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Abstract

For a nontrivial connected graph G, an Eulerian walk in G is
a closed walk that contains every edge of G at least once. An
Eulerian walk is irregular if it encounters no two edges of G
the same number of times and the minimum length of an ir-
regular Eulerian walk in G is the Eulerian irregularity of G. In
this work, we determine the Eulerian irregularities of all prisms,
grids and powers of cycles.
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1 Introduction

A closed walk in a nontrivial connected graph G that contains every edge of
G exactly once is an Eulerian circuit. A graph is Eulerian if it contains an
Eulerian circuit. It is well known (5] that a connected graph (or multigraph)
G is Eulerian if and only if every vertex of G is even. In [1], an Eulerian
walk in a connected graph G is defined as a closed walk that contains every
edge of G at least once. If every edge of a nontrivial connected graph G is
replaced by two parallel edges, then the resulting multigraph is Eulerian,
which implies that G contains a closed walk in which every edge of G
appears exactly twice. Hence if G is a non-Eulerian graph of size m > 1,
then the minimum length of an Eulerian walk in G is more than m but not
more than 2m and every edge appears once or twice in such an Eulerian
walk in G.

Let H be a weighted graph obtained by assigning weights (positive in-
tegers) to the edges of a connected graph G. Then the degree degy v of a
vertex v in H is the sum of the weights of the edges incident with v. Deter-
mining the minimum length of an Eulerian walk in G is then equivalent to
determining an assignment of the weights 1 or 2 to the edges of G such that
the sum of these weights is minimum and the degree of every vertex in H is
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even. This problem is directly related to a well-known problem called the
Chinese Postman Problem named by Alan Goldman for the Chinese math-
ematician Meigu Guan (often known as Mei-Ko Kwan) who introduced this
problem in 1960 [6].

The Chinese Postman Problem Suppose that a postman starts from
the post office and has mail to deliver to the houses along each street on his
mail route. Once he has completed delivering the mail, he returns to the
post office. Determine the minimum length of a round trip that accomplishes
this.

While the Chinese Postman Problem asks for the minimum length of a
closed walk in a connected graph G such that every edge of G appears on
the walk once or twice, another problem of interest is that of determining
the minimum length of a closed walk in G in which no two edges of G
appear the same number of times. Such walks in a graph G distinguish the
edges of G by their occurrences on the walk. This gives rise to the concept
of irregular Eulerian walks in graphs, which were introduced and studied
in 1].

An irregular Eulerian walk in a nontrivial connected graph G is an
Eulerian walk that encounters no two edges of G the same number of times.
Thus, if the size of G is m, then the length of an irregular Eulerian walk in G
is at least 14+2+---+m = (™}'). Furthermore, if E(G) = {ey,e2,...,em}
and each edge e; (1 < i < m) of G is replaced by 2i parallel edges, then the
resulting multigraph M is Eulerian and each Eulerian circuit in M gives
rise to an irregular Eulerian walk in which each edge e; of G appears exactly
2i times in the walk. Thus G contains an irregular Eulerian walk of length
24+4+4+64+.--+2m = 2("‘;"1) = m2 4+ m. The length of a walk W is
denoted by L(W). If W is an irregular Eulerian walk of minimum length in
a connected graph G of size m, then (™) < L(W) < 2(™§"). A problem
of interest here is that of determining the minimum length of an irregular
Eulerian walk in G, which is defined in [1] as the Bulerian irregularity of G
and is denoted by EI(G). Therefore, if G is a connected graph of size m,

then 1 )
™) <ere <2(™] ). (1)
2 2
Both upper and lower bounds in (1) are sharp. In fact, all nontrivial con-
nected graphs of size m having Eulerian irregularity (™) and 2(™F*) have
been characterized in [1]. A subgraph F in a graph G is an even subgraph
of G if every vertex of F is even.
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Theorem 1.1 [1] If G is a nontrivial connected graph of size m, then
e EI(G) =2("F") if and only if G is a tree;

e EI(G) = (™} 1) if and only if G contains an even subgraph of size
[m/2]

The concept of Eulerian irregularity has been studied further in [2),
where a necessary and sufficient condition has been established for all pairs
k, m of positive integers for which there is a nontrivial connected graph G
of size m with EI(G) =

Theorem 1.2 [2] Let k and m be positive integers with ("}') < k <

’""'1) Then there erists a nontrivial connected graph G of size m with
EI(G) =k if and only if there ezists integer z with0 <z <mandz # 1,2
such that 22 + (m —z)(m ~x +1) =

