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Abstract

A difference system of sets (DSS) is any collection of subsets of
Z,, with the property that the differences from distinct sets cover Z,.
That is, every non-zero class in Z, can be written as a difference of
classes in at least one way. DSS were introduced by Levenstein in
1971 only for finite fields but the case for just 2 subsets had been pre-
viously considered by Clauge. Their work emphasized an application
to synchronizable codes. A DSS is triangular if its sets contain only
triangular numbers mod n. We show that a triangular DSS cannot
exist in Zyx for k > 3.

1 Introduction

The integers mod n will be denoted by Z,. A difference systems of sets
(DSS) is a collection of g subsets of Z, with the property that each non-
zero element of Z,, appears at least once as the difference of elements from

different sets. More formally,

Definition 1 A difference systems of sets (DSS) is a collection of q disjoint
subsets Q; C Z,, such that the equation

a—b (modn) 1

m

has at least one integer solution pair a,b for each m = 1,...n — 1 where
[a]" € Qi [b]n € iji #3J, and 4,j=0,...q-1.

A DSS is said to be principal if ¢ = 1. The trivial DSS are the set of
singletons [0]p, ..., [n — 1) and the single set {[0),,...,[n — 1].} in Z,.
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This general definition was introduced by Levenstein over finite fields
in a study of synchronizable and error-correcting codes published in 1971
[7). The case for two sets was considered earlier by Clague in 1967 [1].
Difference systems of sets have been extensively studied over finite fields in
design theory but with the added conditions of regularity and pefection that
are not assumed here. Most constructions of general DSS have proceeded
by partitioning known (v,k, ) difference sets over finite fields; e.g., (4,
9]. Hao Wang [10] has compiled a list of smaller cases over finite fields.
Motivation for studying general DSS came from research in synchronizable
coding where a set Q; contains the indices of positions of the ith ’check
digit’ in codewords of length n. The problem of constructing general DSS
has been shown to be equivalent with that of covering {1,...n — 1} with
certain arithmetical progressions [2].

2 Triangular Numbers

In this paper we continue to explore the existence of DSS in for arbitrary
n > 1 and chose elements of Z, by considering the well-known triangu-
lar numbers, mod n. The triangular numbers are beloved by recreational
mathematicians because of the many identities they satisfy. The first four
are illustrated geometrically below:
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In this paper we include 0 for notational convenence so the ordered list

{To,Th,...,T;...} of triangular numbers begins:
0,1,3,6,10,15,21, 28, 36,45, 55, 66, 78, - - -.

We use the following equivalent formal definitions of the triangular num-
bers:

Definition 1: T; =T;_1+¢ i>0.
Definition 2: T; =142+ .- +i= ( H2-1 )

Note that if j <4, T3 —T; = (j+ 1)+ -+ +1 is a sum of consecutive
positive integers. From Definition 2 the triangular numbers are seen to
be a ‘diagonal’ of Pascal’s triangle. Gauss first proved that every positive
integer can be written as the sum of at most 3 triangular numbers [5]. For
more background and generalizations we recommend the recent book [3].

3 Principal DSS

Since a principal DSS has only one set, the formal differences are not limited
by any partition because of the condition a € Q;,b € Q;,i # j in Definition
1, increasing the likelihood of representing all non-zero classes. This is seen
immediately by simply observing there are always fewer entries available in
the corresponding partitioned difference matrix.

The following theorem gives a sufficient condition for the existence of a
non-trivial principal DSS.

Theorem 1 Ifn > 3 is odd (even) and Tg;_l <n (T3 < n) then there
exists a principal triangular DSS in Z,,.

Theorem 1 is stated and proved in [2] with a slightly stronger hypoth-
esis. The weaker hypothesis here does not affect the proof. The proof of
theorem is constructive and exhibits the required differences by using the
subdiagonals immediately above and below the all zero main diagonal of
the formal difference matrix of the ordered set of triangular numbers, since
these contain the successive differences, +(T;4, —T;). As mentioned above,
it is shown in [2] that the existence of principal DSS is equivalent to the
problem of covering {[O}n,...,[n — 1]} C Z, by classes of certain finite
arithmetic progressions given in Theorem 2 below.
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Theorem 2 For every n > 3, if r = | %] then the set {To,---,T,} deter-
mines a principal DDS in Z,, if and only if the 2(r — 1) classes of integers
appearing in the arithmetic progressions

+(T; + ki), 0< k<r—i

cover
{[On, .., [n = 1)n} C Zn.

It is known that the general problem of covering sets with arithmetic
progressions is NP-complete [6].

4 Powers of 2

The following lemma has been rediscovered many times and there are a
number of elementary proofs in the literature. In 1912 Mason [8], writing
in the American Mathematical Monthly, attributes the first proof to Lucas.

Lemma 1 All positive integers except powers of 2 are sums of at least two
consecutive integers.

The following theorem asserts that for any choice of Qo,...Qg—1 there
cannot exist a triangular DSS when the modulus n is a power of 2 greater

than 3.

Theorem 3 If k > 3 there do not exist triangular DSS in Z,x, for k > 3.

Proof By contradiction. Assume a triangular DSS Qo, ..., Qq-1 exists in
Z,, where n = 2* and k > 3. Set r = maz{i | T; < n} and, if necessary,
permute the rows and columns of the integer difference matrix of the DSS
to Dy, the integer difference table of the ordered set Tp,...,Ty. [Dy]n de-
notes the latter difference table mod n.

Claim: [2¥~1],, does not appear in [Dy}n.

Proof of Claim: If it did then by definition some non-zero integer
a € [2¥~1],, appears in D,. Therefore, a = 2%t + 21, for some integer ¢ by
the Euclidean algorithm. It follows that 2¢~|a. Write a = 2*¥~!s for some
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integer s. But |a] < n = 2* since a is a difference of triangular numbers
all less than n (see the definition of ). Therefore 2¥~1|s| < 2%, or |s| < 2,
So s = 0 or 1. In the first case, s = 0 implies a = 0, a contradiction,
since a € [2¥~1], which contains only non-zero integers. If s = 1 then
a = 2%~1 must be a positive difference of triangular numbers T; — T;,i> 4,
contradicting lemma 1 . If If s = —1 then a = —2%~1 must be a difference
of triangular numbers T; — T; with i < j. But then —a =2%"1 =T; - T;
where j > i, again contradicting the lemma. Since [2¥~!},, does not appear
in [Dy]n, it cannot appear in the difference matrix of any DSS with the same
parameters using the same set of triangular numbers because one matrix is
similar to the other by a permutation matrix.
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