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Abstract. Using a contraction method, we find some best-possible sufficient condi-
tions for 3-edge-connected simple graphs such that either the graphs have spanning
culerian subgraphs or the graphs are contractible to the Petersen graph.

Introduction

We shall use the notation of Bondy and Murty [2], except for contractions. A
graph i§ eulerian if it is connected and every vertex has even degree. An eulerian
subgraph C of G is called a a spanning eulerian subgraph of G if V(C) = V(G)
and is called a dominating eulerian subgraph of G if E(G—V(C)) = . A graph
G is called supereulerian if G has a spanning eulerian subgraph. The family of
supereulerian graphs is denoted by SC. For v € V(G), we define the neighbor-
hood N(v) of v in G to be the set of vertices adjacent to v in G. A bond is a
minimal nonempty edge cut. For an integer 1 > 1, define

DAG) = {v € V(G)|d(v) = i}.

For a graph G with a connected subgraph H, the contraction G/ H is the graph
obtained from G by contracting all edges of H , and by deleting any resulting loops.
Note that multiple edges can arise in contractions.

The existence of a spanning eulerian subgraph (or a domination eulerian sub-
graph) of a graph is especially interesting in view of the following theorem.

Theorem A. (Harary and Nash-Williams [10]) The line graph L(G) of a graph
G contains a hamiltonian cycle if and only if G has a dominating eulerian sub-
graph or G is isomorphic to K, , for some s > 3. 1

The following are some of the prior results on spanning eulerian subgraphs and
dominating eulerian subgraphs.

Theorem B. (Jaeger [9]) If a graph is 4 -edge-connected or if it has 2 edge-
disjoint spanning trees, then it is supereulerian, I

Theorem C. (Benhocine, Clark, Kohler, Veldman [1]) Let G be a 2 -edge-
connected graph of order n > 3. If d(u) + d(v) > —;-(2n+ 3) for every edge
uv of G, then G has a dominating eulerian subgraph. 1

Theorem D. (Cai [4], Catlin [5]) If a 2 -edge-connected graph G of order
n > 20 satisfies 5(G) > }—1, then either G is supereulerian or G is contractible
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to K 3 such that the preimage of each vertex of K3 is a subgraph of Gon
exactly nf5 vertices that is either complete or one edge short of beingcomplete.

In (1), Benhocine, Clark, Kéhler and Veldman conjectured that for a connected
simple graph G on n vertices, if G — D (G) is 2-edge-connected, and if for any
edge uv € E(G), d(u) + d(v) > 351‘- — 2, then G has a dominating eulerian
subgraph. Li proved:

Theorem E. (Li[12]) Let G be a 2 -edge-connected simple graph of order n.
If 5(G) > 4 and if every edge uv € E(G) satisfies d(u) + d(v) > 32 -2,
then G is supereulerian. 1

In this paper, we will discuss some best possible conditions for 3-edge-connected
graphs to be supereulerian, using a reduction method which was introduced by
Catlin [5]). We first present a concept that was given by Catlin in [5].

A graph G is called collapsible if for any even set S C V(G), there is a sub-
graph " in G such that

(i) G — E(T') is connected; and

(ii) S is the set of vertices of odd degreeinT".

The subgraph I" satisfying (i) and (ii) is called an S-subgraph of G. Note that
K1, K3, and C; (the 2-cycle) are collapsible. K is called a trivial collapsible
graph.

Note that being collapsible is stronger than being supereulerian. For a collapsi-
ble graph G, let S be the set of all odd degree vertices of G. Since G has an
S-subgraph I' satisfying (i) and (ii) above, G — E(T") is a spanning eulerian sub-
graph of G.

In [5], Catlin showed that every graph G has a unique collection of maximal
collapsible subgraphs H,, H3, ..., H.. The contraction of G obtained from G by
contracting each H; (1 < i < c) into a single vertex is called the reduction of G.
A graph is reduced if it is the reduction of some graph. Throughout this paper,
we let G' be the reduction of G, and let d(v) and d'(v) denote degree of v in G
and G, respectively.