By Theorem 1.2, a pair k,m of positive integers with (™F!) < k <
2(™F!) can be realized as the Eulerian irregularity and the size of some
nontrivial connected graph if and only if there exists an integer r with
0 <z <mandz # 1,2 such that 24+ (m—z)(m—z+1) = k. To determine
the possible values of such integers z, we consider the real-valued function

Liz)y=2+(m-z)m-z+1) =222 - 2m+ )z +m?+m. (2)

Since L(zx) is a concave-up parabola which has the minimum value at zg =
-2—";“2, it follows that the closer x is to o, the closer L(z) is to L(zo). For
a positive integer m, let [0..m] be the set of all integers = with 0 < z < m.
We list the elements of [0..m] as an ordered sequence s of length m + 1
where

s= (xlyx21'°'ymm+l) (3)

such that
L(z1) < L(za) < -+ £ L(Zm41), 4)

where then L(z1) = (™f'), L(z2) = ("f?) +1, L(za) = (™) +3,
L(zm41) = 2(™F!). The sequence s in (3) that satisfies (2) and (4) is
referred to as the Eulerian irregular sequence of m. We now state a useful
observation on Eulerian irregular sequences.

Observation 1.3 Let m be a positive integer.

o If m is even, then the Eulerian irregular sequence of m is

(31512 [51- 23] w2 2] 2md).
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o If m is odd, then the Eulerian irregular sequence of m is

(21121512 51255 5]+ [2]me)

An irregular Eulerian walk W in a connected graph G of size m is said
to be optimal if L(W) = (™). If G contains an optimal irregular Eulerian
walk, then G is optimal and so EI(G) = ("‘;’ l). In this case, the edges of
G can be ordered as e, ey, ...,en such that e; (1 <7 < m) is encountered
exactly i times in W. By Theorem 1.1, no cycle is optimal. On the other
hand, in [1, 2] several well-known classes of graphs that are optimal have
been determined as well as the Eulerian irregularities of those non-optimal
graphs. In this work, we determine the Eulerian irregularities of all prisms,
grids and powers of cycles. We refer to [3] for graph theory notation and
terminology not described in this paper.

2 Eulerian Irregularities of Prisms and Grids

The Cartesian product G O H of two graphs G and H has vertex set
V(G) = V(G) x V(H) and two distinct vertices (u,v) and (z,y) of GO H
are adjacent if either (1) u = z and vy € E(H) or (2) v = y and ux € E(G).
The graph C, O K; where n > 3 is called a prism while P, O P, where
n > q > 2 is called a grid. In this section, we determine the Eulerian
irregularities of all prisms and grids. In order to do this, we first present
two useful lemmas, the first of which is a consequence of Theorem 1.1 while
the second one is a consequence of the proof of Theorem 1.2.

Lemma 2.1 If G is a connected bipartite graph of size m > 1 such that
m =1 (mod 4) or m =2 (mod 4), then G is not optimal.

Lemma 2.2 Let G be a nontrivial connected graph of size m. If G contains
an even subgraph of size x, then there is an irregular Eulerian walk of length
2?2+ (m—z)(m -z +1) in G and so EI(G) < 2? + (m —z)(m —z +1).

Theorem 2.3 For each integer n > 3, the prism C, O K, is optimal if
and only if n % 2 (mod 4). Furthermore, if C, O K is not optimal, then
EI(C, O K3) = () +1.

Proof. For G = C, O Kp, let (u1,u2,...,un,u1) and (v1,02,...,Vn,v1)
be two disjoint copies of C,, in G such that u;v; € E(G) for 1 <i<n. If
n =2 (mod 4), then G is a cubic bipartite graph of size m = 3n. Since m
is congruent to 2 modular 4, it follows by Lemma 2.1 that G is not optimal.
For the converse, suppose that n # 2 (mod 4). Then n = r (mod 4),
where r = 0,1,3. We consider these three cases. In each case, we show that
G contains a 2-regular subgraph of size [m/2], where m is the size of G.
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Case 1. n =0 (mod 4). Then n = 4k for some positive integer k£ and
so the size of G is m = 3n = 12k. Thus m/2 = 6k. The 6k-cycle

CGk = (vl’UZ) ooy VUsky U3k, UBk—1 - - .,UI,’Ul).

is a 2-regular subgraph of size 6k in G.

