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Abstract. Finding the probability that there is an operational path between two des-
ignated vertices in a probabilistic computer network is known to be NP-hard. Edge-
packing is an efficient strategy to compute a lower bound on the probability. We prove
that finding the set of paths that produces the best edge-packing lower bound is NP-hard.

1. Introduction and motivation.

Computer networks are often modelled as probabilistic graphs [1]. The nodes
in the graph represent the communication centers in the network, and the edges
represent communication links. The nodes are assumed to be perfectly reliable.
However, the edges are assumed to fail in a statistically independent manner; we
associate with each edge a probability that it operates. Using this model, a number
of reliability measures can be formulated.

When two vertices s and ¢ are designated in the network, it is of interest to de-
termine the reliability with which a message originating from vertex s will reach
vertex ¢. This is the two-terminal reliability of G, Rely (G), more formally de-
fined as the probability that there exists an operational path in G from s to ¢.
The problem of determining Rel (G) in a general graph G is known to be # P-
complete, although it can be solved in polynomial time for some restricted classes
of graphs [1].

Faced with the difficulty of finding the exact two-terminal reliability of a net-
work, one resorts to searching for good lower and upper bounds. A number of
efficient strategies to find good bounds on the reliability are given in [1]. These
strategies exploit the elegant combinatorial structure of the model. One strategy to
compute a lower bound is “edge-packing”. Here the idea is to partition the edges of
the graph into subgraphs for which the reliability is efficiently computable. Then
a lower bound for the two-terminal reliability is the probability that there is an
operational path from s to ¢ in at least one of these subgraphs.

In this paper, we prove that finding a set of paths that produces the best edge-
packing lower bound is NP-hard. Section 2 describes the decision version of the
problem and Section 3 proves it NP-complete. The proof uses gadgets similar to
the ones developed in (2]. We conclude the paper with a brief discussion of the
significance of our result and the proof technique, and with an open problem.
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2. Edge-packing by paths.

When all edge operation probabilities are the same, say p, the two-terminal reli-
ability of a path from s to ¢ of length [ is p'. Suppose that G has f edge-disjoint
paths of length Iy, I, ... , s between s and ¢; then

Rela(G) 21— J] 1 -p. )
1<igf

Hence to get the best lower bound using this technique, one has to maximize
the right hand side (RHS) of the inequality (1). This is equivalent to minimizing
Micicy(1- p"). This gives rise to two competing goals in getting a collection of
paths yielding a good bound: maximizing f, the number of paths, and minimizing
I;'s, the lengths of each path. Using Minimum Cost Network Flows [1], one can
get a collection of paths with the minimum total number of edges. Itai, Perl, and
Shiloach [2] have proved that given f and [, determining whether a graph has f
edge-disjoint paths, each of length at most /, is NP-complete. However, both these
techniques fall short of producing the best edge-packing set of paths — the set of
paths that maximizes the RHS of inequality (1). We modify the proof of Itai, Perl,
and Shiloach and extend their result to prove NP-completeness for the reliability
maximization problem.

The decision version of our problem which we prove NP-complete is as follows:

Problem. Given a graph G, edge operation probability p, a constant 0 < M <
1) and two distinguished vertices s and t of G, does G have a collection of f
edge-disjoint paths between s and t, of length U, b, ... ,l; respectively, such
that
[Ta-dM<um @
1gigsf

In the rest of this paper, unless otherwise mentioned, a set of paths means a
collection of edge-disjoint paths between two vertices labelled s and ¢. We call a
set of paths satisfying inequality (2) the M -good set of paths . Also prepresents the
edge operation probability, which is a rational value of polynomial length between
0 and 1. The length of a path is the number of edges in the path.

3. The main result.

Theorem. Determining whether a probabilistic graph has a M -good set of paths,
for a given M, is NP-Complete.

Proof: It is trivial to see that the problem is in NP. To show completeness, we
reduce the known NP-Complete problem, satisfiability of boolean formulas in
conjunctive normal form to the problem of finding whether a given graph has a
M-good set of paths.
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Let C = Ci A G A ---Cs be a boolean expression, i.e. an instance of the
satisfiability problem. Let X = {X;,...,X} be the set of variables. Without
loss of generality, assume thatin C, X; andX i»eachoccurs m; times (1 < 1 < k).
To construct such an expression from a given arbitrary boolean expression see [2].
Letm =Y r, mi.

Now we construct in polynomial time, an instance of our problem from the
given instance of the satisfiability problem. It consists of a graph G(V, E) as
descnbed below, edge probability p on each edge and the constant M =(1—p Sym
(1-pH".

The graph G
The graph G is the union of k subgraphs G1,Ga, ... , G, that have only the
vertices s and t in common. The subgraph G is associated with the variable X;.

(1) The edge Xi(X) of G; corresponds to the kth occurrence of X;(X;) in
C. The end vertices of Xe(X k) are ui(Tx) and vix(Tik).

(2) Each pair of vertices v and Uj: is joined to a vertex f; by the edges
(vik, fix) and (Vix, fix) . Each f;; is joined to ¢.

(3) Each pair of vertices T, and ug is joined to a vertex dy;, which in tumn is
joined to a vertex e;x. Each ey is directly joined to s.

(4) Each pair of vertices G and ui¢k+1 mod my) is joined to a verteX gi(k+1 mod m;)
and each g;; in turn is joined to s.

(5) There is a pair of vertices c; and b; corresponding to each clause C; of the
boolean expression C. Each b; is adjacent to ¢ and c;. There is an edge
between c; and v;x(¥;) if and only if the kth occurrence of X;(X;) isin cj.

Thus, the vertex set of G consists of m vertices each of type dik, eix, fix and
g:x; 2m vertices each of type u;; and v;; n vertices each of the form ¢; and b; and
the two vertices s and .

