Finding Longest Cycles in Inner-Triangulated Graphs

Robert J. Cimikowski

Computer Science Department
Montana State University
Bozeman, Montana 59717-0388 U.S.A.

Abstract. We examine the problem of finding longest cycles in inner triangulations,
that is, 2-connected planar graphs in which all interior faces are triangles. These include
the important family of geometric graphs called Delaunay triangulations. In particular
we present two efficient heuristics for finding a longest cycle in an inner triangulation.
The heuristics operate by considering at each step a local sct of faces adjacent to the
current cycle as candidates for inclusion in the cycle.

1. Introduction.

An inner triangulation is a 2-connected planar graph in which every interior face
is a triangle. This class of graphs includes Euclidean Delaunay triangulations [3],
an important family of proximity graphs, that is, graphs in which points are fixed
in n-dimensional space and adjacency is determined by the geometry of the point
set. Dclaunay graphs are of interest in computational geometry with regard to
nearest neighbor problems [10] and in pattern recognition as a model of preceptual
relevance amongst dot patterns [11].

We investigate the optimization problem of finding a longest cycle in an inner
triangulation. For Delaunay graphs, this problem has applications in computer
vision in determining the shape of an object represented by a cluster of points.
Finding a hamiltonian or longest cycle through the points helps in identifying the
object based on the resulting polygon [8]. For general planar graphs, the problem
is NP-complete [4]; however, for the 4-connected case, a hamiltonian cycle can be
found in linear time [1). For inncr triangulations the problem is also NP-complete
[2]. We present two heuristics, with time complexities O(n) and O(n?), for find-
ing longest cycles in inner triangulations with n vertices. Both methods incorpo-
ralc a facial representation of a planc graph to minimize search time during their
operation. The heuristics opcrate by considering, at cach step, the set of faces
adjacent to the current cycle as candidates for merging into the cycle. The first
heuristic, triangular expansion, lengthens a cycle by adding a ncw veriex adja-
cent Lo both endpoints of some edge of the cycle. The operation is repeated until
cither all vertices of the graph have been added to the cycle or no new vertices
can be added. The second heuristic, triangular reduction, starts with a cycle con-
sisting of all vertices on the exterior face of the graph. At each step, the cycle is
augmented by deleting one of its cdges, thereby adding a new vertex previously
interior to the cycle. The method may succeed in adding all vertices to the cycle
or may rcach a “dead end” slate in which no new vertices can be added.

JCMCC 9 (1991), pp. 65-77

For inner triangulations, no other methods for finding longest cycles are known
which exploit the inner triangular structure. For general graphs, the method of
P6sa [9] is best known and has a running time of O(n*); however, its success de-
pends on the density of the input graph [6]. We sought a method for which success
is independent of density and which exploits the inner triangularity property.

Experimentally, we show that the heuristics achieve remarkably good perfor-
mance. Our results indicate that both methods find cycles at least 95% of opti-
mum length when averaged over all test graphs. Furthermore, although we do not
prove a worst-case performance bound for the heuristics, testing revealed that in
all instances a cycle of at least 79% of the optimum length was found.

2. Preliminaries.

We follow the usual graph-theoretic notation such as that presented in [5]. Let
G = (V, E) be an undirected, unweighted graph without loops or multiple edges,
andletn=|V|ande = |E|.

A hamiltonian cycle is a simple cycle spanning all vertices of a graph. Similarly,
a longest cycle is a cycle which has maximum length over all cycles in a graph.

An inner-triangulated graph or inner triangulation is a 2-connected planar
graph in which every interior face is a triangle. Hence, maximal planar graphs
are inner triangulations, as are maximal outerplanar graphs.

3. Heuristics for finding a longest cycle.

In this section, we present two heuristics for finding a longest cycle in an inner
triangulation. Both heuristics start with an initial cycle which can be easily found
and then expand it by merging in vertices which are adjacent to edges along the
cycle. The heuristics differ both in their choice of an initial cycle and in the manner
in which the cycle is lengthened.