Case 2. n =1 (mod 4). Then n = 4k + 1 for some positive integer k
and so the size of G is m = 3n = 12k + 3. Thus [m/2] = 6k + 2. The
(6k + 2)-cycle

Cor+z = (u1,u2,...,U3k+1)Usk+1, Uk, -- -, V1, %1)

is a 2-regular subgraph of size 6k + 2 in G.
Case 3. n = 3 (mod 4). Then n = 4k+3 for some integer k > 0 and the
size of G is m = 3n = 12k + 9 and so [m/2] = 6k + 5. The (6k + 5)-cycle

Cer+s = (V1,72,...,V2k41, Vok42, UDk42, U2k+3, V2k+3)
V2k+4, U2k+4, U2k+5) V2k+5, U2k465 U2k+6y U2k+T7y - - - »
Vak+41, V4k42, Udk 42y Udk+3, Vak+3, V1)

is a 2-regular subgraph of size 6k + 5 in G. In each case, G contains a
2-regular subgraph of size [m/2], By Theorem 1.1, G is optimal.

We now assume that n = 2 (mod 4) and so EI(G) > (™}') + 1. Since
m is even, to show that EI(G) < (™3') +1, it suffices to show that G
contains an even subgraph of size Z + 1. Let n = 4k + 2 for some positive
integer k and so 3 + 1 = 6k + 4. Note that G contains vertex-disjoint
H) = C4 and Hy = Cg;, as subgraphs. Thus, G has an even subgraph of
size 2 +1 =6k + 4 and so EI(G) < (™) + 1 by Lemma 2.2, giving the
desired result. -

We next determine the Eulerian irregularities of all grids P, O P, where
n > q 2 2, beginning with the case when q = 2.

Theorem 2.4 For each integer n > 3, the Cartesian product P, O K,
of P, and K3 is optimal if and only if n = 2,3 (mod 4). Furthermore, if
P, O K; is not optimal, then EI(P, O K») = (**) + 1.

Proof. If n = 0,1 (mod 4), then the size m = 3n — 2 of P, O K, is
congruent to 2 or 1 modulo 4. It then follows by Lemma 2.1 that P, O K
is not optimal. For the converse, suppose that n = 2,3 (mod 4). Let
G = P, O K;, where (u1,u2,...,u,) and (v1,vs,...,v,) are the two copies
of P, in G such that u;v; € E(G) for 1 < i < n. The size m of G is
3n — 2. For n =2 (mod 4), let n = 4k + 2 for some positive integer k and
[m/2] = 6k + 2. The cycle

Cok+2 = (U1,Uz, . .., UBky1, VBk+1) Usk—=1, - - -, U2, V1, U1)
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is a 2-regular subgraph of size [m /2] in G. Forn = 3 (mod 4), let n = 4k+3
for some nonnegative integer k and [m/2] = 6k + 4. The cycle

Cok+a = (U1,U2, .. ., U3k42, V3k+2, V3k41, - - - V2, V1, U1)

is a 2-regular subgraph of size [m/2] in G. By Theorem 1.1, G is optimal
if n=2,3 (mod 4).

We now assume that G is not optimal. Then either n = 0 (mod 4) or
n=1 (mod 4) and EI(G) > (™f') +1. It remains to show that EI(G) <
('";' l) +1. For n =0 (mod 4), let n = 4k for some positive integer k. Since
m = 3n — 2 is even, it suffices to show that G contains an even subgraph
of size J +1 = 6k. This is true as G contains Cgx as a subgraph and so
EIG)= ("}) +1ifn =0 (mod 4). Forn =1 (mod 4), let n = 4k +1
for some positive integer k. Since m = 3n — 2 = 12k + 1 is odd, it suffices
to show that G contains an even subgraph of size [] — 1 = 251 = 6k.
This is true as G contains Cex as a subgraph and so EI(G) = (™} 1) +1if
n=1 (mod 4). ]

We now consider grids P, O Py for n > g > 3 in general.

Theorem 2.5 For each pair (n,q) of integers with n > q > 3, the grid
P, O P, is optimal if and only if (n,q) satisfies one of the following condi-
tions:

(i) If n and g are even, then either both n and g are congruent to 0
modulo 4 or both n and q are congruent to 2 modulo 4;

(i1) If n is even and q is odd, then n =0 (mod 4) and ¢ =1 (mod 4) or
n =2 (mod 4) and ¢ = 3 (mod 4);
(i43) Ifn is odd and q is even, then n =1 (mod 4) and ¢ =0 (mod 4) or
n =3 (mod 4) and g =2 (mod 4).
Proof. Suppose that G = P, O P, consists of ¢ paths of order n, which we
denote by Pp; = (v1,i,2,is...,Vn,) for 1 < < g such that v;; is adjacent
tovy; (1 <t < n)when |i—j|=1. Thesizeof Gism =n(g—1)+(n—1)q
and G is a bipartite graph. Write n = 4k + 7, and ¢ = 4{ 4 r,, where
Tn,Tq € {0,1,2,3}. Let G’ = Py O Py, be the induced subgraph of G with
V(G') = {vap:1<a< 4k, 1<b< 4L} (7N

