under “Group” we list the abstract
automorphism group for that class of hyperovals. In this listing the symbol T
refers to the subgroup of translations, 7(a, b): (z,y) — (z+a,y+b), where(a, b)
are the coordinates of any affine point of the particular hyperoval. The hyperovals
whose automorphism groups contain this subgroup are translation hyperovals.
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Table 9

Hyperovals Through the Origin (0, 0) in the
Semifield Plane with Kem GF(2)

Type Class # Representative Group
H1 (16) I 18 0,01,12,133,54,85,126,77,48,9 Ta
00,0 9210,311,1412,11 13,6 14,15 15,10
H2 (24) I 12 000,11,41,153,63,11474,1478 Ta
01 7,109,129,13 14,1 145153 159
Il 12 0,0021,131,144,1456,86,15113 Ta
11,6 12,4 12,10 13,9 13,11 15,7 15,12
1044 12 00071,61,10252,13595,157,2 Ta
7,1212,112,1413,813,11 14,3 144
H3 (24) I 12 0,00,13,123,134,44,155,75,147,6 Ta
03 7,11838911,211,513,813,10
I 12 00041,61,123,33,7494,147,1 Tq
7,159,29,10 14,11 14,13 155 15,8
11 12 0,00,42,112,133,13,154,24,106,6 Ta
6,127,57,810910,14123 12,7
v 12 000,73,13,144,64,10555,137,8 Ta
7,11898,1511,211,1213,3134
A% 6 0,00,45357666,12797,1492 Tgq 22,
9,10 10,5 10,8 13,1 13,15 15,11 15,13
VI 6 000,61,71,106,136,15747,1288 T =22
8,1410,1 10,11 11,5119 142 143
vil 24 0,00,455586,16,15797,1493 Zy x Z4
9,710,11 10,13 13,2 13,10 15,6 15,12
VIII 24 00061,11,116,136,157,57984 Zn X 24
8,1210,8 10,14 112113 14,7 14,10
H4(72) I 4 0,00,15,85,106,126,13767,1193 Tq
04 99104 10,15 13,7 13,14 15,2 15,5
Il 4 0,0052,102,153,123,146,3 6,11 8,4 Ta
8,813,613914714,13151152
m 4 000,10333,125,15810510,15119 Ta
11,1312,11 12,14 14,6 14,7 15,2154
v 4 0,00,1122294,7489,109,14 10,12 Ta
10,1511,411,13 13,3135 14,1 14,6
E I 1728 0,00,1101,7222,67,2799,49,11 Z3

10,1 10,511,5 11,9 14,4 14,6 15,7°15,11
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Table 10

Hyperovals Through the Origin (0, 0) in the Hall Plane

Type Class # Representative Group
H1 (5) L]
00,0
H2(5) [
00,1
H3 (60) T 5 001,0243,134,1546,117,128,15 Ta X 22
00,2 9,13 10,15 11,11 12,6 13,6 14,12 15,1
I 5 0010212344,15]12667,158,13 Tq 12,
9,410,13 11,6 12,11 13,11 14,15 15,1
M 5 001,129344,1536,147,1589 Tq 22
9,15103 11,7 12,7 13,14 144 150
IV 5§ 001,42143,1445967788,13 Tq <22
9,15 10,9 11,3 12,3 13,7 14,1 15,0
vV 5 001,525334,6506,117286 T =22
911109113 12,113214,1159
VI 5§ 001,52,53,11425063798.2 T 12
9,3 10,1 11,11 12,6 13,9 14,6 15,1
Ha (30) T 20 000,1161,114,04,16,126,1311,4 Ta
24 11,15 12,12 12,13 13,4 13,15 15,6 15,11
I 20 0001272144,04,19295107 Ta
10,14 11,12 11,13 13,12 13,13 14,2 14,5
I 2 0002242104,134,14999,11109 Tq
10,11 11,13 11,14 13,0 13,2 14,4 14,10
H5 (30) T 20 0,00,1262113,03,1666,1184 Tq
25 8,15 13,4 13,15 14,12 14,13 15,12 15,13
I 20 000,15,125,136,126,13777,1490 Ta
9,110,210,5 13,2 13,5 15,7 15,14
M 20 0002191,113032434673 Ta
7.6999,11 14,1 14,5 15,1 15,5
H6 (6) 110 0,00,11,81,103,23,5 8,88,10 Ta < (2s x 22)
26 9,49,1510,0 10,1 12,2 12,5 13,4 13,15
I 10 0,003151,1134374043 Ta (25 x Z2)
747,7989,13 14,8 14,13 15,5 15,11
m 10 0,00,55,75,136,126,14707,5 T = (2s x 22)
9,19,210,12 10,14 13,7 13,13 15,1 15,2
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Table 11