__ Figure 1 shows the graph G associated with the boolean expression C = (X,
X1, X2) A(X1, X1, X2) A(X1,X2,X3) A(X1,X2,X3), withn=4,k=3,
m=6,m=3,m=2,my=1.

We claim that G has a M-good set of paths (with M = (1 —p*)™(1 —p")™)
if and only if the expression C is satisfiable. It is straightforward to see that the
following two Lemmas prove our claim.

Lemma 1. C is satisfiable if and only if G has a collection of m+ n edge-disjoint
paths in which m paths are of length 5 and n paths are of length 7.

Lemma 2. Any M-good set of paths inG (with M = (1 —p°)™(1 —p’)"™) has
m paths of length 5 and n paths of length 7.
Proof of Lemma 1: Let C = C; A G2 A ---C,, be satisfiable. Let ¢(X;) be the

truth value of X;. If t(X;) = false (true) then every G; contributes m; paths of
length 5 passing through the edge X;x(X ) for each k. These paths are of the
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Figure 1

form 3 — gy — i (Tie) — vie(Tg) — fi — t. Thus we get n edge-disjoint
paths of length 5.

As C is satisfiable, each C; contains a literal X, such that¢( X,) is true. There-
fore the corresponding edge X ;x does not belong to any of the other m paths con-
structed before. Thus the path (s, e, dik, Uik, Vik, ¢j, bj, t) is disjoint from all
m paths constructed before. Each C; contributes one such path. So we get n
edge-disjoint paths of length 7, which are edge-disjoint from m paths constructed
before. Thus, if C is satisfiable, then G has m paths of length 5 and n paths of
length 7, all edge-disjoint from each other.

Conversely, let G have m paths of length 5 and n paths of length 7, all edge-
disjoint from each other. As the degree of ¢ is exactly m + n, every edge incident
with ¢ must participate in a path. Also, a path of length 5 can only be of the
form ( s, gik, wik(Tik) , vie(Vik) , fik, 1), every path of length 5 must pass through
a vertex of the form g;. As there are exactly m vertices of the form gq, all of
them must be used to get m paths of length 5. Hence, if a path uses the edge
Xk all the m; paths corresponding to the variable  must use the edge of the type
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Xii; otherwise, some g;; vertex is left out. Thus in G, all the paths of length 5
contain edges of type X;; and none of the type X ik, OF vice versa. We sett(X;) =
false in the first case and true in the latter case. Thus, ¢(X;) is true (false) if and
only if the edges X1, X2,... , Ximy(Xi1,Xi2,--. , Xi(my) do not belong to
any path of length 5. So each of the other n paths of length 7 passes through one
of the ¢; vertices and one of the remaining Xx(3(;x) edges. A path of length
7 can only be of the form (s, €ij, d,-j, u,-,-('t?,-j), v.-,-(F,-,-) , Ck, bx, 1) . Furthermore,
there are exactly n b; vertices and each b; vertex is of degree 2. So each of the n
b;, and hence n c;, vertices participates in one of the n paths of length 7. If a path
passing through c; also passes through the edge X, then X;; is in Cj and t( X;) =
true has been already assigned (i.e. , X; has been used in our collection already).
Correspondingly there is a literal X; in the clause C; and ¢(X;) is true. Thus each
C; and hence C is satisfiable. |

Proof of Lemma 2: It suffices to show that for any collection S of edge-disjoint
paths in @, which doesn’t have m paths of length 5 and n paths of length 7, the
LHS of inequality (2) is greater than (1 — p°)™(1 — p")".

As0 < (1 -7 < 1 foranyl > 0, it is easy to see that choosing less than
(m + n) edge-disjoint paths cannot decrease the LHS of inequality (2). Hence
any collection of paths which minimizes the LHS of inequality (2) has (m + n)
paths. This also rules out the possibility of having a path of length more than 7 in
our collection. Now a path passing through c; can only be of length 6 or 7. If all
n such paths are of length 7, then we end up with z paths of length 7 and m paths
of length 5. So, assume that k(0 < k < n) of the n paths are of length 6. These
paths have to pass through vertices of the type g;x.

Also, the m paths using the edges ( fk,t) are of length 5 if they use vertices
of type gy and are of length 6 otherwise. As k of the m g;; vertices are already
used, at most m — k of these paths can be of length 5 and the remaining & paths
must be of length 6 (Note: m > n > k). Thus S has, k paths of length 6 and
n— k paths of length 7 passing through vertices of type c;, m — k paths of length
5, and k paths of length 6 not passing through vertices of type c;. Then the LHS
of inequality (2) for the collection § is (1 —p°)™*(1 —p%)2¥(1 —p’)™*. This
product is greater than (1 — p*)™(1 — p’)"as (1 —p®)2 > (1 —p°}(1 =p")
ask>1landp>0. |

4. Conclusions.

Our result removes any real hope of designing efficient algorithms for finding the
set of paths that produces the best edge-packing bound. Furthermore, it gives an
application of the proof technique developed in [2].

A natural analogy to packing by paths is edge-packing by cutsets. If a graph G
has f edge-disjoint cutsets of lengths c;, ¢z, ... , ¢y respectively between s and ¢,
then Rel, (G) <[], siSy( 1 — (1 — p)%). Edge-packing by cutsets would yield
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upper bounds in a manner similar to the lower bounds obtained by edge-packing
by paths. To achieve the best upper bound using this technique, we are faced with
the same competing goals: maximizing the number of cutsets and minimizing the
lengths of each cutset. Recently Wagner [3] has given a polynomial algorithm that
can be applied to compute a collection of edge-disjoint cutsets with the minimum
total number of edges. However, results analogous to those of [2] and our result,
are still open for cutsets.
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