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Abstract. A diagonal Latin square is a Latin square whose main diagonal and back
diagonal are both transversals. In this paper we give some constructions of pairwise
orthogonal diagonal Latin squares (PODLS). As an application of such constructions
we improve the known result about three PODLS and show that there exist three PODLS
of order n whenever n > 46; orders 2 < n < 6 are impossible, the only orders for
which the existence is undecided are: 10, 14, 15, 18, 21, 22, 26, 30, 33, 34 and 46.

1. Introduction

A Latin square of order nis n x n array such that every row and every column is
a permutation of an n-set. A transversal in a Latin square is a set of positions, one
per row and one per column among which the symbols occur precisely once each.
A symmetric transversal in a Latin square of even order is a transversal which is
a set of symmetric positions. A transversal Latin square is a Latin square whose
main diagonal is a transversal. (It is clear that a transversal square is equivalent
to an idempotent square in [11]). A diagonal Latin square is a transversal Latin
square whose back diagonal also forms a transversal. It is easy to se¢ that the
existence of a transversal Latin square with a symmetric transversal implies the
existence of a diagonal Latin square.

Two Latin squares of order n are orthogonal if each symbol in the first square
meets each symbol in the second square exactly once when they are superimposed.
t pairwise orthogonal diagonal (transversal) Latin squares of order n, denoted
briefly by t PODLS (n) (POILS(n)) are t pairwise orthogonal Latin squares each
of which is a diagonal (transversal) Latin square of order n. We let D(n) (I(n))
denote the maximum number of pairwise orthogonal diagonal (transversal) Latin
squares of order n.

Fort = 2, it has been shown (see [3,4,6,7,10]) that a pair of orthogonal diagonal
Latin squares exists for all n with the 3 exceptions: n € {2,3,6}. Fort = 3, it
has been shown (see [11]) that three pairwise orthogonal diagonal Latin squares
of order = exist for all n with the 5 exceptions whenn € {2,3,4,5,6} and 28
possible exceptions.

It is our purpose here to reduce this number of possible exceptions to 11. We
also present some constructions of pairwise orthogonal diagonal Latin squares.

For our purpose, let IA;(v, k) denote ¢ pairwise orthogonal Latin squares of
order v (briefly ¢ POLS(v)) with ¢ sub-POLS(k) missing. Usually we leave the
size k hole in the lower right corner. Further denote by I A} (v, k) an I A¢(v, k)
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in which the first v — k elements in the main diagonal of every square are distinct
and different from the missing elements. It is easy to see that the existence of an
I A1 (v, k) implies the existence of an IAf(v, k), and that I Aj(v, 1) exists if
there exist ¢ pairwise orthogonal transversal Latin squares of order v. From [2,9]
we have

Example 1.1. There exist 1A3(9,2) and 1A3(10,2).

We also denote by IA$*(v, k) an IAf(v, k) in which the elements in the cells
(1,v—k),(2,v—k-1),...,(v—k,1) of every square are distinct and different
from the missing elements. It is clear that an I A}*(v,0) exists if D(v) > ¢ and
that an T A$*(v, 1) exists if v is odd and D(v) > t.

Notice that if an I A3(v, k) has a common symmetric transversal in the upper
left (v — k) x (v — k) subarray with entries different from the missing elements,
then we can obtain an I A}*(v, k) from it. From [8] we have

Example 1.2. There exist IA*(18,4), IA}'(38,8), and 1A3*(42,8).

Finally, we denote by A¢(v, k) a set of t POILS(v) in which the cells {(v —
k+iv—i+1) : 1 <1 < k} form a common transversal about elements
T1,T2y000yTke

Example 1.3. An A¢(9,2) exists.
Proof: InGF(9) = {ap = 0,61 = 1,a2 = —1,a3,...,a3},take the 9 x 9 array

where hf’- = Ae@i+ praj, Mg, bi € GFP(NH\{0,1,—-1}, 2 # pranddg+pe = 1.
It is easy to see that Lg, 3 < k < 8, are 6 POILS(9) each of which has different
elements in the cells (0, 1) and (1,0); then we obtain A¢(9,2) by permuting
rows and columns and renaming symbols.

2. Some Constructions

We need the following new constructions. For simplicity we shall not state their
general form, but only the special case needed for this paper.

Let Q be a Latin square of order n based on the set I, = {0,1,--- ,n— 1}
and let S, T be transversals of Q. Form a permutation ogr on I, as follows:
osr(s) = t where s and ¢ are the entries of S and T', respectively, occurring
in the same row. We denote by Q(S,T) the Latin square obtained by renaming
symbols using og . Obviously we have

(a) IfU is atransversal of @Q, then U is also a transversal of Q(S,T);
(b) If V is a Latin square which is orthogonal to Q, then V is also orthogonal
0 Q(S,T).

