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Abstract

In this paper, we consider the use of balanced arrays (B-arrays) in
constructing discrete fractional factorial designs (FFD) of resolution
(2u + 1, with v = 2 and 3) in which each of the m factors is at two
levels (say, 0 and 1), denoted by factorial designs of 2™ series. We
make use of the well-known fact that such designs can be realized
under certain conditions, by using balanced arrays of strength four
and six (with two symbols), respectively. Here, we consider the ex-
istence of B-arrays of strength t = 4 and t = 6, and discuss how
the results presented can be used to obtain the maximum value of
m for a given set of treatment-combinations. Also, we provide some
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illustrative examples in which the current available max(m) values
have been improved upon.

1 Introduction and Preliminaries

Design of experiments, founded by R.A. Fisher, has played a very impor-
tant role in numerous fields of scientific investigation such as medicine,
agriculture, education, chemical and hi-tech industries, social and behav-
joral sciences, etc. Factorial experiments form a very important component
of experimental designs. The introduction of orthogonal arrays and block
designs and the work done on them (to solve real-life problems) have en-
riched combinatorics, information theory, and coding theory. Consider an
experiment in which the final outcome (i.e. response) is influenced by m
experimental conditions (called factors) where each factor has two or more
settings (called levels). One of the advantages of using factorial designs is
to economize on the cost of the experiment. In this paper, we will consider
m factors, each at two levels (say, 0 and 1) and is denoted by 2™ series.
For the sake of completeness, we first state some basic concepts and

definitions.

Definition. A B-array T with m factors (constraints, rows), N treatment-
combinations (runs, columns), two levels (say, 0 and 1), and of strength ¢
(1 <t <m)is an (m x N)-matrix T with elements 0 and 1 satisfying the
following condition: in every (¢ x m)-submatrix T* of T, each (t x 1) vector
a of weight i (0 < i < ¢; the weight of @ refers to the number of 1s in it)
occurs with the same frequency p; (say).

The vector p' = (uo, p1,p2,-..,4t) and m are called the parameters of
the array T. For a given ', the number of runs N is known. Clearly,

N= Z:-—:O (:)IJ’"

Definition. If 4 = u for each i, then the B-array T is called an orthogonal
array (O-array), and N = 2° - u in this case.

Thus, O-arrays form a special case of B-arrays. Also, the incidence
matrix of a balanced incomplete block design (BIBD) is a special case of a
B-array with ¢t = 2. In addition, B-arrays are related to other combinatorial
structures such as group divisible designs, nested balanced incomplete block
designs, etc. Obviously, O-arrays do not exist for each N (N = 2*. p).
For example, with ¢ = 4, we must have N to be a multiple of 16 (i.e.
N = 16,32,48, etc.), and if m = 6 then N must equal 80 (for an O-array
to exist). It is a well-known fact that a B-array of strength ¢, under certain
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conditions, gives rise to a balanced factorial design of resolution (t + 1). If
t is even (= 2u, say), then it allows us to estimate all the effects up to and
including u-factor interactions under the assumption that all higher order
interactions are negligible. In this paper, we restrict ourselves for ¢t = 4
and 6. Constructing such combinatorial arrays, for a given index set I7s
(i.e. N is given) and with the maximum possible value of m, is a very non-
trivial and difficult problem in combinatorics and design of experiments.
Such problems for O-arrays have been investigated, among others, by Bose
and Bush (1], Rao [17, 18, 19|, Seiden and Zemach [21], etc. while the
corresponding problem for B-arrays has been studied, among others, by
Chopra, Low and Dios [7, 8], Rafter and Seiden [16], Saha, Mukerjee and
Kageyama [20], etc. To gain further insight into the importance of O-arrays
and B-arrays to combinatorics and design of experiments, the interested
reader is referred to the list of references at the end (by no means, an
exhaustive and complete list) of this paper, as well as further references
listed therein.

In this paper, we state some inequalities involving the parameters m
and ' for B-arrays with ¢ = 4 and 6. These inequalities are necessary
existence conditions for these B-arrays, and we describe how these can be
used to obtain, for a given y/, the max(m). We compare the results given
here (for I = 1,2,...) with those obtained earlier under ! = 0.

2 Statements of Main Results with Illustra-
tive Examples

Result 1. A B-array T with index set g = (o, pt1,...,p4) and m =t =4
always exists. Similarly, a B-array with m =t = 6 exists.

Result 2. A B-array T of strength t is also of strength k, where 0 < k < ¢.
Viewed as an array of strength k, the jth element (0 < j < k) of T is given

by

t—k
t—k
A(j,k)=Z( ; ),AH,-, where j =0,1,2,...,k, (k <1).

=0
It is clear that A(¢,t) = u, A(j,t) = p;, and A(5,0) = A(0,0) = N.
Definition. Two columns of a B-array are said to have j coincidences if

the symbols appearing in these two columns in j of the rows are the same
(0<ji<m).