That is, G’ is the induced subgraph in G consisting of the 4¢ paths Py ; of
order 4k where

Py = (V1,i,V2,iy- . Vak,i) for 1 <i <48 (8)
such that v;; is adjacent to v, ; (1 <t < 4k) when |i — j| = 1. Then
G’ contains k£ vertex-disjoint copies (or blocks) of Py [1 Py, denoted by
By, Bs,..., By as shown in Figure 1.
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Bi | Bet1 | -+ | Bk
By | Bet2 | -+ | Bu—1yk+2
B3 | Br4a | -+* | Bu—1)k+3
By | By |- Bre

Figure 1: The subgraph G’ = Py, O Py in G

In particular, for 1 < ¢ < k, the vertices of B; appear in the way as
shown in Figure 2. Note that B; = P, O P, contains each of the even
cycles Cy, Cs, Cs, C10, C12, C14, C16 as a subgraph.

V4i—3,1 | VY4i-3,2 | V4i-3,3 | V4i-3,4

V4i-2,1 | V4i-2,2 | V4i-2,3 | Y4i—-2,4

V4i—1,1 | V4i-1,2 | Y4i—1,3 | V4i—1,4
V4i,1 V44,2 V4i,3 V4i 4

Figure 2: The block B;=P; 0P, inG' for1<i<k

We consider three cases, according to the parities of n and q.

Case 1. n and g are even. If one of n and q is congruent to 0 modulo 4
and the other is congruent to 2 modulo 4, then m = 2 (mod 4) and so G
is not optimal by Lemma 2.1. For the converse, suppose that both n and ¢
are congruent to 0 modulo 4 or both n and q are congruent to 2 modulo 4.
We consider two subcases. In each subcase, we construct an even subgraph
H of size [m/2].

Subcase 1.1. n = 0 (mod 4) and ¢ = 0 (mod 4). Then n = 4k and
g = 4¢ for some positive integers k and £ with k > £. In this case, the size
mpg of a graph H with the desired properties is

my = -’2’-‘ = 16kf — 2k — 2¢.
The graph G’ = Py O Py, contains k£ vertex-disjoint copies By, Bs, .. ., Bxe
of P; O Py as shown in Figure 1.

e For £ = 1, there are k vertex-disjoint blocks By, Bs,..., B of P, 0 P,
in G. Let Hy = C)2 in B; and H; = Cy4 in B; for 2 < i < k. Now let
H be the union of these vertex-disjoint subgraphs H; (1 < i < k) in G.
Then H is a 2-regular graph of the size my = 124+14(k—1) = 14k—2.

e For £ = 2, there are 2k vertex-disjoint blocks By, Bs,..., B of
PoOPinG. Ifk = 2, let H; = Cg in B; and H; = Ci¢ in B;
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for 2 < i < 4. Now let H be the union of these vertex-disjoint sub-
graphs H; (1 £ ¢ < 4) in G. Then H is a 2-regular graph of the
size mg = 3-164+8 = 56 = m/2. If k > 3, let H; = Cy6 in B; for
1<i<k-—2andlet H;=C4in B; for k—1<i <2k Now let H
be the union of these vertex-disjoint subgraphs H; (1 < ¢ < 2k) in G.
Then H is a 2-regular graph of the size my = 16(k—2) + 14(k+2) =
30k —- 4.

eFor¢>3,let H;=Cgin B;for1<i<kl—k—{andlet H;=Cyy
in B; for ké —k—£+1 < i < k€. Now let H be the union of these
vertex-disjoint subgraphs H; (1 < i < kf) in G. Then H is a 2-regular
graph of the size my = 16(kf — k — £) + 14(k + £) = 16k¢ — 2k — 2¢.

Subcase 1.2. n =2 (mod 4) and ¢ = 2 (mod 4). Then n = 4k + 2 and
g = 4¢ + 2 for some integers k and £ with k > £ > 1. In this case, the size
my of a graph H with the desired properties is

my = -722=(4k+2)(4£+2)—(2k+1)—(2£+1)
= (4k +2)(4+2) — 2(k + £+ 1) = 16k€ + 6k + 60 + 2.