3.1 Triangular expansion

In this method, we select any interior (triangular) face of an inner triangulation G
as the initial cycle. We then expand the cycle by adding a vertex adjacent to the
endpoints of an edge of the cycle. We continue the process until either all vertices
of the graph have been added to the cycle or no other vertices can be added. Since
some initial triangles may lead to longer cycles than others, we try all interior
triangles as “seeds” and save the longest cycle generated.

The heuristic TEXPAND is outlined as follows:
(1) Seclect any interior face of G as the initial 3-cycle LC.
(2) Expand cycle LC by adding some new vertex u adjacent to the endpoints
of an edge {v, w} of LC, add the edges {u,v} and {u, w}, and delete edge
{v, w} from LC.
(3) Repeat step (2) until either all vertices of the graph are included in LC
(hamiltonian cycle), in which case halt, or a “dead end” is reached, that

66

is, no new vertices can be added to LC. In the latter case, compare the
length of LC with the previous longest cycle obtained and save if longer.

(4) If all interior triangles have been tried as seeds, then halt and output the
cycle saved as the longest; else select another seed triangle and go to step
®.

Since this method directly exploits the inner-triangular facial structure of the
graphs, it has a distinct advantage over “path-extension™ heuristics such as Pésa’s
{91 which proceed by constructing an initial path and attempt to extend the path
by an additional edge at each step. The success of these methods is heavily de-
pendent on the edge density of the graph. Our method has no dependencies other
than the inner facial structure of the graph. The process of triangular expansion
is illustrated in Figure 1. We show the stepwise construction of a longest (hamil-
tonian) cycle in an inner triangulation, starting with an initial triangle. For each
snapshot in the figure, a dashed line indicates the edge deleted from the previous
cycle in order to expand LC.

. L
o
|> L4 : :: .
.
. ® . o.
(a) (» ()
*
. .
.
*
. . .
.
(q) (e) ()
.
(9) {n)

Figure 1. Finding a longest cycle by triangular expansion.

67

To implement the algorithm, we cmploy a queue Q of edges of G and a circular
doubly-linked list LC, which is the cycle constructed. We use the standard queue
operations enqueue and dequeue to insert and delete edges from Q.

A more detailed description of algorithm TEXPAND is as follows. Let L.C;,
0 < i < n—2,denote the cycle after each itcration of the algorithm. We sclect an
arbitrary interior triangle {u, v, w} as a “seed” and form an initial 3-cycle LCp =
(u, v, w, u), enqueueing the interior edges, that is, edges not bounding the cxtcrior
faccof G. Letl = {u, v} beanedge of LCy. We expand by deleting it from ,Cp
and adding new edges {u,z} and {z,v} to LCp for some vertex z not already in
LCp and adjacent to u and v. Since only interior edges of G are expandable,
we discard all exterior edges after they have been merged into LCo. When a
new interior edge is added to LGy, we also insert the edge in Q for possible later
expansion. For each cycle LC;, we find a vertex z adjacent to both vertices of an
edge, say {w, v} of LC;, such that {z,w, v} forms an elementary triangle , that is,
a trianglc with no interior vertices. We call z an elementary vertex. By adding z
to LGy, we obtain the cycle LC, = (u,v, z, w, u). Finding an clementary veriex
is simple if we have a pair of arrays f1[{) and f2[l], called edge faces, which
point to the faces on either side of edge [. Note that in a planar graph, no cdge
may bound more than two faces. Let {z,w, v} and {y, w, v} represent two faces
containing a common cdge {w, v} on their boundarics. Then clearly z and y arc
both clcmentary.

During the early stages of exccution, it is fairly casy to find clementary vertices
to add 1o the cycle, since there is an abundance of free vertices, that is, vertices
not yet in the cycle. However, at some later time it may not be possible to find
a free vertex. We call this situation a dead end . More precisely, it is a statc in
which no new vertex u may be added o the cycle because the edge nccessary
to “find” v during the scarch for an elementary veriex is not present in). The
situation is shown by the dead cnd configuration in Figure 2. The current cycle
L.C;, which passes through vertices v, w and z, is shown by a solid line. Other
adjacencies are indicated with dashed edges. Vertex v was last added 1o LC;, and
the current queue contents arc as shown. In this case, the edge r3, nccessary for
“finding” vericx u, is not present in the queue, and hence v cannot be added o
the cycle. The success of the heuristic therefore depends partly upon the order in
which cdges are enqueucd during the cxpansion process.

