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Abstract For integers k¥ > 1, a (p, g)-graph G = (V, E) is said
to admit an AL(k)-traversal if there exists a sequence of vertices
(v1,v2,...,vp) such that for each ¢ = 1,2,...,p — 1, the distance
between v; and v;; is k. We call a graph k-step Hamiltonian (or say
it admits a k-step Hamiltonian tour) if it has an AL(k)-traversal and
d(v1,vp) = k. In this paper, we investigate the k-step Hamiltonicity
of graphs. In particular, we show that every graph is an induced
subgraph of a k-step Hamiltonian graph for all & > 2.
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1 Introduction

In 1856, Kirkman wrote a paper [12] in which he considered graphs
with a cycle which passes through every vertex exactly once. The
dodecahedron (see Figure 1) is a graph with this property on which
Hamilton played cycle games. Hence, such a graph is said to be
Hamiltonian. The Hamiltonicity of a graph is the problem of deter-
mining for a given graph whether it contains a path/cycle that visits

every vertex exactly once.

Figure 1: Dodecahedron.

There is no simple characterization of Hamiltonian graphs. However,
Hamiltonian graphs are related to the traveling salesman problem,
so there are potential practical applications. In general we know very
little about Hamiltonian graphs though their properties have been
widely studied. A good reference for recent developments and open

problems is [7]. For terms used but not defined, we refer to [3].

In this paper we consider simple graphs with no loops. For inte-
gers k > 1, a (p, q)-graph G = (V, E) is said to admit an AL(k)-
traversal if there exists a sequence (v;, V2, . . ., Up) such that for each

i=1,2,...,p— 1, the distance d(v;, vi1) = k. We call a graph
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k-step Hamiltonian (or say it admits a k-step Hamiltonian tour) if

it has an AL(k)-traversal and d(v1,v,) = k.

For example, the cubic graph in Figure 2 is 2-step Hamiltonian and
the other two admit an AL(2)-traversal but are not 2-step Hamilto-

nian.

Figure 2: Examples on 2-step Hamiltonicity.

There has been much research on Hamiltonicity of bipartite
graphs [1, 2, 5, 8, 9, 13]. Clearly, 1-step Hamiltonian is Hamiltonian.

In this paper we consider graphs which are k-step Hamiltonian.

Definition 1.1. For a graph G, let Di(G) denote the graph gen-
erated from G such that V(Dir(G)) = V(G) and E(Di(G)) =
{wvld(u,v) =k in G.}.

Lemma 1.1. A graph G is k-step Hamiltonian or admits an AL(k)-
traversal if and only if Di(G) is Hamiltonian or has a Hamiltonian

path, respectively.
Proof. This follows directly from Definition 1.1.

For graphs G and H, the vertex-gluing (respectively, edge-gluing) of
G and H is the identifying of a vertex (respectively, an edge) of G
and of H.
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Theorem 1.1. The vertez-gluing of a graph G and an end-vertez of
a path of length n > k is not k-step Hamiltonian.

Proof. Let G(P,) denote the graph such obtained. Observe that

Di(G(P,)) has a cut-vertex and is not Hamiltonian. g

Theorem 1.2. If graphs G and H are both 2-step Hamiltonian, then
sois G x H.

Proof. It is well known that if G and H are Hamiltonian then so is
G x H (see [4]). By Lemma 1.1, G is 2-step Hamiltonian if and only if
Dy(G) is Hamiltonian. We show that Da(G)x Dy(H) is a subgraph of
Dy(G x H). Then any Hamiltonian cycle in D2(G) x Da(H) will also
exist in Do(G x H) and implies that G x H is also 2-step Hamiltonian.
Suppose that edge e = (u, v1)(u, v2) is an edge of Da(G) x Dy(H).
Then (vq,v2) must be an edge of Da(H), so the distance between
v; and vy in H is 2. Let vy, w,vs be a length 2 path from v; to v
in H. Then (u,v), (v, w), (u,v9) is a length 2 path from (u,v;) to
(u,v9) in G x H. The only way for (u,v;) and (u,ve) to be adjacent
in G x H is if vivg is an edge of H, which is not the case. Therefore
e = (u,v1)(u,ve) is also an edge of D2(G x H); the argument for
edges of the form e = (u, v)(ug, v) is identical. Since all edges and
vertices of Do(G) x Do(H) are also in Dy(G x H), D3(G) x D2(H)
is a subgraph of Dy(G x H). Since G and H are 2-step Hamiltonian,
Dy(G) x Dy(H) is Hamiltonian, and so is D2(G x H), implying that
G x H is 2-step Hamiltonian.
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2 Bipartite Graphs

A Hamiltonian graph need not be 2-step Hamiltonian. The simplest
example is the complete bipartite graph K(2,2) (or the 4-cycle Cy)
that does not admit an AL(2)-traversal, and hence cannot be 2-step

Hamiltonian.

Theorem 2.1. All bipartite graphs are not k-step Hamiltonian for

even k > 2.