Let G’ = Py O Py be the induced subgraph of G as defined in (7) or (8)
that contains the k€ vertex-disjoint blocks Bi, Bs,...,Bke of P4 O Py as
shown in Figure 1. Let H; = Cj¢ in B; for 1 < i < k€ and let C = Ceg. and
C' = Cee42 be two vertex-disjoint cycles of orders 6k and 6£+ 2 respectively

in G — E(G'), where

C = (V1,4641,V2,404+1, -+ V3k,40+1, U3k, 46425 U3k—1,46+2) - - - »
V1,4642, V1,4641)
!
C' = (Vak41,1,Vak+1,2) - - - » Vak+1,36+1> Vak+2,36+1, Vak+2,38 - - - »

V4k+2,1, Vak+1,1)-

Now let H be the union of these vertex-disjoint subgraphs H; (1 < i < ké),
C and C' in G. Then H is a 2-regular graph of the size my = 16k€ + 6k +
60+ 2.

Case 2. n is even and q is odd. If n =0 (mod 4) and ¢ = 3 (mod 4)
orn =2 (mod 4) and ¢ = 1 (mod 4), then m = 1 (mod 4) and so G is
not optimal by Lemma 2.1. For the converse, suppose that either n = 0
(mod 4) and ¢ = 1 (mod 4) or n = 2 (mod 4) and ¢ = 3 (mod 4). We
consider two subcases. In each subcase, we construct an even subgraph H
of size [m/2] in G.

Subcase 2.1. n = 0 (mod 4) and ¢ = 1 (mod 4). Then n = 4k and
g = 4¢ + 1 for some positive integers k and £ with k£ > £+ 1. In this case,
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the size my of a graph H with the desired properties is

my = [%] = 4k(4€ + 1) — 2k — 20 = 16k{ + 2k — 2L.

For each ¢ with 1 < ¢ < k¢, let H; = Cy6 in B; as shown in Figure 3(a),
where the edges not belonging to Ci¢ are not drawn; while for each j with
1 <j<k-1,let F; = C4 lying between B; and Bj4; as shown in
Figure 3(b). Then H; (1 <i < kf) and F; (1 < j < k—1) are edge-disjoint
subgraphs of G.

o3

(a) Ci6 in B; (b) C4 betweenB; and Bj41

B;

Figure 3: The cycles Cis and Cy

e If k—2 is even, then k — £ = 2p for some integer p > 1. Let H; = Ci5
in B; for 1 < ¢ < k¢, where H; is shown as in Figure 3(a). For each
Jwithl < j <p<k-1,let F; = C4 as defined in Figure 3(b)
lying between B; and B,,. Now let H consist of these edge-disjoint
subgraphs H; (1 <i < kf) and F; (1 < j < p). That is,

V(H) (UK, V(H)) U (V51 V(F5))
E(H) (VELE(Hy)) U (UF_, E(Fy))

Then H is a graph of the size my = 16k¢+ 4p = 16k + 2(k — £) and
each vertex of H has degree 2 or 4.

o If k— ¢ is odd, then k — £ = 2p + 1 for some integer p > 0. Then
p+1 < k-1 Let H; = Ci¢ in B; as shown in Figure 3(a) for
1<i< kl—-1and Hyg = Cy4 in Byy. Foreach j with1 < 5 <
p+1<k—1,let F; = C, that lies between B; and B4 as shown in
Figure 3(b). Now let H consist of these edge-disjoint subgraphs H;
(1<i<kf)and F; (1 < j<p+1). Then H is a graph of the size
my = 16(kl — 1) + 14 + 4(p + 1) = 16k€ + 2(k — £) and each vertex
of H has degree 2 or 4.

Subcase 2.2. n =2 (mod 4) and ¢ = 3 (mod 4). Then n = 4k + 2 and
q = 4¢ + 3 for some positive integers k and £ with k > £+ 1. In this case,
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the size my of a graph H with the desired properties is

my = [-’;1]=(4k+2)(4£+3)—(2k+1)—(2f+1)
= 16k€+ 10k + 64+ 4.

For each i with 1 < i < k¢, let H; = Cy in B; where for 1 < i < k, the
graphs B; and H; are defined as shown in Figure 3(a). For each j with
1<j <k—-1,let F; = C4 between B; and B;; are defined in Figure 3(b).
Furthermore, let C = Cg; and C’ = Cegis Where

C = (Vak+1,1,V4k+1,2; - - + ) Vdk+1,38) Vak+2,38) Vak+2,36—11+ - -

V4k+2,1) Vak+1,1)

7
C ('01,4£+2, V2,48+2; « + + y U3k+4,48+2 U3k+4,46+43, U3k 43,4043, - - -

V1,4¢+3; Ul,4z+2)-

Since k > £+ 1, it follows that 3k + 4 < 4k + 2 and so such a cycle C’ of
order 6k 4 8 exists. Now let H consist of these edge-disjoint subgraphs H;
(1<i<kf),F; (1<j<k-1),CandC' Then H is a graph of the size
my = 16kf+ 4(k — 1) + 6£+ 6k + 8 = 16kf + 10k + 6 + 4 and each vertex
of H has degree 2 or 4.