3.2 Implementation of TEXPAND

To implement the algorithm, we assume that a plane embedding of the graph is
provided with adjacency lists A[1..n], where A[4] is a list of the neighbors of
vertex 1 in counterclockwise order about 1 in the embedding. Also, # denotes the
set of faces fi,..., fir}, where f; is an ordered list of vertices on the boundary
of facc 7 and the unique cxterior face f..¢ is identificd. As mentioned previously,
edge faces f1(1] and f£2[{] point to the faces on either side of cdge Lin the graph.

68

Queue:(rl .Ty)

Figure 2. A “dcad end” configuration for heuristic TEXPAND.

To make the updating of cycle LC efficient, an array of pointers LP[1..n] is
kept, where L P[u] points to the location of veriex 4 in LC. Also, the variable
Sree [u] = true iff v isnotin LC.

A listing of algorithm TEXPAND follows:

Algorithm TEXPAND.

input: inner triangulation G = (V, E), n=|V|, e = | E|.
output: longest cycle of G in MAXCY.

begin

[initialization]
obtain set of faces F = {fi,... , fir} and edge faces f1[1..e], f2[1..e];
MAXCY:=[];

for cach interior face f in F' do
begin
Q:=11
enqueuc the intcrior edges of f;
LC:= f;
S:=V-F
Jree [1..n}): = true,

[triangular expansion phasc]
while $ # @ and Q # [] do
begin
dequeue (r); (* letr = {u,v} %)

69

(* find an clementary vertex and expand an edge of LC *)
let z and y be the two elementary vertices w.r.t. edge r;
if free [z] = true then (* z is a free elementary vertex *)
begin
insert z between u and v in LC using L P array;
Jree [z]: = false,
S:=8—{z};
enqueue edges {u,z} and {v, z} if interior;
end
else if free [y] = true then (* y is a free elementary vertex ¥)
begin
insert y between u and v in LC using L P array,
Jree [yl: = false;

8:=8-{y};
enqueue edges {v, y} and {v, y} if interior;
end;
end while;

(* test if all vertices are in LC *)
if § = § then print(“Hamiltonian cycle is”, LC) and HALT;
else if |[LC| > |[MAXCY | then MAXCY: = LC;

end for;

print(“Longest cycle is”, M AXCY);

cnd {TEXPANDY}.

3.3 Time complexity of TEXPAND

We show that the time complexity of TEXPAND is O(#?). All initialization
steps can be performed in O(n) time. Each ileration of the while-loop removes
an edge from Q. Inserting or deleting an edge from the queue takes constant lime.
Since each edge of G enters and Ieaves @ at most once, the loop executes at most
e times, which is O(n). Finding an clementary vertex and checking if an edge is
interior both take constant time, using edge faces f1 and f2. Thus, the time for
all iterations of the while-loop is O(n). There arc 2n — 2 — k interior faces in
any inner triangulation with k exterior vertices. Hence, the for -loop is performed
at most O(n) times. The conditional test at the end of the for -loop takes constant
time. Therefore, the total running time of TEXPAND is O(n2).

3.4 Triangular Reduction
Heuristic TEXPAND slarts with an interior facc of the graph and expands it out-

70

wardly, adding a vertex exterior to the cycle at each step. In triangular reduction,
we start with the vertices on the exterior face of the graph as the initial cycle
LC, and lengthen the cycle inwardly by adding a vertex interior to the cycle at
each step. We call a triangular face f = {u, v, w} reducible if f has exactly two
exterior vertices u and v, one exterior edge | = {u,v}, degree[u] > 2, and
degree[v] > 2. By deleting edge [(and hence face f) from G, we obtain a cy-
cle LC' of length one greater than LC. We proceed in this fashion, at each step
finding a reducible triangle f with exterior edge ! to reduce, and lengthening the
previous cycle by one in the process. We only delete edges of reducible triangles
in order to preserve 2-connectedness and hence cyclicity. As with TEXPAND, we
may eventually add all vertices of G to the cycle (hamiltonian cycle) or reach a
dead end if no further reducible triangles can be found.