Proof. Suppose G = (V,E) is bipartite graph with bipartition
(X,Y). If £ > 2 is even, the vertex in X cannot connect with
vertex in Y, vice versa, in Di(G). Thus Di(G) is a disconnected
graph with two components X and Y. Hence Di(G) cannot have a

Hamiltonian path. By Lemma 1.1, G is not k-step Hamiltonian.

Corollary 2.2. The even cycle C,, is not k-step Hamiltonian for all

even k > 2.

In a complete multipartite graph, the distance between any pair of

veertices is either 1 or 2, therefore we have the following:

Corollary 2.3. All complete multipartite graphs are not k-step
Hamiltonian for k > 2.

Corollary 2.4. The complete bipartite graph K(m,n) is not k-step

Hamiltonian for all m,n and even k > 2.

Corollary 2.5. The grid graph P, x P, is not k-step Hamiltonian

for all n,m and even k > 2.
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Corollary 2.6. All polyomino graphs are bipartite and are not k-

step Hamiltonian for even k > 2.

Corollary 2.7. The cylinder graph C, x P, is not 2-step Hamilto-

nian for all even n > 4. Also the torus graph Cp, x Cy, is not 2-step

Hamiltonian for all even m,n > 4.

Not all regular graphs admit 2-step Hamiltonian tours. The simplest

example is K.

Corollary 2.8. The 3-regular cylinder graph C, X P, is not 2-step

Hamiltonian for all even n 2> 4.

Consider the cubic graph X(n) with vertex set V(X(n)) =

{z1,%2, ..., Tan} U {¥1, 42, - . ., Y2 } and edge set E(X (n)) = {zizit1
(mod 2n) |i=1,2,...,2n} U {giyi41 (mod 2n)|i=1,2,...,2n}

U {ziyis1, ¥iTi+1)| 1= 1,3,5,...,2n - 1}.

Corollary 2.9. The graph X (n) is bipartite and is not 2-step Hamil-

tonian.

The following result shows that there exists n-regular graphs that

are not 2-step Hamiltonian for n > 2.

Corollary 2.10. Any n-dimensinal hypercube Qn is not 2-step

Hamiltonian.
3 Tripartite Graphs

In this section, we investigate 2-step Hamiltonicity of tripartite

graphs. First we have the following obvious 2-step Hamiltonian

graphs.
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Theorem 3.1. All odd cycles are 2-step Hamiltonian.

Proof. Let Car+1, £ > 2 be an odd cycle with consecutive vertices
V1, V2,3, ..., Vok+1. A 2-step Hamiltonian tour is given by the se-

quence v1, V3,V + 5, ..., Udkt1, U2, U4, - -+ y U2k, V1.

Theorem 3.2. The cylinder graph C, x P is 2-step Hamiltonian
for odd n > 3.

Proof. Let the consecutive vertices of the 2 copies of Cory1 for n =
2k + 1 in the graph be uy, ug, us, ..., Ugks1 and vy, vo, 3, . . ., Vokt1
respectively such that u; is adjacent to v; for 1 < i < 2k +1. If
k =1, a 2-step Hamiltonian tour is given by u;, vo, us, v1, ug, v3, 4.
For k > 2, we begin our tour at vertex u; as described in the proof
. of Theorem 3.1 followed by visiting vertex voxy; in a similar way but

in the opposite direction to end up at vertex vq, where d(uj, vo) = 2.

Theorem 3.3. The vertez-gluing of two cycles is not k-step Hamil-

tonian for all k > 2.
Proof. Let G be the vertex-gluing of two cycles, C and C’, at w. We
consider three cases.

Case (i). diam(C) < diam(C’) < k. In this case, vertex w is distance
at most k£ — 1 from all other vertices of G. Hence, G is not k-step

Hamiltonian.

Case (ii). Without loss of generality, assume that diam(C) > k and

diam(C’) < k. Let v/ and v' be vertices adjacent to w in C’. Note
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that both »’ and v' must be a distance k from exactly two vertices,
say u and v, in C since w is a distance £k — 1 from u and v only.
Clearly, v’ and v/ are degree 2 in Di(G). A Hamiltonian tour of
Dy(G) must consist of the sequence u,u’,v,?’,u, a contradiction.

Hence, G is not k-step Hamiltonian.

Case (iii). diam(C) > diam(C’) > k. Clearly, there are two vertices,
say u and v in C, and two vertices, say «' and v' in C’ such that
d(w,v) = d(w,v) = d(w,v') = d(w,v') = k. A Hamiltonian tour
of Di(G) must consist of the two sequences u,w,v and u', w,v’; or
else u, w, v’ and v, w, v'; or else u, w, v’ and v, w, ¢, a contradiction.

Hence, G is not k-step Hamiltonian.

Theorem 3.4. The edge-gluing of two cycles, C, and Cjp, is not
k-step Hamiltonian for k > 2 if

(i) diam(C,) < diam(Cp) < k;
(i) a = 2k and diam(Cp) < k;
(i) a > 7 is odd with diam(C,) =k > 2 and b= 3;

(iv) both a and b are odd with diem(C,) = k + 1 and diam(C)) =
k—-12>2.