Case 3. n is odd and q is even. If n =1 (mod 4) and ¢ =2 (mod 4) or
n =3 (mod 4) and ¢ =0 (mod 4), then m =1 (mod 4) and so G is not op-
timal by Lemma 2.1. For the converse, suppose that either n =1 (mod 4)
and ¢ = 0 (mod 4) or n = 3 (mod 4) and ¢ = 2 (mod 4). We consider
these two subcases. In each subcase, we construct an even subgraph H of
size [m/2] in G. Let G’ = Py, O Py, be the induced subgraph in G' con-
sisting of the 4¢ paths of order 4k as defined in (8) and let By, B, ..., Bk
are the k£ vertex-disjoint blocks of Py O P in G’ as shown in Figure 1.

Subcase 3.1. n =1 (mod 4) and ¢ =0 (mod 4). Then n =4k + 1 and
q = 4¢ for some positive integers k and £ with k > £. In this case, the size
mpy of a graph H with the desired properties is

my = [-';3] = (4k + 1)4¢ — 2k — 2¢ = 16k€ — 2k + 2.

Let Hi=Cyyin B;if1<i<k—fandlet H; =Cigin B;ifk—£+1<
i < k€. Let H be the union of these vertex-disjoint subgraphs H; for
1 < i < k€. Then H is a 2-regular subgraph of G and the size of H is
14(k — £) + 16[k¢ — (k — £)) = 16k — 2k + 2¢€.

Subcase 3.2. n =3 (mod 4) and ¢ = 2 (mod 4). Then n = 4k + 3 and
g = 4¢ + 2 for some positive integers k and ¢ with k¥ > £. In this case, the
size my of a graph H with the desired properties is

my = [%] = (dk +3)(4€+2) — (2k +1) — (20 +1) = 16k + 6k + 10 + 4.
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Let H; = Cj6 in B; if 1 < i < k£ which are defined as shown in Figure 3(a)
and for each j with 1 < j < £-1< k-1, let F; = C4 between B; and
Bj,1 as defined in Figure 3(b). Furthermore, let C = Cg; and C’ = Ce4s
where

C = (Vak+2,1,Vak42,2; - - -, Vak+2,30) Vak+3,3, Vak4+3,38~1) - - « 5
Vak+3,1) Vdk+2,1),

c' = ('vl.48+1’v2,4l+la--"”3k+4,4£+la'v3k+4,4€+2,1)3k+3,4¢+21-~-;
V1,442, V1,4641)-

Since 3k + 4 < 4k + 3, such a cycle C’ of order 6k + 8 exists. Now let H
consist of these edge-disjoint subgraphs H; (1 <i <kf), F; (1 <j<{£-1),
C and C'. Then H is a graph of the size my = 16k€+4(£—1)+6£+6k+8 =
16k€ + 10¢ + 6k 4 4 and each vertex of H has degree 2 or 4. n

Theorem 2.6 For integers n,p withn > p > 3, if P, O Py is not optimal,

then ) )
D+(n-1)g+ )+1.

n(q -
EI(P,OP) = ( )

Proof. By Theorem 2.5, if P, O P, is not optimal, then n and g satisfy
one of the following:

(¢) If n and g are even, then either n =0 (mod 4) and ¢ =2 (mod 4) or
n =2 (mod 4) and ¢ =0 (mod 4);

(i) If n is even and g is odd, then either n = 0 (mod 4) and ¢ = 3
(mod 4) or n =2 (mod 4) and g =1 (mod 4);

(#4i) If n is odd and q is even, then n =1 (mod 4) and ¢ = 2 (mod 4) or
n =3 (mod 4) and ¢ =0 (mod 4).

Suppose that G' = P,, O P, consists of g paths of order n, which we denote
by

P, i=(v1,iv2i...,0n3) for1<i<gq 9)
such that v ; is adjacent to v;; (1 <t < n) when |i — j| = 1. The size of
Gism=n(g—1)+ (n~1)g. Then n = 4k + r, and ¢ = 4¢ + r,, where
Tn,7q € {0,1,2,3}. Let G’ = Py, O Py be the subgraph of G with

V(G') = {vap:1<a <k 1<b<dl). (10)
The graph G’ is else defined in (7) and (8). Then G’ contains k¢ vertex-

disjoint copies (or blocks) of Py O Py, denoted by B; ; where 1 < i < k and
1 < j < £ These blocks B; ; appear in G’ in the way as shown in Figure 4.
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By | Bi2 | Bia|- | Bie
By | Baa [ Baa |- | Bog
B3y | Baa | Baz|--- | Bae
By | Be2 | Bea | - | Bre

Figure 4: The subgraph G' = Py, O Py in G

In each B;; = P4 O P4, the vertices of B;; = P4 O Py appear in the way
as shown in Figure 5.