The heuristic TREDUCE is outlined as follows:

(1) Let LC initially be the cycle of vertices on the exterior face of G.

(2) Expandcycle LC by finding areducible triangle f = {u, v, w} with exterior
edge | = {u,v} and deleting .

(3) Insert the vertex w between y and v in LC.

(4) Repeat step (2) until either all vertices of the graph are included in LC
(hamiltonian cycle) or a “dead end” is reached, that is, no more reducible
triangles exist. Output LC as the longest cycle obtained.

As with TEXPAND, this method directly exploits the inner-triangularity of the
graphs. The process of triangular reduction is illustrated in Figure 3. G is the
same graph as in Figure 1, and we show the stepwise construction of a longest
(hamiltonian) cycle. As before, a dashed line indicates the edge deleted from the
previous cycle in order to expand LC.

3.5 Implementation of TREDUCE

The data structures used are similar to those for TEXPAND. We use a queue Q of
edges of G and a circular doubly-linked list LC, which contains the longest cycle
constructed. As before, L P[u] points to the location of vertex u in LC, and free
[u] = true iff vertex u is not in LC. Array clement ext [u] is true iff u is an
exterior vertex of the reduced graph. The degree of each vertex is stored in array
degree.

The critical step in the operation of TEXPAND is in finding a reducible triangle.
Initially, we place all exterior edges of reducible triangles in Q. We also store
with an edge [a pointer fp[!] to the reducible exterior face containing . After
each reduction step, an exterior edge is deleted and two previously interior edges
become exterior edges in the reduced graph. We check each new exterior edge
to see if it is part of a reducible triangle, and if so, enqueue the edge for later
reduction. Hence, as long as there remain edges of reducible triangles in Q, the
algorithm may proceed. A dead end state is reached if not all vertices of G are in
LC and Q is empty. In this case, LC is either of optimum length or elsc cannot

71

Figure 4. A “dead cnd” configuration for heuristic TREDUCE.

72

be further expanded. The situation is depicted in Figure 4. The exterior cycle LC
cannot be expanded since none of the remaining exterior triangles are reducible.
Dashed lines indicate edges already deleted.

A listing of algorithm TREDUCE follows:

Algorithm TREDUCE.

input: inner triangulation G = (V, E),n= |V|,e = |E|.
output: longest cycle of G in LC.

begin

[initialization]
obtain faces f1,... , fir|, fexts
initialize arrays ext and degree;

Q=1L

(* enqueue the exterior “reducible” edges of fezt *)
for each edge | = {u,v} € foxe do
begin
let {u, v, w} be the unique interior face containing I;
if not ext [w] and degree [u] >2 and degree [v] >2 then enqueue (1);
end;

(* initialize longest cycle *)
LC:= fexts

[triangular reduction phase]
while Q # [and |[LC| # ndo
begin
dequeue (r); (*letr = {u,v} *)
let fplr] = {u,v,w};
insert w between u and v in LC using L P array;
decrement degree [u] and degree [v];
let {u, z, w} be the unique interior face containing edge ! = {u, w};
if not ext [z] and degree [u] > 2 and degree [w] > 2 then
begin
enqueue (l);
ext [z]: = true;
end;

73

let {v, y, w} be the unique interior face containing edge m = {v,w};
if not ext [y] and degree [w] > 2 and degree [v] > 2 then
begin
enqueue (m);
ext [yl: = true,
cnd;
end while;

prini("Longest cycle is ", LC);
end {TREDUCE}.