Proof. Let G be the edge-gluing of two cycles, C, and C}, at edge

we.

(i). Clearly, both vertices w and z are distance at most k£ — 1 from

all other vertices of G. Hence, G is not k-step Hamiltonian.
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(ii). If a = 2k and diam(Cp) < k, then every vertex in C, is a
distance k to exactly one other vertex V(G). Hence, G is not k-step

Hamiltonian.

(iii) Note that if @ = 5, then k = 2 and G is 2-step Hamiltonian.
If a > 7 is odd, then a = 2k + 1. Let u, 2z, v be three consecutive
vertices in C, such that d(z,w) = d(z,z) = k. Then both u and v
are a distance k from the only vertex, say y, in G\C,. Moreover,
we can assume that d(u, z) = d(v,w) = k. Now, any Hamiltonian
tour in Dg(G) necessarily contains the sequence u,y, v, w, 2z, z,u, a

contradiction.

(iv). Let u be adjacent to w, and v be adjacent to z in C,. Observe
that C, and Cy have exactly one vertex, say y and z, respectively,
that is a distance k from both u and v. Hence, a Hamiltonian tour in

D;.(G) necessarily contains the sequence vy, u, z, v, y, a contradiction.

O

4 Constructions of k-step Hamiltonian
Graphs

Suppose G (respectively Gs) is a k-step Hamiltonian graph of or-
der n (respectively m) with a k-step Hamiltonian tour given by
UL, U2, ..., Un, U1 (respectively vy, va,...,0Um,v1). Let uy,a,...,b uy,
be a u; —u, path in Gy, and vy,¢,...,d, v, be a v; — v, pathin Gy
such that d(uj,u,) = d(v1,vm) = k. Note that d(a,b) = d(c,d) =
k—2. Construct a new graph G from G; and G3 by adding 2 vertices
z and y and 4 edges az, by, cy and dz (see Figure 3).
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Figure 3: A graph constructed from 2 known k-step Hamiltonian
graphs
Theorem 4.1. For k > 2, the graph G in Figure 3 is k-step Hamil-

tonian.

Proof. Observe that d(u1,y) = d(vm,y) = d(un, z) = d(v1,z) = k.
A k-step Hamiltonian tour in G is given by uy,us, ..., s, T, v1, V2,
ce Umy UL U

Let G be a graph of order p with a k-step Hamiltonian tour given
by vi,v2, . . ., Up, V1. Suppose vy, u1,ug, ..., Uk-1, V2 is a v} — v2 path
in G such that d(v1, v2) = k. Denote by G, the 1-connected graph
obtained from G by joining a vertex u to u;, and a vertex v to ux_;.

Observe that vy, v, u, v2, s, . . ., Up, v1 is a k-step Hamiltonian tour of
Guv-

Theorem 4.2. If there exists a k-step Hamiltonian graph of order
p, then there ezists a 1-connected k-step Hamiltonian graph of order
p+2n,n2>1.

We denote by Gph the class of all undirected graphs. Let AL(k)
be the class of all graphs that are AL(k)-traversal and we denote

H(k) the class of all k-step Hamiltonian graphs. We denote the
composition of G with H by G[H]. In this section, we show that
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Theorem 4.3. If G € H(k), then for any H € Gph, the composi-
tion graph G[H] € H(k).

Proof. Assume G has p vertices and (v1,vs,...,vp,v1) is a k-step
Hamiltonian tour. Assume V(H) = {hy,ha,...,hs}. It is obvious

that the following vertices in G[H] forms a k-step Hamiltonian tour:
(’UI) hl)) (027 h’l)) LD (vpy hl), (vla h2), (’U2’ h2)7 EERE) (vp: h2)7 IRRE
(vly ht), (v2’ ht)y ey (vpa ht)7 ('U], hl)
Thus, G[H] is k-step Hamiltonian. g

Example 4.1. The following unicyclic graph G is 2-step Hamilto-
nian with a tour given by vertex sequence (1, 2, 3, 4, 5, 6). Let
H = N,, then we see that G[H] has a 2-step Hamiltonian tour
given by (1, h), (2, ha), (3, h), (4 ha), (5, ha), (6, h), (1, ha), (2 o),
(3, h2), (4, h2), (5, ha), (6, ha), (1, h1).

1 (lah ) (lth)

Figure 4: Graphs G and G[H] with a 2-step Hamiltonian Tour

By Theorem 2.5 in [11], we have

Corollary 4.4. For any graph H € Gph, the graph Caiy)[H] is

k-step Hamiltonian.
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Corollary 4.5. Any graph H is an induced subgraph of a k-step

Hamiltonian graph.

Kuratowski discovered his famous mathematical forbidden graph
characterization of planar graphs in 1930. From Corollary 4.5, we

have the following result.

Theorem 4.6. It is impossible to have a Kuratowski type of char-

acterization of k-step Hamiltonian graphs.
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