For a graph G, define F(G) to be the minimum number of extra edges that must
be added to G to create a spanning subgraph of G having two edge-disjoint span-
ning trees. Thus, G has two edge-disjoint spanning trees if and only if F(G) = 0.

We shall make use of the following theorems:

Theorem F. (Catlin [5],{6]) Let G be a graph, and let G' be the reduction of
G. Then each of the following holds:
(i) Let H be a collapsible subgraph of G. Then G is collapsible if and only if
G/ H is collapsible. In particular, G is collapsible if and only if G' = K.
(i) Let Hy and H, be two collapsible subgraphs of G. If V(H) NV(H3) /
= @, then Hy U H, is collapsible.
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(iii)y G’ has no nontrivial collapsible subgraph. In particular, G' is simple and
K5 -free.
(iv) G € SC ifand only if G' € SL.
W) |B(G)H|+ F(G") = 2|V(G)| — 2. In particular, if G' has order at least
3, then
IE(G)] L 2IV(G)] - 4. 1

(vi) K33 — e (K33 minus an edge) is collapsible. |

Theorem G. (Catlin and Lai [8]) Let G be a connected graph. If F(G)<L2,
then exactly one of the following holds:

@ GeSL;

(ii) @G has exactly one cut-edge;
(ili) The reduction of G is K, forsomeodd t > 1. [}

Let G be a graph containing an induced 4-cycle H = uvzwu. Let G/x be the
graph obtained from G — E( H) by identifying u and z to form a single vertex z,
by identifying v and w to form a single vertex y, and by adding an edge ex = zY
(see Figure 1). Note that G/ may have multiple edges, even if G has none.

Figure 1

Theorem H. (Catlin [6]) For the graphs G and G/ defined above, the fol-
lowing holds:
(i) If G/ is collapsible then G is collapsible.
(i) IfG/n € SL thenG € SL.
@iii) |V(G)|=|V(G/m)|+2.
) |E(Q)|=I|E(G/m)]+3. 1

Main Results
We start with the following lemma:

Lemma 1. Let G be a simple 2 -edge-connected graph of order at most 7, with
§(G) >2 and |D2(G)| < 2. Then G is collapsible.

Proof: Suppose G contains a triangle. If G has two vertex-disjoint triangles (say
H, and H,) then since [V(G)| < 7, (G/H1)/H> has order at most 3. By the
definition of contraction, x'((G/H))/H2) > &'(G) > 2. Hence, (G/H1)/H>
is collapsible, and so by (i) of Theorem F, G is collapsible.
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If G has no two disjoint triangles then let H be a maximal collapsible subgraph
of G containing a triangle. If H = G then the lemma holds. Suppose that H # G.
Then |V(G/H)| £ 5, D:(G/H)| < 2 and x'(G/H) > 2. Since G has no
two disjoint triangles and H is a maximal collapsible subgraph of G containing a
triangle, it follows from (ii) of Theorem F that the graph G/ H has girth at least 4.
By inspection, G/ H € {K23,Cas,Cs}. By the definition of G/ H , one can easily
check that if G/H € {K23,Cs,Cs} then |D,(G)| > 3, a contradiction. Thus
H = G, and so G is collapsible.

Suppose that G is triangle-free.

Case 1. |[V(G)| £ 6. Let M = M(G) be a maximum matching of G, and let
m = |M(G)|. Then V(G) — V(M) is an independent set. Since G is a triangle-
free graph with |D,(G)| < 2 and |[V(G)| < 6, it is easy to see that m = 3
and so |[V(@)| = 6. Let M(G) = {z11,z2y2,23y3}. Since |D2(G)| < 2,
at least one pair of {z;,y;} (1 < ¢ < 3) (say 71,y ) have degree 3. Since G is
triangle-free, without loss of generality we may assume z;y; and z,y3 € E(G).
Therefore, N(y1) = {x1,z2,23}. Since G has no triangle and |D,(G)| £ 2,
it follows that either zoy3 € E(G) or yoz3 € E(G) (or both). Thus, we have
G = K33 — e or K3 3. By (vi) of Theorem F, G is collapsible.