Hyperovals Through the Origin (0, 0) in the

Lorimer-Rahilly Plane
Type Class # Representative __ Group
H1 3) I 48 001,1243548596,127,138,10 T =27
00,0 9,11 10,14 11,1512213,3 14,6 15,7
H2 (42) I 24 001,4223,64,65264708,14 Ta
00,2 9,1010,12 11,8 12,8 13,12 14,10 15,14
n 6 0,01320334,1526,1728,14 Tq a2
9,13 10,14 11,13 12,15 13,12 14,15 15,12
H3 (84) 1 12 0,002252,7404,26,56,78,13 Tg
24 8,1510,810,1012,13 12,15 14,8 14,10
I 12 0,002151,7646,67,173100 Ta
10211,511,7 12,4 12,6 13,1 13,3
H4 (7) I 144 0,00,13435404,1747588 Tq
23 8911,1211,1312,812,915,1215,13
Table 12
Hyperovals Through the Origin (0, 0) in the
Johnson-Walker Plane
Type Class # Representative Group
H1 3) T 48 001,32231347566,1475810 Tq xZ
00,0 9.810,1211,1512,1 139 14,11 154
H2 (42) T 24 001,3213364,14586,157,886 Tq
00,2 92102 11,14 12,3 13,0 14,13 15,15
n 6 001,423304,1157637,1188 T =2,
9410,511,712,513,8 14,13 15,13
H3 (84) I 12 0,00,21,81,153,33,64,134,1478 Ta
23 7,159,139,14 140142153 15,6
I 12 000350536,56,117147,1595 Tao
9,11 10,10 10,12 13,14 13,15 15,10 15,12
H4 (7) T 144 000,11,121,133,03,1474,147,7 Ta
2,5 7,149,129,1314,2145152 15,5
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Table 13

Hyperovals Through the Origin (0, 0) in the

Derived Semifield Plane
Type Class # Representative Group
H1(3) T 18 001,126394,1251165788,15 T xZ,
00,0 9,310,411,212,14 13,7 14,10 15,13
H2 (36) 1 6 00102,133,154,115,13667,1284 Ta
00,2 9,1510,4 11,6 12,1 13,1 14,12 15,11
I 6 001,12732455146,127,18,12 Tq
9,510,13 11,13 12,14 13,7 14,0 15,2
m 6 0013223540566,17586 T
9,1110,211,912,1139 14,11 153
IV 6 001,32133,144,1458627,086 Ta
9,1510,2 11,6 12,13 13,8 143 15,15
V 6 00162123134,1546,17,12815 Ta
9,1510,13 11,11 12,0 13,6 14,4 15,11
H3 (6) [}
00,3
H4 (24) I 9 0,001262,11363,11444,1560 Ta
23 6,17,127,1310,1210,13 12,4 12,15
I 9 00014124,13565,116,06,184 Tq
8,159,69,11 12,12 12,13 14,4 14,15
m 9 000124215767,11868,1194 Ta
9,1511,011,1 12,12 12,13 15,12 15,13
IV 9 0002171,123,135878,129,13 Ta
9,1410,010,2 12,1 12,5 13,13 13,14
V 9 000436312414,1550547,11 Tq
7,138,18,1511,6 11,12 13,11 13,13
VI 9 00043,113,13464,125,65,127,1 Tq
7,158,084 11,111,1513,11 13,13
HS5 (36) I 6 00011,71,1446411666,1111,8 Ta
24 11,1012,0 12,1 13,7 13,14 15,8 15,10
I 6 0001161,11383,10878,1497 Ta
9,14 10,8 10,10 12,0 12,1 13,6 13,11
M 6 0002383,155451010110511,1 Ta
11,512,412,10140142 158 15,15
IV 6 0,00,54,74,135,75,136,66,98,0 Ta
8,59,109,1512,1012,15 14,6 149
v 6 00010191,13414,86,168113 Ta
11,1212,012,1013,9 13,13 15,3 15,12
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Table 13, continued
Hyperovals Through the Origin (0, 0) in the
Derived Semifield Plane