V4i—-3,4j—3 | V4i—3,45—2 | V4i—3,45—1 | V4i—3,4j

V4i—2,4j-3 | V4i—2,4j—2 | V4i—2,45-1 | V4i—2,4j

V4i—1,4j—3 | V4i—1,45-2 | V4i—1,45—-1 | V4i—1,4j
V44,453 V4i,45—2 V41,451 V44,44

Figure 5: The block B; j = P, O Py in G’

Note that B; ; contains five edge-disjoint copies of Cy4, namely

Q1 = (v4i—3,4j-3,V4i—3,4j—2) V4i=2,4j-21 V4i—2,4j—3, Vdi~3,4j-3)
Q2 = (V4i—3,4j—1,V4i—3,45 Vai-2,45, V4i=2,4j—1) Vdi—3,4j—1)

Qs = ('U4i—1.4j—1 » Vai—1,455 Vi, 45, Vi 45—-1, v4i—1,4j—1)

Qs = (V4i—1,4j-3,V4i—1,4j—2, Vai,45—2) V4i,4j—3 V4i—1,45-3)

Qs = (V4i—2,4j-2,V4i—2,4j—1, Vai=1,4j~1, Vai—1,4j—2, V4i~2,4j—2)

where Qs is at the center of B; ; and surrounded clockwise by Qy, Q2, @3, Q4.
For each pair 7, j with1 <i < kand 1 < j < ¢, let F; ; be the even subgraph
of B;; consisting of the five edge-disjoint subgraphs Q1, Q2,Q3,Q4, Qs,
each of which is a copy of Cy and let Fy; be the even subgraph of B, ;

consisting of the four edge-disjoint subgraphs Qi,Q2,Q3,Q4. Thus, the
size of Fy; is 20 and the size of F} is 16 for all 4,5 with 1 < i < k and

1 < j £ £. We consider three cases.

Case 1. n and q are even. Since m is even, it suffices to show that G
has an even subgraph of size  + 1. There are two subcases.

Subcase 1.1. n = 0 (mod 4) and ¢ = 2 (mod 4). Let n = 4k and
q = 4642, where then k > £ > 1. Note that Zt+1 = 16k¢+4k+2(k—£). Let
G' = Py O Py, be the subgraph of G as described in (10) and G* = P, O P,
be the subgraph of G which is the Cartesian product of Py, s¢+1 and P, ge42
as described in (9).

elfk=¢+1,thenforl1 <i<k-1land j=1,let H;; = F;; and

Hy,y=Fy,,whilefor 1<i<kand2<j< ¢, let H;j = F]
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o Ifk>£+2,thenforl<i<kandj=1,let H;; = F;;,for1<i<k
and2<j</{let H; = Fj; and let Hy ¢41 = Ca(k-¢) be a cycle of
order 2(k — £) in G* (whlch 1s possible since 2 < k — £ < 4£+1).

In each case, let H be the even subgraph of G consisting of edge-disjoint
subgraphs H;; and then the size of my is 3 + 1.

Subcase 1.2. n = 2 (mod 4) and ¢ = 0 (mod 4). Let n = 4k + 2 and
q = 4¢, where then k > £ > 1. Note that 2 + 1 = 16k¢ — 2k + 6¢. In this
case, we consider the subgraph G” = P41 O Py, of G with vertex set

V(G") ={vap:1<a<4k+1,1<b< 4¢}. (11)

Then G” contains (k— 1)¢ vertex-disjoint copies (or blocks) Py O Py, which
are denoted by B; ; where 1 <i < k—1and 1 < j < £ and £ vertex-disjoint
copies of P; O Py, which are denoted by Bj where 1 < j < £. These blocks
B;,; and B} appear in G” in the way as shown in Figure 6.

B B Bis |---| By
By, Bs o Bys |---| Ba.
Bs, B, Bsz |---| By
Bi-11 | Bue—12 | Be-13 | -+ | Bk-1)e
B B, | B, [~ B

Figure 6: The subgraph G" = Py 1 O Py in G

For each j with 1 < j < ¢, the vertices of B} = Ps [0 P appear in the way
as shown in Figure 7.