Case2. |V(G)| =7. SinceQ is triangle-free and | D, (G) | < 2, itis easy to see
3<AG) L4,
Case 2(a). A(G) = 4. Letvbeavertex withd(v) = A(G).

Let N(v) = {z1,%2,73,24}. Since |D,(G)| < 2, we may assume that
d(z;) > 3 and d(z3) > 3. Since G is a triangle-free graph on 7 vertices,
N(z1) — {v} = N(z2) — {v} := {yn,12}. Since at least two vertices of
{w1,v2,73,z4} have degree at least 3, by inspection, G' contains a collapsible
subgraph H = K3 3 — e. Contracting the graph K33 — e in G, we have a 2-edge-
connected graph G/( K33 — e) of order 2. Obviously, this graph G/( K33 — €)
is collapsible. By (i) of Theorem F, G is also collapsible.

Case 2(b). A(G) = 3. Note that G must have even number of odd degree
vertices. Since G has order 7, §(G) > 2, and |D2(G)| < 2, it follows that
|D2(G)| = 1 and G has girth 4,

Let C = uvzwu be a 4-cycle in G. Let G/ = be the graph as defined before
and let e, = zy be the new edge in G/x. Since A(G) = 3 and |[D2(G)| =1,
by the definition of G/, we have that G/ is a connected graph of order 5 with
§(G/m) > 2 and |D2(G/7)| L 1.

If x'(G/w) = 1, then e, = zy is the only cut edge of G/, because G has
no cut edge. Therefore, G — E(C) has two components, say G and G2, where
u,z € V(G) andv, w € V(G2). Withoutloss of generality, we may assume that
[V(G1)| £ [V(G2)|. Since G is triangle-free, uz ¢ E(G), and so G has at least
3 vertices. Since [V(G)| = 7, it follows that [V(G))| = 3 and [V(G2)| = 4.
Let V(G2) = {v,w,v1, w1 }. Then N(v1) C V(Gz) and N(w;) C V(G2).
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Since at least one of {v, w} has degree 3 and the other one has degree at least 2,
G, must have a triangle, a contradiction.

If s'(G/7) > 2, then since [E(G/m)]| = (2+3 x4)/2 =7 > 6 =
2|V(G/n)| —4,and by (v) of Theorem F, G/ is not reduced. Let H be a maxi-
mum collapsible subgraph of G/=. Then H has order at least 2 and so (G/#) / H
has order at most 4 and |D; ((G/#)/H)| < 2. Itis easy to see that (G/=n)/H
is collapsible. Hence, by (i) of Theorem F, G/ is collapsible, and so by (i) of
Theorem H, G is collapsible. Lemma 1 is proved. 1

Remark. The graph Qs — v (the cube minus a vertex) shows that | D2 (G)| < 2
in Lemma 1 cannot be improved. Let G be the graph obtained from K3 3 and K4
by identifying a vertex of degree 2 in the K3 3 with a vertex in the K. Then G is
a 2-edge-connected graph of order 8 with |D2(G)| = 2, but G is not collapsible.
This shows that the condition |V(G)| < 7 in Lemma 1 is necessary.

In the following we shall let P denote the Petersen graph.

Theorem 1. Let G be a 3-edge-connected simple graph onn < 11 vertices.
Then either G is collapsible or G is the Petersen graph.

Proof: By way of contradiction, suppose that G is a smallest counterexample to
Theorem 1, i.e. G is a 3-edge-connected simple graph with [V (G)| < 11, but

G € {collapsible graphs} and G # Petersen graph P. )

Claim G is reduced.