Type

Class # Representative Group

Hé6 (18) I 12 0001141,15262,11303,1512 Tg

25 5136,66,119,49,1511,1211,13
I 12 000123293,03,1474,1463 Ta
6977714104 10,15 12,412,15
m 12 0002191,11242,105,135,1470 Tq
7212,412,1013,13 13,14 149 14,11
IV 12 00031417606371798,14 Ta
8,1510,110,9 11,4 11,7 14,14 14,15
V 12 00043538535710310711,11 Tq
11,13 12,11 12,13 145148 150154
H7 (1) ]
2,7
H8 (1) [
39
Table 14
Hyperovals Through the Origin (0, 0) in the
Semifield Plane with Kem GF(4)
Type Class # Representative Group
H1 (16) )
00,0
H2 (72) I 24 000,11,41,154,124,136,76,14113 Tq
0,1 11,912,212513,8 13,10 156 15,11
I 24 0004494,14515156,116,1383 Tq
8,79,69,1212,212,1014,5 148
m 24 000113,103,144249515674 Tq
7.13838511,711,813,1213,15
H3 (48) [)
.03
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Table 15

6,157,17,11 10,4 10,12 12,13 12,15

Hyperovals Through the Origin (0,0)
in the Dempwolff Plane
Type Class # Representative Group
H1(1) 1 90 001,123384,14596,137684 Ta
00,0 9,1010,1511,1212,213,5 14,11 15,7
n 72 0012213,104,1355687987 Ta
9,410,1211,15 12,3 13,6 14,11 15,14
H2 (15) I 6 001,0283,14,12586,107,1389 Tq xZs
00,1 9,1109 11,1012,3 13,3 14,13 15,12
H3 (15) I 6 000,11,3193,123,13828598 T =24
0,1 9,10 10,6 10,11 124 12,15 13,7 13,14
H4 (60) 1 6 000,12,02,13,123,14474,146,12 Ta
1,2 6,13727510710,1412,212,5
I 6 000,14,124,135,05,16,46,158,12 Tq
8,139,49,15 12,6 12,11 14,6 14,11
m 6 00021,131,1423263,133,1458 Ta
5156,86,159092113116
H5 (15) 1 24 000,121,41,6323,78,08,129,3 Ta
13 9,10 10,4 10,6 12,3 12,10 13,2 13,7
I 24 000,13242,113,03,13494,1064 Ta
6,11797,1010,2 10,14 12,2 12,14
H6 (30) 1 12 0,00,12,62,113,43,154,124,136,12 Tq
18 6,137,67,1110,410,1512,012,1
I 12 00051,101,152,0254,124,145,10 Ta
5,158,38,1110,12 10,14 153 15,11
Im 12 000520253,123,14434,116,12 Ta
6,147,107,1510,3 10,11 12,10 12,15
v 12 00051619242840455,12 Ta
5148,128,14104 10,8 156 159
v 12 00053,13,24045535,117,1 T
72838,1111,611913,6139
VI 12 0006242,123,13,11404,66,13 Ta
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