Let Q be a Latin square and let h be a symbol; we denote by Q, the copy of Q

obtained by replacing each entry z of Q with the ordered pair (A, z).
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Lemma 2.1. For a positive integer k, let A,B,C, be three pairwise orthog-
onal Latin squares of order k which possess four disjoint common transversals
Ty, T»,Ts and the main diagonal D. Then there exist three pairwise orthogonal
diagonal Latin squares of order 4 k.

Proof: Consider the three pairwise orthogonal Latin squares of order 4 &

Ag A A A3 By By B Bs Co G & G
A= A Ay A3 A B= B, Bs By B Q= G G G
A A3 Ao A Bs B2 By By Cn G CG C
Ay A2 A Ao By Bo By B C C Co O

Denote the 16 subsquares of A by A;;, 0 < i,j < 3. For0 < i < 3,
1<j<3, replaceA,, by A;;(D,T}). Then,for0 <1 <3,1<j<3,and
foreverycell (r,c) € T;, interchange the entries in cells Ay (r, c) and A;(r,7).
Call the resulting array A. From (a) it follows immediately that A is a transversal
Latin square with a symmetric transversal.

Do the same replacement and exchange of entries for B and C. By (b) the re-
sulting squares B and & together with A form 3 POILS with acommon symmetnc
transversal, which consists of the main diagonals of those blocks appearing in the
block back diagonal. By simultaneously permuting rows and columns we have 3
PODLS(4 k).

Corollary 2.2. D(n) >3 forn€ {20,28,36,44,52}.

Proof: Since for each n there exists three pairwise orthogonal Latin squares of
order  (see [1]) satisfying the hypotheses of the Lemma 2.1, we have D(n) > 3.

Lemma 2.3. For a positive integerk, let A, B, C be three pairwise orthogonal
diagonal Latin squares of order k which possess three disjoint common transver-
sals Ty, T, and the main diagonal D. If the positions of T\, T, are symmetric

_about the main diagonal, then there exist three pairwise orthogonal diagonal Latin
squares of order Sk.

Proof: Consider the three pairwise orthogonal Latin squares of order 5k.

Ao A1 A2 Ay Ay Bo Bi B Bs Bs C C & C C
_ A Ay A3 Ay Ay _ By By Bs Bo BB _ G G G C O
A=4A; A3y Ay Ao Ay B=Bs Bo By B Bs C=C C C Ci G
Ay Ay Ao A A By, B, B3 By By Ci Co OO & G
Ay Ao A1 A2 A Bs Bs Bp By B: C C C C G

Notice that the set E/ of the entries of the j-th column of A which lie on the
transversals T; coincides with the set E" of the entries of the (4 k + j)-th column
of A lying on the transversals T}, the set F’ of the entries of the ( k+ j)-th column
of A lying on the transversals T, the set F’ of the entries of the ( k+ 7)-th column
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of A which lie on the transversals T; coincides with the set F! of the entries of
the (3k + j)-th column of A lying on the transversals T;. For eachs = 1,2,
j=1,2,...,k,exchange in A the elements of K{ and K appearing on the same
row, K = E, F. It i clear that the resulting array A is a transversal Latin square
with a transversal which consists of an element in the central cell and a set of
elements in symmetric positions.

Do the same exchange of entries for B and C. It is easy to see that the result-
ing squares B and & together with A form 3 POILS with a common transversal,
which consists of the back diagonal in the central block and the T} in the upper
right blocks and the T3 in the lower left blocks of the block back diagonal. By
simultaneously permuting rows and columns we have 3 PODLS(S k).

Corollary 24. D(n) >3 forn€ {35,45}.

Proof: For each n there exist three pairwise orthogonal Latin squares of order
(see [1]) satisfying the hypotheses of the Lemma 2.4. Hence D(n) >3.

Lemma 2.5. Suppose there aret+1 POLS(q) such thatt of them are t PODLS(q).

(1) Suppose gmk is odd, D(k) >t and that IAj(m+ k;, k;) existfor0 <1 <
g—1,where k = ko + ki + - - -+ ko—1 . Further suppose an I A*(m+ ko, ko)
exists if g is odd. Then D(gm + k) > t.

(2) Suppose gmk is odd, D(k) >t and that IA}(m+ k;, k;) existfor0 < i <
g—1,wherek = ko+ky+---+ kg1, ko = 1. Then D(m+ 1) > t implies
D(gm+ k) > .

Proof: Since (1) is Lemma 3.3 in [11], we only prove (2).

Since t PODLS(g) have an extra orthogonal mate, they have ¢ disjoint common
transversals each of which is determined by an element in the extra square. Label
these transversals as To, T, - - - , Ty—1, provided that Ty contains the central cells.