Let G' be the reduction of G. Then G' is a simple graph with [V(G')| <
[V(®)|. IfG' = K1, then G is collapsible, contrary to (2). Suppose thatG' # K.
By the definition of contraction, x'(G") > &'(G) > 3. If [V(G")| < |[V(G)|
then since G is a smallest counterexample, G' is collapsible, contrary to (iii) of
Theorem F. Thus, [V (G')| = |V(G)], and the claim follows.

Since G is a reduced graph, by (iii) of Theorem F, the girth of G is at least 4.

Case 1. G has a4 cycle, say C = uvzwu. Let G/ be the graph defined as before
and let the edge e, = zy by the new edge in G/x. By the definition of G/ and
3-edge-connectivity of G, we have that §(G/7) > 3,x'(G/w) > 1 and

v@/m|=v(®]-2<9 €)

Case 1(a). x'(G/w) = 1. Then the new edge e, = zy is the only cut edge of
G/, because G has no cut edge. Therefore, G — E(C) has two components.
Let H; and H; be the two components of G — E(C), where u,z € V(H), and
v, w € V(H3). Without loss of generality, we may assume |V ( H;)| < [V (H2)|.
Since §(G) > 3, H, has an edge, say e = z1z2, which is not incident with any
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vertices of {u,v, 2z, w}. Therefore, N(z1) C V(H)) and N(zz) C V(Hy).
Since G is K3-free, N(z,) N N(z2) = @. Therefore,

[V(H1)| > IN(z1)] + IN(22)] 2 8(G) + 8(G) 26,

and so
V(@ > [V(HD|+ [V(H2)| > 2|V(H)| 2 12,

contrary to |V(G)| < 11.

Case 1(b). x'(G/7) = 2. Let E be an edge cut of G/« with |E| = 2. Since G is
3-edge-connected, by the definition of G/, ex = zy € E, for otherwise E' is an
edge cut of G, contrary to x'(G) > 3. Let H; and H> be the two components of
G/w — E, where |V(H1)| < |[V(H2)|and z € V(H1),y € V(H2). Since G
is 3-edge-connected and §(G/7) > 3, it follows that [V(H2)| > [V(H1)| > 2,
§(H;) > 2 and H, and H, are 2-edge-connected. Furthermore, if a vertex v
has degree 2 in H;, 1 < i < 2, then v is incident with an edge of E, and so
|D2(H)| < |EI £ 2.

Since |V(G/®)| < 9 and [V(H))| > 2, it follows that |[V(H2) < 7. If
H, is simple, then by Lemma 1, H; is collapsible. If H; is not simple, then
H, contains a 2-cycle C,. Let H' be the graph obtained from H, by contracting
all G;’s until there is no 2-cycle C,. Then, by the definition of G/ and the
fact that if H, contains 2-cycle C, theny € V(C2), the graph H' is simple
and 2-edge-connected with [V(H')| < 6 and |[D,(H')| < 2. Therefore, by
Lemma 1, H' is collapsible, and hence H; is collapsible. Similarly, H; is also
collapsible. Therefore, ((G/w)/H1)/Hz2 = C, which is collapsible, and so
G/ is collapsible. By (i) of Theorem H, graph G is collapsible, contrary to (2).

Case 1(c). '(G/®) > 3.

Let G/, be the reduction of G/ 7. If G;, = K, thenG/w is collapsible, and hence
G is collapsible, contrary to (2). If G}, # K, then &'(G,) > £'(G/w) > 3 and
[V(GL)| < [V(G/m)| < 9. By Theorem F, the reduced graph Gy, is simple, and
so G, satisfies the conditions of Theorem 1. Since G is a smallest counterexample
to the theorem and by (3), G, is collapsible. Therefore, G/ is collapsible. By (i)
of Theorem H, G is collapsible, contrary to (2) again.
Case 2. G has girth at least 5,
Case 2(a). |[V(G@)| < 10. Let v be a vertex of G. Then d(v) > §(G) > 3. Let
{z1,22,23} C N(v). Let S = UL (N(z;) — v). By assumption, G has no 3
and 4-cycles, §(G) > 3 and [V(G)| < 10. It is routine to show that |S| = 6 and
GIS] = Cs such that G is the Petersen graph P, contrary to (2).

