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1. ABSTRACT

The lattice-simplex covering density problem aims to determine the min-
imal density by which lattice translates of the n-simplex cover n-space. Cur-
rently the problem is completely solved in 2 dimensions. A computer search
on the problem in three dimensions gives experimental evidence that for the
simplex D (the convex hull of the unit basis vectors), the most effective lat-
tice corresponds to the tile known as the 84-shape. The 84-shape tile has
been shown to be a local minimum of the density function. We explain the
mechanics behind an algorithm which determines the most efficient lattice
in the interior of an arbitrary combinatorial type.

2. INTRODUCTION

Finding the thinnest covering density by translates of an object C is a
well established problem with an extensive and impressive history of re-
search. Covering problems are related to packing problems, wherein one
tries to maximize the amount of space covered by translated shapes without
overlap. In covering problems the desired translates are required to cover
all of R™ and one attempts to minimize the overlap or redundancy of the
covering. This paper restricts to a currently unsolved problem where the
covering object is an n-simplex in R™ and the translates are given by a
lattice.

For any n-simplex S, the optimal covering density 9,,(S) in R, since lin-
ear transformation of S can transform the lattice covering in the same way,
preserving the covering density. In two dimensions 9,(S) = 1.5. A proof
of this fact can be found in [5], though it is not the earliest known pub-
lished result. In three dimensions ¥3(S) < 812 ~ 1.9841... an upper bound
found independently by Fiduccia, Zito, and Mann [4], and by Dougherty
and Faber [2], corresponding to the 84-shape. The authors have run a
computer search algorithm in 4 dimensions and currently have established
94(S) S 55857 ~ 2.9616775....

These upper bounds have been found using a computer search on the
diameters of abelian Cayley graphs. For an abelian group with n generators,
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the generators induce a homomorphism from Z™ — G. The kernel of this
homomorphism is a sublattice L of Z". If 8 is the diameter of the Cayley
graph on the n generators, 8 + n is the Manhattan diameter of the tile
T: the maximum distance in the one-norm from the origin to a point in
T. The tile T is canonical and satisfies T+ L = R™. We can explicitly
find T by using the constructions mentioned in (2] and [3]. However, for
our search algorithm the diameter can be found without explicitly finding
the tile. Regardless, this search method only works for rational or integer
tiles. We make this concept precise in the following sections. Restricting
to integer tiles does not find all efficient tiles.

We proceed to define a combinatorial type and then present an algorithm
which finds the local minima within a combinatorial type.

3. COMBINATORIAL TYPE

Since linear actions on the simplex preserve the optimal density, we will
fix the simplex and search for the most efficient lattice. The traditional
choice of simplex is the convex hull, D, of the unit vectors and the origin.
This will enable us to find the canonical tile corresponding to a given lattice
via the subtraction construction [5]. The subtraction construction enables
us to create a uniquely determined tile from the lattice. We will not define
the subtraction construction, but full details and implementation can be
found in [5}.

The subtraction construction gives a tile T s.t T 4+ L covers R". Fur-
thermore T is uniquely determined and T satisfies a cascading condition
from the axis: If s € T then all points that are entrywise nonnegative and
entrywise no greater than s are also in T. T is contained in the smallest
dilation of D for the given lattice. Let d denote the Manhattan diameter of
T. Then d and the determinant of any basis for the lattice (the volume of
the fundamental domain), give us the covering density of the lattice with
the simplex D, 6(L) = amdfm. The density of the lattice covering is a
continuous function on lattices, allowing us to search for local minima.

The tiles found by the subtraction construction will be defined by their
blockers, lattice points whose coordinates determine the face of the tile.
Then each corner of the tile will have at least three blockers, corresponding
to the three faces that intersect at the corner. The translation of the tile
at the blocker will cover the corresponding face of the tile. We say L is in
general position if each outer face of the tile has exactly one blocker.

The combinatorial type of L is the set of all lattices, L’ with the same
blocker-to-corner relationships as L.
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4. AN ALGORITHM FoRr FINDING LocaL MINIMA

Previously the process of proving that a tile is a local minimum was done
in a few specific cases such as the 84-shape [5]. We generalize that process
as follows.