3.6 Timec complexity of TREDUCE

We show that the time complexity of TREDUCE is linear. All initialization steps
can be performed in O(n) lime.

Each iteration of the while-loop removes an edge from Q. Since each edge of
G cnters and leaves @ at most once, the loop exccules at most e times, which is
(O(n). All operations within the loop take constant time, using arrays fp, ext,
degree, and LP. Thus, the time for all iterations of the while-loop is O(n).
Therelore, the total running time of TREDUCE is linear.

4. Performance of the heuristics.

To measurc the performance of the heuristics, we tested them on a sct of 500
randomly-generated inner triangulations. So that we could easily verify the length
of a longest cycle in cach test graph, we generated only hamiltonian inner trian-
gulations. Finding the length of a longest cyclc in a nonhamiltonian graph by
exhaustive scarch would have been prohibitive for graphs of réasonable size, that
is, more than 30 vertices. However, the operation of either heuristic is governed
by local information, that is, the set of faces bordering the current cycle. Hence,
neither method considers hamiltonicity, a global property, in making decisions
about which triangles to reduce or expand. Therefore, hamillonicity is not a fac-
tor in performance. We claboratc on the test graph generation method in the next
scction.

4.1 Gencrating the test graphs

We refer to our method for generating random hamiltonian inner triangulations as
cycle triangulation. Initially, we generate a cycle of n vertices. The interior of the
cycle is then triangulated. Finally, an arbitrary number of chords are added 1o the
cxlerior face, while preserving both the inner triangularity and planarity of the en-
tirc graph. Itis straightforward to see that any hamiltonian inncr triangulation can

74

be generated in this fashion. Consider any inner triangulation G' with hamiltonian
cycle C. Then C partitions E(G) into subsets Ex, E¢, and Ej, denoting edges
exterior to, part of, and interior to cycle C, respectively. Then, starting with Eg,
we can form G by next adding Ey and then Ex. This corresponds exactly to our
generation technique. To ensure randomness, pairs of vertices joined by chords
were arbitrarily chosen from the cycle, and the number of exterior chords as well
as the endpoints of each chord were also arbitrarily chosen.

4.2 Testresults

Table 1 and Table 2 summarize the results of testing TEXPAND and TREDUCE
on approximately 500 random hamiltonian inner triangulations with sizes ranging
from 50 to 500 vertices. To study the behavior of the heuristics on various types
of inner triangulations, we generated four types. Type I were random hamiltonian
inner triangulations; Type II had relatively few exterior edges and thus were very
edge dense; Type III were maximal planar; Type IV contained no K4 subgraphs.
In Table 1, W% indicates the worst-case percentage of the optimum cycle length
found by the heuristic over all test graphs, LC% is the average percentage of the
optimum length, and HC% is the percentage of times a hamiltonian cycle was
found. The bottom row of the table shows the averages of the heuristics for all
test graphs.

Table 1 indicates that TREDUCE held a slight advantage in the overall testing,
as it found cycles of length 2.1% longer than TEXPAND. However, TEXPAND
performed better on the denser Type II and Type III graphs. For Type II graphs,
TEXPAND found cycles which were always at least 98% of the optimum length
and found hamiltonian cycles in over 90% of the graphs. For Type III graphs,
TEXPAND had about the same degree of success. On the other hand, TREDUCE
outperformed TEXPAND on approximately 90% of the time on Type I graphs,
which were sparse on the average. TREDUCE also outperformed TEXPAND on
Type IV graphs, which were also sparse. As a whole, the results suggest that the
triangular reduction technique is more appropriate for inner triangulations con-
taining a high number of exterior vertices, while triangular expansion is better
suited for those with few exterior vertices. We suspect that because sparse inner
triangulations have many exterior edges, they also tend to have many reducible
triangles, at least initially. Dense inner triangulations, however, have fewer ex-
terior edges initially and therefore fewer candidates for reduction. Factors in the
performance of the expansion heuristic are less understandable. The choice of a
starting interior face had no observable effect on performance; that is, selecting a
face near the center of the graph rather than one on the exterior boundary did not
always lead to a longer cycle. This, in fact, is why all faces of the graph must be
tried as seeds in order to attain a high success rate for the heuristic.

