Changing and Unchanging the Domination Number of a Graph

Julie Carrington
Department of Computer Science
University of Central Florida
Orlando, FL 32816

Frank Harary
Dcpartment of Computer Science
New Mexico State University
Las Cruces, NM 88003

Teresa W. Haynes
Department of Computer Science
East Tennessee State University
Johnson City, TN 37601

Abstract. A dominating sct in a graph G is a set D of nodes such that every node of
G is either in D or is adjacent to some node in D. The domination number a(G) is the
minimum size of a dominating set. The purpose of this paper is to explore the changing
or unchanging of a(G) when either a node is deleted, or an edge is added or deleted.

1. Introduction
Let G = (V, E) be a graph as in [5), undirected with no loops or multiple edges.
Notation and terminology not introduced here is found in the book [5]. A set S of
nodes is a dominating set if every node not in S is adjacent to at least one node
in 8. The domination number a(G) is the minimum size of a dominating set
for G. We study the problems involving the changing or the unchanging of the
domination number of a graph G under three different situations: (a) deleting a
node, (b) deleting an edge and (c) adding an edge. Let E = E(G), the edge set of
the complement of G. Formally, we have six subproblems: to characterize those
graphs G = (V, E) for which

(1) a(G—v) # (@) forallveV

Q) ao(G-v)=a(G) forallveV

(3) a(G—e) # a(G) foralle € E

@ ao(G—e)=a(G)forallec B

(5) a(G+e) #a(G) foralle e E

6) (G +e)=a(G) foralle € E.

Some of these individual subproblems have been approached in the literature.

Our main objective is to tie known information with new results in order to present
the current status of all six of these problems.
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2. Removal of a Node

It will be useful to partition the nodes of G into three sets according to how their
removal affects the domination number. Thus we define

V0= {ve V|G —-v) = (@)},
V*={veV]|e(G—v) >a(G)} and
V-={veV|a(G-v) <@}

Notation: Throughout, we write D for a generic minimum dominating set (mds)
of G.

We study two classes of graphs in this section: the graphs satisfying Ve=9
(Class 2.1) and those in which V0 = V (Class 2.2). Let I be the set of all isolated
nodes of G. It is obvious that we always have |V*| < a(G) and I C V™.

We will use the following notation: N(v) is the open neighborhood of v, i.e.,
the set of all nodes adjacent to v, N[v] = N(v) U{v} is the closed neighborhood
of v.

Class 2.1: The graphs for which the domination number is changed when any
node is removed.

Since V0 = @, the nodes of G in this case are partitioned into V* and V—. We
first state some facts about these sets. Bauer, Harary, Nieminen and Suffel [1]
characterized nodes whose removal increases «, i.e., the nodes in V*.

Theorem A [1]. Inagraph G, node v € V* if and only if

(1) v is not isolated and is in every mds for G, and
(2) there is no dominating set for G — N(v)] having a nodes which also dom-
inates N(v).

Theorem 1. If v € V* then in every mds D, v dominates at least two nonadja-
cent nodes u,w of G not dominated by D — v.

Proof: We already know from Theorem A that each v € V'* is in every mds and
is not isolated. Let D be any mds. Let S C N(V) be the set of those nodes of D
dominated only by v € D. If S is empty then D — v together with any neighbor
of v form an mds not containing v, contradicting the fact that v is in every mds.
Suppose next S is not empty, and that it induces a complete subgraph, contrary
to the existence of two nonadjacent nodes u, w dominated only by v. Then again
D — v together with any node of S will serve as an mds, a contradiction. Hence
v must dominate at least two nonadjacent nodes of S. |

Let d, denote the degree of v. Theorem 1 shows thatd, > 2 forv € V*.
We also note that the converse of Theorem 1 is not true. For a counterexample,
consider graph G of Figure 1. Obviously, a(G) = 2 and v is in every mds. Thus
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Figure 1. A counterexample to the converse of Theorem 1.

the conditions of the converse of Theorem 1 are met, but the set {e, f} dominates
G — v, implying that v is rot in V'*.