161



Next, we quote some results, without proof, connecting m and the el-
ements of u’ mtth—Z_OJ z; (0<k<4fort=4,0<k <6 for
t = 6), where z; denotes the number of columns in T having j coincidences
with a column of T' (say, the first column) having a weight of I.

Result 3. For a B-array T of strength t (which is also of strength k, where
k < t), we have the following result:

m k-1
L= j*z; =3 (-1)*?*'CipLi—p

j=0 p=1
k(1 fm—1
+ "’Z (z) (k _ i)[A(ia k) — 1),if k is even,
=0
and
k-1
=3 (~1)*PCk_pLr—p

p=1
(D (m—=1

! N ek

+ k.; (z) (Ic _ i)[A(% k) — 1},if k is odd.

Note 1. The above result expresses the moments of order k in terms of
moments of lower orders and involving parameters of the array T as well
as l. For t = 4, we obtain five inequalities for each k satisfying 0 < k < 4,
and for t = 6, we obtain seven inequalities.

By using the non-negative definiteness of the moment matrix (for ¢ = 4
and t = 6), we obtain the following two theorems.
Theorem 1. For t = 4, the following inequalities must be satisfied:

LoL, > L2, (2.1)
LoLaLa +2LyLyLs > LoL2 + L3Lg + L. (2.2)

Theorem 2. For a B-array T with m rows, t = 6 and indez set p', the
following inequalities must hold:

LoL; > L3, (2.3)
LoLoLs+2L1L2L3 > LoLg + L%L.; -+ Lg, (2.4)
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LoL2LsLe + 2LoL3LsLs + LIL2 4+ 2L, LoLaLe + 2Ly L3 L2
+2L2L3Ls + L2302 + L4 >
LoLoL? + LoL%Le + LoL3 + L3L4Lg + 2L, L3Ls
+2L1LoL4Ls + L3Le + 3Ly L3L4, (2.5)

where Ly = Y711, 5%, 0 <k <6.

Note 2. For Result 3, we always have the following for k = 0 and k = 1:
Ly=N-1=YT0z; and L = 30525 = Yog () (7)) [AG, 1) — 1)
For k > 2, the constants Cyx_p will be known in the process of obtaining
these equalities for ¢ = 4 and ¢ = 6. For the convenience of the reader, we
list these constants fort =4 andt =6. Fort =4: k=2,C,=1; k =3,
we have Co = 3,C; = 2; and for k = 4, we have C3 = 6,C; = 11,C; = 6.
Fort=6: k=2,Cy =1, k=3, we have C; = 3,C; = 2; k = 4, we get
Ca = 6,02 = ll,Cl = 6; k=5 gives C4 = 10,03 = 35,02 = 50,01 = 24;
and for k = 6, we obtain Cs = 15,C, = 85,C3 = 225, C, = 274,C; = 120.

3 Discussion with Illustrative Examples for
t =4 and t = 6 B-arrays

For a given m and ', the B-array for ¢t = 4 must satisfy conditions (2.1) and
(2.2) for it to exist, while for ¢ = 6, it must satisfy conditions (2.3),(2.4) and
(2.5). In all instances, we used the value ! = 0 in [7] because of the simplic-
ity it provided us in computations. Here, we consider values of { = 1,2, 3,4
fort =4 and values | =1,2,3,4,5,6 for t = 6, and we compare the max(m)
for each of these [ values with that of [ = 0. We also observed that values
of | >t +1 will not provide us any new max(m) value.

Example 1. (t = 4). Consider the arrays with 4'=(3,2,3,3,3),(4,3,2,3,4),
(8,8,8,1,4),(4,1,6,4,1),(2,1,5,3,1), (14,6,1,1,4), (6,4, 1,3, 12),
(1,2,8,3,1) and (4,4,6,4,4). For these arrays, the max(m) for I = 0 are
found to be, respectively, 31, 7, 10, 6, 6, 8, 7, 5, and 15, where as the
max(m) for values of ! (1 < < 4) are found to be, respectively, 7 (with
l=2),7 (with!=4),7 (withl=2),4 (withl=1),4(withl=1),5
(with ! = 3), 5 (with ! = 3), 4 (with ! = 1), and 8 (with [ = 2). This clearly
demonstrates that there are many arrays where values of ! (other than 0)
provide us with sharper values of max(m).

Ezample 2. (t = 6). Consider the arrays with u’ to be (3,2,3,3,3,3,3),

(8,7,7,5,6,6,8), (20,10,5,4,6,7,12), (5,3,3,2,3,3,5), (17,10,8,6,7,9,16),
(5,4,4,4,4,4,5), and (8,5,5,5,5,5,10). For ! = 0, the max(m) were found to be,
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respectively, 18, 19, 21, 30, NT, NT, and NT (here, NT means the program
never gave us a contradiction for values of m up to 1000). For other values
of !, the max(m) are found to be, respectively, 8 (I = 1), 11 ({ = 2), 11
(l=5,6),8(=1),13 (1 =6),11 (I =2,3,4,5,6), and 12 (I = 3,4,5,6).
This indicates that there are numerous arrays where other values of [ (# 0)
show significant improvement over those obtained by setting [ = 0.
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