The effect of problem size on the performance of the heuristics is shown in
Table 2. The value of LC% is indicated for all graphs within the specified size

75

interval. The table shows that the performance of both methods degrades slightly
for graphs with » > 100 vertices, but that the degree of degradation is not an
incrcasing function of input size.

Clearly, any refinements to the heuristics should focus on methods of antic-
ipating and avoiding dead end configurations. It is known that certain graphs
create problems for the heuristics. For example, the graph shown in Figure 4
causes TREDUCE to “dcad end” immediately, and additional instances can be
constructed following the same scheme suggested in the figure. For TEXPAND,
problem candidales arc those containing dense clusters of K4’s and those with
“scparating triangles”, that is, triangles not bounding a face. Mcthods of handling
these configurations are left for future investigation.

Table 1. Pcrformance of TEXPAND and TREDUCE
on random hamiltonian inner triangulations.

Heuristic
TEXPAND TREDUCE

Type WC% LC% HC% WC% L.C% HC%
1 79.0 917 45.6 98.2 99.2 50.3
1 98.2 99.0 90.8 87.9 96.4 60.7
I 97.7 99.8 86.0 87.6 95.2 48.2
v 86.9 96.8 70.8 97.6 99.7 68.7
Ave. 87.8 95.2 72.8 92.3 97.3 56.5

Note: WC% = worst-casc % of optimum-length cycle found,

L.C% = average % of optimum-length cycle found,
I1C% = % of times a hamiltonian cycle was found. .

Table 2. Performancc of TEXPAND and TREDUCE on graphs
of specified size. L.C% is indicated for cach casc.

Number of vertices in graph
10-100 101-200 201-300 301-400 401-500

Hcuristic

TEXPAND 98.4 96.0 93.6 94.6 95.6

TREDUCE 99.4 98.4 94 .4 97.4 95.8
5. Remarks.

Onc major open question concerns the worst-case performances of the heuristics.
Although empirical testing revealed that TEXPAND and TREDUCE did no worsc

76

than 79% and 87%, respectively, over all test graphs, can we obtain absolute or
asymptotic worst-case approximation ratios for the heuristics? We suspect this to
be quite difficult due to the random manner in which the heuristics operate.

Another interesting problem is to identify certain subclasses of inner triangula-
tions for which the heuristics always generate exact solutions. We leave this for
further study.

References

1. N. Chiba, and T. Nishizeki, The Hamilton cycle problem is linear-time solv-
able for 4-connected planar graphs, J. Algorithms 10 (1989), 187-211.

2. V. Chvétal, Hamiltonian cycles, in “The Traveling Salesman Problem”, E.L.
Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, eds., J. Wiley
& Sons, New York, 1985, pp. 403-429.

3. B. Delaunay, Sur la sphére vide, Izvestia Akademia Nauk SSSR, VII seria,
Otdelenie Matematicheskii i Estestvennyka Nauk 6 (1934), 793-800.

4. MR. Garey and D.S. Johnson, “Computers and Intractability”, W.H. Frec-
man & Co., New York, 1979.

5. F. Harary, “Graph Theory”, Addison-Wesley, Reading, MA, 1969.

6. R. Karp, The probabilistic analysis of some combinatorial search problems,
in “Algorithms and Complexity”, J. Traub, cd., Academic Press, New York,
1976, pp. 1-19.

8. J. O’Callaghan, Computing the perceptual boundaries of dot patterns, Comp.
Graphics and Image Proc. 3 (1974), 141-162.

9. L. Pésa, Hamiltonian circuits in random graphs, Disc. Math. 14 (1976),
359-364.

10. F. Preparata and M. Shamos, “Computational Geometry: An Introduction”,
Springer-Verlag, New York, 1985.

11. G. Toussaint, Pattern recognition and geometrical complexity, Fifth Int’]
Conf. on Pattern Recognition (1980), 1324-1347, Miami Beach.

71