Given a lattice L in general position, with basis given by the rows of the
matrix B, we can use the subtraction construction to find a tile T whose
Manhattan diameter is minimal for that lattice. We proceed by assuming to
L as being a three dimensional lattice; although all of the work generalizes
to n-dimensions.

Since L is in general position, each corner is determined by exactly three
blockers, one for each of its three faces. This means that L is in the inte-
rior of our combinatorial type. The boundary of a combinatorial type will
contain lattices whose tiles have at least one face determined by multiple
blockers.

Given a particular corner A = (ay, ag,a3) of the tile, we may arrange its
three blockers, viewed as row vectors, into a configuration matriz

Ti1 T12 213
C=|=z2 =z x|,
T3y ZT32 T3z

where z;; = a1, 23 = a2 and z33 = a3. In other words, the coordinates
of the corner appear on the diagonal, and the one norm distance from the
origin to A is equal to the trace of C. Since the rows of C are lattice points,
we have C = NB where N is an integer matrix. Thus the Manhattan
diameter is tr(C) = (N7, B) (the matrix inner product). Since we assumed
that L is in the interior of its combinatorial region, changing L slightly will
not change the relationship between blockers and corners, thus preserving
the combinatorial type of L. We may write B’ = B(I + e¢D) where D is
a matrix representing the direction of change and ¢ is a small positive real
number. Then C' = NB’ = NB(I + eD) will be the corresponding corner
of the tile for the new lattice. Suppose the corner A has maximal diameter
in the tile. Then the density of the simplex covering is proportional to
(leaving out the % coefficient)

(tr(C))®
|det(B)|

Noting that det(B') =det(B)det(I +¢D) =det(B)(1 +¢tr(D)+...) and
tr(C’) = (C,I + D7) =tr(C) + €(C, D"), we may expand & as a function
of €, in series form

n__ (x(C) +e(C,D7)?
5(C) = det(B)(1 +etr(D) +...

§(C) =

3 r
) =5(0)(1+E(_05<G’D Ye + )
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where G =C — E%C—ZI (in other words, G has its diagonal reduced to trace
0). We may think of G as a kind of gradient matrix, since the change from
8(C) to 6(C’) is proportional to the matrix dot product of the direction
matrix D with the gradient matrix G.

Now if we have a tile with corners A, As, ... Ax and corresponding con-
figuration matrices C; and gradient matrices G; = C; — *£], then the
covering density for the given lattice is simply the maximum of the values
of §(C;). Thus, if our lattice is a local minimum in the covering density
(and in general position, etc.) then any directional change D must result
in increasing 6(C;) for some i. Thus

T1: At a general position local minimum, the origin lies in the convex hull
of the gradient matrices for the corners with mazimum diameter.

That condition can be re-written as follows. If (0) = >, a;G; and C; =
N;B, then (3, slNi)B = (= otr(C:)/3) I s0 Ty euNi = 7B where
4 > 0. In other words, B~! is in the convex cone of the integer matrices
Ni. Thus

Tla: At a general position local minimum, the inverse basis matriz B-1
lies in the convexr cone of the integer matrices N; corresponding to the
mazimum diameter corners.

This means that B~! is a linear combination, with non-negative coeffi-
cients, of the N; matrices, but we will not even use that in its full strength.
All we shall actually need is

T1b: At a general position local minimum, the inverse basis matriz B~!
is a linear combination of the integer matrices N; corresponding to the
mazimum diameter corners.

and since tr(C;) = (N7, B) it follows that

T2: At a general position local minimum, the basis matriz B has equal
matriz scalar products with each of the transposed integer matrices N cor-
responding to the mazimum diameter corners.