Theorem 2, If z € V* and y € V—, then x and y are not adjacent.

Proof: Suppose z is adjacent to y. Let D, be an mds of G — y of size a(G) — 1.
If D, contains z, then D, dominates G, a contradiction. On the other hand, if D,
does not contain z, then D, U {y} dominates G and does not contain z, violating
Theorem A. |

Corollary 2a. Every graph satisfies [V°| > 2|V*|.
Proof: By Theorem 1, each v € V* has, for each mds D, at least two neighbors
in V — D which are not dominated by D — v. Since v is not adjacent to a node in

V- by Theorem 2 and no nodes of V* are in V — D, v has at least two neighbors
in V0 which are not dominated by D — v. ]

Corollary 2b. Ifagraph G isin Class 2.1, then V = V™.

Proof: By hypothesis a(G — v) # a(G) forallv € V. Thus V* and V-
partition V. If z € V* then by Corollary 2a, V° is nonempty, a contradition.
Hence V=V". |

Thus in any graph G such that (G — V) # a(G) forall v € V, it must be
the case that a(G — v) < a(@G). These are precisely the graphs which Brigham,
Chinn and Dutton [2] call “vertex critical” or just “a-critical”. For consistency
with research involving other invariants, motivated by the general approach of 6],
we call these graphs a-node-minimal . We mention one property of such graphs
which establishes when G is not one of them.

Theorem B [2). If G has a nonisolated node v such that N (v) is complete, then
G is not a-node-minimal.

According to [2], attempts to characterize these graphs have been unsuccessful,
and the problem remains unsolved. Furthermore, they show it is not possible to
characterize these graphs in terms of forbidden subgraphs. On the other hand,
they did characterize those a-node-minimal graphs having p = « + A nodes, the
minimum number possible, in the following result.
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Theorem C [2). A graph G having p = a + A nodes is a-node-minimal if and
only if G has the form shown in Figure 2 where B is the neighborhood of a node
v of maximum degree A and

(1) the a — 1 nodes of C are independent,

(2) every B node is adjacent to exactly one C node,

(3) C is the only set of o — 1 nodes which dominates B U C,

(4) foreach b € B, there is a set of o — 1 nodes of B U C which dominates
B — b and includes a node of B.

b1 [ <
b2 ] <,
v .
b []
Ba Ca-1
B nodes C nodes

Figure 2. Part of a construction for Theorem C.

Class 2.2: The graphs for which the domination number is unchanged when any
node is removed. ,

In this family of graphs a(G — v) = a(G) forallv € V,s0V = V°. We
characterize graphs having this property after making a preliminary observation.

Lemma 3. If v € V™ and v is not isolated, then there exists an mds D such that
vé¢ D.

Proof: Since v € V— there is an mds D’ such that D' NN (v) = @. Thenv € D'
since v is necessary in D’ to dominate itself. We form another mds from D’ by
replacing v by any one of its neighbors. 1

Theorem 3. A graph G is in Class 2.2 if and only if G has no isolated nodes,
and for each node v, either
(1) there is anmds D' such that v ¢ D’'and for all mds D such that v € D, v
is necessary in D to dominate at least one node of G — v, or
(2) v is inevery mds and there is a subset of a(G) nodes in G — N[v] which
dominates G — v.

Proof: First consider a graph G such that a(G — v) = a(G) forallv € V.
Then obviously there are no isolated nodes. Assume there exist mds D, D’ such
thatv € Dbutv ¢ D'. Suppose v € D dominates only itself. Then D — {v}
dominates G — v, implying v € V—, a contradiction. Thus (1) holds.
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Next consider a node v in every mds. Since v € V*, Theorem A shows there
must be a set of a(G) nodes of G — N{v] which dominates G — v, proving (2).