Case 2(b). |V(G)| = 11. Since G has order 11 and §(G) > 3, it follows that
A(G) > 4, because G has evenly many vertices of odd degree. Let v € V(G)



withd(v) > 4. Let{z1,z2,73,74} C N(v).LetS = U} (N(z;) —v). Since G
has no 3 and 4-cycles, and §(G) > 3, N(z;) N N(z;) = {v}ifi # j. Therefore,

4
V()| >4+ 1+|8]=5+ Y (IN(z)|-1) >5+8=13,

i=1

a contradiction.
Since each case leads to a contradiction, the theorem follows. | |

Remark. Theorem 1 is best possible in some sense. Let G be a graph obtained
from P, the Petersen graph, by replacing a vertex v of P by K3, where each vertex
of the K is incident with exactly one edge of E( P) which was incident with the
vertex v. Obviously, this graph G is a 3-edge-connected graph of order 12, but G
is not collapsible and G # P.

Lemma 2. If G' is a 3-edge-connected reduced graph and G' has no span-
ning eulerian subgraph, then |V(G')| > |D3(G")| > 10. Furthermore, either
|[V(G")| = 10 and G' is the Petersen graph P, or [V(G")| > 12.

Proof: Write V(G') = {v1,v2,...,v}, where ¢ = |V(G")|. Since G’ is 3-
edge-connected, G' has no cut-edge and G' # K3 ¢ for any integer t. Therefore,
by the assumption G' ¢ SL, and by Theorem G, these force F(G') > 3. By (v)
of Theorem F,

|E(GN)| =2|V(G)| -2 - F(G') L2|V(G)] -5,
and so,
|E(G’)| <2c-5.
Hence,

Y d(w) <4c-10. @)

i=1

Since G' is 3-edge-connected, §(G') > 3, and so the inequality (4) implies

3|1Ds(G)] + 4(c— IDs(GHD £ Y d'(w) < 4c—10.

i=1

Therefore, |[D3(G')| > 10. By Theorem 1, if [V(G')| = 10, then G’ = P.
Otherwise, |[V(G")| > 12. 1
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Theorem 2. Let G be a 3 -edge-connected graph of order m. If every bond
E C E(G) with |E| = 3 satisfies the property that each component of G- E
has order at least n/ 10, then exactly one of the following holds:

() GeSL;

(i) »= 10s for some integer s, and G can be contracted to G' = P such that
the preimage of each vertex of G' is acollapsible subgraph of G on exactly
/10 vertices.

Proof: Let Hy, Hs,..., H. be the maximal collapsible subgraphs of G. Let G
be the reduction of G obtained from G by contracting the H;’s to distinct vertices
v1,v2,...,Y Where ¢ = |[V(G')|. Without loss of generality, we may assume
that

d'(n) £ d(v2) < -+ < d'(wo).

If G’ is supereulerian, then by (iv) of Theorem F, G is supereulerian. Hence we
may assume that G is not supereulerian. Since G is 3-edge-connected, it follows
that G is 3-edge-connected. By Lemma 2, we have [V(G")| > |D3(G")| > 10
and so d'(v;) = 3 for 1 < i < 10. Therefore, each preimage H; of v; (1 <1 <
10) is joined to the remainder of G by a bond consisting of the d'(v;) = 3 edges
that are incident with v; in G. By the hypothesis of Theorem 2,

V()| 2 15 (1 << 10), )

It follows that

[

10
a= V(@)=Y IVH > Y IV(H) | > n
1

Therefore ¢ = 10. By Lemma 2, G’ = P, and the preimage H; of each vertex v;
of G' has exactly n/10 vertices
Theorem 2 is proved. |

From the proof of Theorem 2, immediately, we can see that the following the-
orem holds.