Begin with the t PODLS(g) and replace each of its cells with an m x m array
labelled by the elements in the cell. The array is the upper left part of IAj(m +
ki, k;) if the cell is contained in T3, 1 < § < ¢ — 1. Butif the cell is in the back
diagonal of the t PODLS(g), it will be filled with a modified I A7(m + k;, k;), that
is, by permuting the first m columns the main diagonal of the upper left part in
the TA;(m + k;, k;) becomes its back diagonal. The array is the upper left part
of IA3(m + 1,1) which is obtained from ¢t PODLS(m + 1) missing an element
(say z) in the lower right corner, if the cell is contained in Tp. Suppose every
IA}(m + k;, k;) is based on certain m elements and k; new elements, 0 < 1 <
g — 1, and the new elements remain unchanged when labelling. Then we obtain
the upper left part of an I A}*(gm + k, k) whose right part consists of the columns
Co,C), -+ ,Cy-1 Where C; comes from the right part of the IAf(m + k;, k;) in
T3, and the lower part is obtained in a similar fashion (see Figure 1).
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Begin with the t PODLS (k) again, and suppose the cell ( 41, £1) of each Latin

square is always z. We permute rows and columns with permutation o, .
k=1 k+l k+3
12 = T T k
o'l = ee e
A

Then we obtain ¢t POLS(k) for which the cell (1, 1) is always =; for each of these,
the main diagonal and the cells {(i,k + 2 — 1):2 < i < k} is a transversal.

Now fill the size k hole in the lower right comer of the IA**(gm + k, k) with
the above ¢t POLS(k), and permute rows and columns with permutation o2

1 2 mem gmom ) gmom )
T T omuls mes mele T

gm+ 1 gm+2 gm+3 qm+%—l- gm+2 qm+4

qm+ L gk _ 3 amek 9 o 2

gm+ 5L gm+ B3 gm+ &3 am+k
-’i-l gm + 55—3- qm + 5;-5— gm+k
Then we obtain ¢t PODLS(gm + k).
The remaining verification is a routine matter and the proof is complete.
Corollary 2.6. D(n) >3 forne€ {70,102,110,114,118}.

Proof: The conclusion comes from Lemma 2.3 (2) with the following expressions
10=9%x7+7 102=13x7+ 11

and Lemma 2.3 (1) with the following expressions. There exist an A3*(18,4)
from Example 1.2

110=7 x 14+3 x 4 114=7x14+4 x4 118=7 x 14+ 5 x4

Lemma 2.7. Suppose there are t + w+ 1 POLS(q) such that t of them are t

PODLS(q), ho = 0, g is even, and there exist IA}(m + hs, h;) and 1A(m +
1+ hih),0 i< g—1,h=ho+ hi+---+ hy_,. Further suppose there are
A(m + w,w). Then D(h) >t implies D(¢m + w + h) >, provided w or h
is even.

Proof: We only prove the Lemma with h even (the proof for w even is similar).
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Figure 1.

Since t PODLS(g) have an extra orthogonal mate, they have ¢ disjoint common
transversals each of which is determined by an element in the extra square. Label
these transversals as Ty, T1, . . ., Ty—1, provided that Tp contains the (g, g) cells.
At the same time, elements in cell (g, g) in each of the w extra orthogonal mates
determine a common transversal in the ¢ PODLS(g). Each of such w transversals
intersecting in the cell (g, ¢) just meets T;inacell (0 <1 < ¢ —1). Wefillits
cell with an TA}(m + 1, 1), but fill the cell which is also in T; with TAj(m +
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1+ h;i, b)) (1 < 1 < g— 1) and leave the cell (g, g) empty. Fill any other cell
with TA(m + hi, k) ifitisinT; 0 <1< g-1). Notice that the cells in the
back dnagonal of t PODLS(q) are filled with some modified TAf(m + h;,h;) or
IA3(m+ 1+ h;, h;) whose back diagonal of the order m subarray is occupied by

[

of
Lt
"

Figure 2.

different elements. Label the elements and get the right and lower parts as we did
in Lemma 2.5; it has to be noticed that the cells which fill JA}(m + 1+ h;, b))
belongs two transversals. Then we get an array shown in Figure 2.

We fill the size m + w hole with the given A;(m + w,w) and the size h hole
with the given D( h). Finally we permute rows and columns with permutation o

1 2 e S+l ea+2
o= .
b+1 242 gmeh 9—,'—"""+w+l mth 4 we2

qgm gm+1 qm+2 gm+w gm+tw+l gm+w+2
m+h +w gm+h +1 ’m6h+2 m+h +w 1 2
qm+2+£‘— qm+i‘-+w+1 qm+i‘-+w+2 gm+w+h
\ R R
5 gm+ 2 +w+l gm+g+w+2 gm+w+h

Then we obtain t PODLS(gm + w + h).
The remaining verification is a routine matter and the proof is complete.
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Corollary 2.8. D(66) > 3.