Conversely, suppose G has no isolated nodes and either (1) or (2) holds. If (1)
holds for node v, then a(G — v) < a(G) since some D' does not contain v and
hence dominates G — v. If a(G — v) < «(QG) then there is a D in which v is
needed to dominate only itself, a contradiction. Thus a(G — v) = a(G) in this
case. If (2) holds for a node v, thenv ¢ V'~ by Lemma 3, so a(G — v) > a(G).
Buta(G—v) > aG) is excluded by Theorem A, so again a( G—v) = a(G). 11

3. Removal of an Edge

Just as in the preceding section on the removal of a node, we now consider the
two classes of graphs where

a(G —e) > a(@) forany edge e, and
(G —e) =a(G) foralle.

Class 3.1: The graphs in which the domination number is changed when any edge
is removed.

Here we treat the family of graphs where the removal of any edge from G results
in a change in the domination number, ie., a(G — e) # a(G) foralle € E.
Clearly, the removal of an edge cannot decrease the domination number, so such
graphs have the property that o(G — e) > a(G) for all e € E. These graphs are
a-edge-minimal . They are easy to characterize as shown independently by Bauer,
Harary, Nieminen and Suffel [1] and by Walikar and Acharya [12). A galaxy is a
graph in which every component is a star.

Theorem D [1], [12). A graph G satisfies o G — e) > a(G) for each edge e if
and only if G is a galaxy.

Class 3.2: The graphs where the domination number is unchanged when any edge
is removed.

The characterization of these graphs is much more difficult than of those in
Class 3.1. Here the removal of an arbitrary edge from G does not change the
domination number, thatis, a(G —e¢) = a(G) foralle € E. Dutton and Brigham
[3] call connected graphs with this property “a-insensitive” graphs. In general,
a-insensitive graphs seem to be difficult to characterize, and the problem remains
open. The problem has been extended to consider the removal of £ > 1 edges
in [7], [8]. Applications of graphs having the unchanging property when & > 1
edges are removed have been explored in [4], [9], (10].

4. Addition of an Edge

Again we consider scparately the graphs satisfying (G + €) < a(G) for each
edge e in the complement G, and (G + e) = a(G) foralle € E(G).
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As before, one of these characterizations seems intractable and the other is rou-
tine.
Class 4.1: The graphs for which the domination number is changed when any
edge is added.

Just as the removal of an edge cannot decrease the domination number «, the
addition of an edge cannot increase «. Thus, in this problem, we look at those
graphs G which for each u, v € V, where uv is not an edge, a(G+ w) < a(G).

This hard problem was studied by Sumner and Blitch [11]. They were able to
characterize graphs in Class 4.1 only in the special cases where a(G) = 1 or 2
and where a(G) = 3 whenp < 8.

Class 4.2: The graphs for which the domination number is unchanged when any
edge is added.

In this problem (G + uv) = a(G) forallu,v €V where uv is not an edge.
A characterization of graphs having this property is staightforward.

Theorem 5. A graph G is in Class 4.2 if and only if V= is empty.

Proof: First consider G as unchanging with respect to domination when any edge
of G is added, and assume G contains anode z € V~. Thus a(G — z) < o(G).
Let D, be an (o — 1) -dominating set of G — z. Then adding an edge e joining z
and any node of D; yields a(G + €) = o(G) - 1,2 contradiction.

To prove the converse, suppose G hasnonodesin V= and a(G+uv) = a(Q) -
1 for some pair of nonadjacent nodes u and v. Then any (a — 1) -dominating set
D of G + uv must include exactly one of u or v, say u, and furthermore D must
dominate G — v. Thus v € V~ which is a contradiction. [ |

The result of Theorem 4 relates our criterion for Class 4.2 to that for Class 2.1.

5. Remarks

It is interesting to note that straightforward characterizations were possible for
subproblems (2), (3) and (6) listed in Section 1. On the other hand, their coun-
terparts (1), (4) and (5), respectively, do not seem to lend themselves to useful
characterizations.
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