Theorem 3. Let G be a 3-edge-connected nonsupereulerian simple graph of
order n. Let G' be the reduction of G. Let Hy,H3,...,H, be the maximal
collapsible subgraphs of G corresponding to the vertices in D3 (G'), where r =
|Ds(G")|. If [V(H;)| > n/10 (A < i < 1), then the following holds: T = 10,
n= 10m for some integer m, and G is contractible to P such that the preimage
of each vertex of P is a collapsible subgraph H; (1 < i < 10) on exactly n/10
vertices. |
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Corollaries
The first corollary improves Theorem E (Li [12]) for 3-edge-connected graphs:

Corollary 1. Let G by a 3 -edge-connected simple graph of order n. If §(G) >
4 and if every edge uv € E(G) satisfies

d(u) + d(v) > g-z, ©6)

then exactly one of the following holds:

(i) GeSL;

(ii) n= 10s for some integer s > 5, and G can be contracted to P such that
the preimage of each vertex of P is either K, or K, — e for some edge
e € E(K,).

Proof: At first we show that G satisfies the hypothesis of Theorem 2.

Let E be abond of G with | E| = 3, and let H be a component of G — E. Since
|E| = 3 and 6(G) > 4, H has a vertex, say u, which is not an end of any edges
of E. Since d(u) > 8(G) > 4, u has a neighbor in H, say v, that is also not an
end of any edges of E. Therefore, N(u) C V(H) and N(v) C V(H), and so

d(v) < [V(H)| -1,
d(v) < |V(H)| - 1.

Since G is simple, and by (6),
§—2 < d(u) + d(v) < ([V(H)| - 1) + ([V(H)] - 1) = 2|V(H)| - 2,
and so n
[V(H)| > 0

By Theorem 2, either G is supereulerian, or n= 10 s and G is contractible to P
such that the preimage H; of each vertex v; of P is a subgraph on exactly n/10
vertices. Since d'(v;) = 3 for any v; € V(P), there are only 3 edges of G, say
ey, ez and e3, which are incident with at most 3 vertices of H;. Therefore, by (6)
and §(G) > 4, H; = K, or K, — e for some e € E(K,), and so it is easy to
checks > 5. 1

Corollary 2, Let G be a 3 -edge-connected simple graph of order n > 41, If

n
&) 21— b
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the either G is supereulerian or n = 10 s for some integer s > 5, and G can be

contracted to P such that the preimage of each vertex of P is either K, or K, —e

for some edge e.

Proof: The inequalities n > 41 and (7) imply that §(G) > 4 and (6) hold in

Corollary 1, and so Coroliary 2 follows. ]
The following example shows that Corollary 1 and Corollary 2 are best possible

in some sense.

Example. Let G be the graph constructed by taking the union of K23 and the

Blanua snark [3], and by identifying a pair of vertices, one from each component.

Thus, G is a 3-edge-connected graph of order n = 40, and

n
8(G) =323 -1,
and so for every uv € E(G) (or uv € E(G)),
«w+aw262§-z

But the reduction of G is the Blanuta snark, which is neither supereulerian nor
contractible to the Petersen graph P, and so G does not satisfy any conclusions of
Corollaries 1 and 2. One can see that some other 3-edge-connected nonsupereule-
rian reduced graphs of order n < 40 can also be used to construct such a graph G.
This shows that §(G) > 4 in Corollary 1 is necessary, and n > 41 in Corollary 2
is best possible in some sense. ]

We close by mentioning a result of Catlin [7] which is analogous to Corollary
1.

Theorem I. (Catlin [7]) Let G be a 3 -edge-connected simple graph of order
n. If m is sufficiently large and if

aw+aw>§-2
whenever uv € E(G), then G has a spanning eulerian subgraph. 1
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