Proof: Write66 =8 x7+2 x 1+4 x 2. Since there are I A3(9,2), IA3(10,2)
and A3(9,2) from Examples 1.1 and 1.3, we have D(66) > 3 from Lemma 2.7.

Lemma 2.9. D(74) > 4.

Proof: The central element in each of the 4 extra order 9 orthogonal mates de-
termines a common transversal in the 4 PODLS(9). Label these transversals as
To,T1,T>,Ts. Here T is the main diagonal and T3 the back diagonal. And they
also have 9 disjoint common transversals 75, Sy, S2,...,Ss.

Begin with the 4 PODLS(9) arnd for each of such 4 transversals intersecting in
the central cell, fill its cells with an IA%(8, 1), but leave the central cell empty,
as in Lemma 3.7 of [11]. At the same time, do the construction as in Lemma 2.5
for the 81,53,..., Ss, that fill the cells of Sy, S3,...,S7 with an TA3(8,1) or
IA;(9,1); fill the cells of Sg with T A3(7,0) or IA3(8,0). We get an array as
in Lemma 2.7.

Now fill the size 11 hole of the above array with the IAZ (11, 1) which is ob-
tained from 4 PODLS(11) missing an element (say z) in the lower right corner.
Then we get an array shown in Figure 3.

N

Figure 3.
Finally, fill the size 8 hole of the array with the 4 PODLS(8) for which the cell

(1,1) is . Then we get 4 PODLS(74) by permuting rows and columns as in
Lemma 2.7.
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Lemma 2.10. D(n) > 3 forne {38,42}.

Proof: Fill the size 8 hole of the 1.43*(n, 8) with the 3 PODLS(8) where I A3*(n, 8)
from Example 1.2.

Finally, we construct three pairwise orthogonal diagonal Latin squares of or-
der 24 by modifying the four pairwise orthogonal Latin squares of order 24 con-
structed by Roth and Peters in [5]. Their construction goes as follows. Let G be
the group Zs x Z, x Z, generated by elements a, band c, where a® = b? = ¢? = e,
the identity. Let S = (s1, 82, ..., 324) be some specified ordering of the elements
of G, with first element e, and let P = {p1,p2,...,pxu} be any ordering of G.
Then Lg(P) is the 24 x 24 array with (i,7) entry s;p; and Ls(p) is clearly
a Latin square. Roth and Peters constructed rows P, P, Ps, and P4 such that
Ls(P), Lg(P3), Ls(Ps),and Lg(P4) were pairwise orthogonal.

We have modified their solution as Wallis and Zhu did in [7] to obtain the fol-
lowing four rows which generate orthogonal Latin squares:

P =e,a,a?,d,a*,6%,b,ab, ab a’b,a*b,a%h, a’c,a*c,a%¢,a’c, ac,c,
| Bnd } ’ ’ B | 3 ’ ) )

a’be, a*be, a3 be, a2bc, abe, be;

P =e¢,ad?, a’ b, a’c, a?b, a’c,c,a%be, ac, a*,a’be, a,ab,a’c, a*b, abc, atc,
be, a3bc, a2, a*be, a’ ,a°b, b;

3

Py =e,a?,a%,a%c, a*be, a*b, bc, a* be, a’be, ab, a,a’¢c, a3, ac, abe, a>b,a2b,

b,a*bc,a%b, a’,a%¢, a¢c, c;

Py =e, a2b, a%bc, a* be, asc, ab,ac, b, @’ , be, a? c,a*,a,c, abc,a?, a3b, ac,

a*b,a*c, abc,a’be,a’b, a>.
Now if we have

S =e, a’ ,a%,a%,a%,a,b, ab,a*b, ab,a%b, ab, ac, a’c, a’c,a%c, a’ c,c,
abe, a%be, a*be, a* b, a’be, be.

We see that Lg(P;) has main diagonal and back diagonal constant (e and bc
respectively). By orthogonality to Lg( P1), each Lg(F;), 1 > 1, must have main
diagonal and back diagonal transversals. So they are three pairwise orthogonal
Latin squares of order 24. Then we have

Lemma 2.11. D(24) > 3.
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3. Conclusion

It has been shown that D(n) > 3 forn € {20,24,28,35,36,38,42,44,45,52,
66,70,74,102,110, 114,118 }. Updating the resultin [11] we obtain the follow-
ing theorem.

Theorem 3.1. There exist three pairwise orthogonal diagonal Latin squares of
every order n where n> 46 . Orders 2 < n < 6 are impossible; the only orders
for which the existence is undecided are:

10 14 15 18 21 22 26 30 33 34 46.
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