From those two conditions T1b and T2, we may obtain a full set of equa-
tions for finding a local minimum lattice within a given combinatorial type.
T1b forces B~! to lie in the subspace spanned by the N;s corresponding to
the maximum corners. Let’s say that subspace has dimension k. Then T2
forces B to lie in the subspace orthogonal to the affine subspace spanned
by the transposes of the N;’s — which must be of dimension 8 — k. Thus,
altogether we get 8 equations governing B (and B~1), leaving one variable
for scaling. We may describe this in (two) other ways. (We assume, for
simplicity, that the affine flat of the N matrices does not contain the origin.)
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Algorithm A1l: From T1b, we may say that B~! is a linear combina-
tion of k matrices (the basis for the space spanned by the N;). Then
B-1 = 2,_1 a;D;. By formally computing the adjoint of B~1, we obtain
a matrix which is quadratic in the a;s, and by subjecting that matrix to
the T2 condition that it be orthogonal to the affine space of the N7, we
get k — 1 simultaneous equations in the k variables ;. (We can set one
of the variables equal to 1 to eliminate the scaling factor — leaving k — 1
simultaneous equations in k£ — 1 variables.)

Algorithm A2: Alternatively, we may say that (using condition T2 first)
B is a linear combination of the 9 — (k — 1) matrices generating (via linear
combinations) the subspace normal (via matrix inner-product) to the flat
of the N7. Thus B = E}g; ;B;. Computing the formal adjoint of
that matrix, we get a matrix which is quadratic in the $;. Instead of
subjecting that matrix to the Tla condition, we may simply require that
it be orthogonal (matrix inner product) to the space of dimension 9 — k
orthogonal to the N matrices. That gives us 9 — k simultaneous equations
in the 10 — k variables.

In either case, whether we use algorithm A1 or algorithm A2, we get
one fewer equation than the number of variables, which is proper since
the solutions are preserved by scaling. Thus, in effect, we obtain (possibly
multiple but a finite number of) solutions in 8-dimensional projective space.
Among those solutions must be found the local minimum (or local minima)
for the region if it exists.

Symmetrically, either Algorithm A1l or A2 reduce to the following situ-
ation: We are given a subspace W of dimension k in the vector space of
all n x n real matrices (the subspace generated by our special subset of the
N-matrices) and we are given a subspace W; of dimension k —1 in W (the
subspace parallel to the flat of those matrices.

We seek a matrix X and its cofactor matrix X¢ = (det(X) - X~1)7
satisfying two conditions: (i) X € W and (ii) X° is orthogonal by matrix
inner product to all matrices in W. In other words M € W), = (M, X°) =
0. This is equivalent to requiring that the trace of X 1M (or the trace of
XM~1 or the trace of MX™1, etc.) is zero for all M in W;.

If we write X as a linear combination of k linearly-independent matrices
chosen as a basis for W, the resulting expression has k undefined variables.
Each entry in X is a linear expression in the & variables. Then the matrix
X¢ of cofactors has entries which are homogeneous polynomials of degree
n — 1 in those same variables. Computing the matrix inner product of X¢
in turn with each of k — 1 basis elements for W) and setting each of those
equal to zero, gives k—1 homogeneous polynomial equations of degree n—1
in k variables. Thus the solution set of matrices X must be a finite set of
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points in projective (n% —1)-space (a finite set of rays in n2-space) but what
else might we say?

Note we could just as well require that C¢ be contained in Wit (n—k+1
variables) and that C be orthogonal to every vector in W+ (n—k equations).
Since (C¢)¢ is a scalar multiple of C, this dual statement of the problem is
equivalent.

5. CONCERNS

The above algorithm is ideal for finding the local minimum algebraically,
but there are technicalities. The strategies A1l and A2 both require that
we anticipate which set of corners will be on the diameter plane of the
tile for the local minimum or require that we eliminate all possible sets of
corners, a lengthy procedure. Given that we have a sample lattice within
a combinatorial type, how do we determine which of its corners will be
maximized at the corresponding local minimum? And even when we know
the correct corners to maximize, the resulting equations are typically of
degree higher than one — and have multiple roots. Some of those roots give
lattice bases which fail to live up to their promise. Some of them give a large
number of solution sets (for the ¢ or the 3;), most of which are extraneous.
How do we tell which is which without using the (very expensive) process
of reconstructing the subtraction tile which the solution lattice implies?
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