V4k—3,4j~3 | V4k—3,4j—2 | Vak—3,4j—1 | V4k—3,45
V4k—2,4j—3 | Vak—2,4j—2 | Vak—2,4j—1 | Y4k—24;
V4k—1,4j—-3 | V4k—1,4j-2 | Vak—145—1 | Vdk—1,45
V4k,45-3 V4k,45-2 V4k,45~1 V4k,4j5
Vdk+1,45—3 | Yak+1,45—2 | Vak+1,4j—1 | Vak+1,45

Figure 7: The block B;. =P, 0P;in G"

Note that each B; (1 < j < £) contains each of Cy4 and Cg as a subgraph.
Fori=1and 1< j<¢let H; = F; in By, for each pair ¢,5 with
2<i<k-land1<j<¢-1,let H;;=F;inB;;, for2<i<kand
J=4let Hipg=Cyy (1nB,e1f1<1,<k—1 andeklfz—k) and for
i=kand1<j<{—1,let Hg; =Cigin Bj. Let H be the even subgraph
of G consxstmg of edge-disjoint subgraphs H 3,7 and then the size of my is
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Case 2. n is even and q is odd. Since m is odd, it suffices to show that
G has an even subgraph of size [ %] -1= -"‘—2'—1 Let G’ = Py O Py, be
the subgraph of G as described in (10). There are two cases.

Subcase 2.1. n = 0 (mod 4) and ¢ = 3 (mod 4). - Let n = 4k and
g = 4+ 3, where then k > £ > 1. Note that 27! = 16kf+4k+2(3k—£—1)
and 2 < 3k—£4—1 < 4k. Let G* = P, O P, be the subgraph of G which is
the Cartesian product of P, 4¢4+1 and Py 4¢42 as described in Subcase 1.1.
Forl1<i<kandj=1,let H;; =F;;in B;;,for1 <i<kand2<j<{,
let H;; = F/; in B;; and let Hig41 = Cy(3k—e—1) be a subgraph in G*.
Let H be the even subgraph of G’ consisting of edge-disjoint subgraphs H; ;
and then the size of Hy, is 2

Subcase 2.2. n = 2 (mod 4) andg=1 (mod 4). Let n = 4k + 2 and
g = 42 + 1, where then k > £ > 1. Note that 2= = 16k{ + 2(k + 3¢) and
2<k+30(<4¢{+1=gq. Let F* = P, O P, be the subgraph of G which is
the Cartesian product of the two paths

(Vn—1,11Vn—1,2)- -+ Un—1,q) 80d (V5,1,Vn,2,. .-, Vn,q)- (12)

For each pair i,j with1 <i<kand 1<j </ let H;; = F], in B; ; and
_ let Hie41 = Ca(k+aey) be a subgraph in F*. Let H be the even subgraph
of G consisting of edge-disjoint subgraphs H; ; and then the size of Hy, is

m=1
=
Case 3. n is odd and g is even. Smce m is odd, we are seeking for
an even subgraph of size [Zt] - 2=l in G. Let G’ = Py O Py and
G" = P41 O Py be the subgra,phs of G as described in (10) and (11),

respectively. There are two cases.

Subcase 3.1. n =1 (mod 4) and g = 2 (mod 4). Let n =4k +1 and
q = 4€ + 2, where then k > £ > 1. Note that 251 = 16kf + 4k + 2(k + £)
and 2 < k+ £ < 4k. Let G* = P, 0 P, be the subgraph of G as described
in Subcase 1.1. For 1 < i< kandj =1, let H;; = Fj; in By, for
1<i<kand2<j<¢let Hyj =F]; in B;; and let Hie41 = Cok4o)
be a subgraph in G*. Let H be the even subgraph of G consisting of
edge-disjoint subgraphs H; ; and then the size of Hy, is ©5=

Subcase 3.2. n = 3 (mod 4) and ¢ = 0 (mod 4). Let n = 4k 4 3 and
g = 4¢, where then k > ¢ > 1. Let F* = P, O P, be the subgraph of G
which is the Cartesian product of the two paths described in (12).

o If £ =1, then G = Pyry3 O Py and 2= 1 =14k +8. For1 <i<k,
let H; = Ci14 in B;; and let Hiy1 be a cycle Cg of order 8 where

Hipr = (Vak41,1, Vak+1,2, Vak+1,3; Vdk+1,4) Vak+2,4) Vak+2,3,
Vak+2,2) Vak+2,1) Vak+1,1)-
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Let H be the even subgraph of G consisting of edge-disjoint subgraphs
H; and then the size of H,, is '"T‘l

o If£>2, then ™51 = 16k€ — 2k + 6£ + 2(2¢ — 1). Let H; be the even
subgraph of size 16k¢ — 2k + 6¢ in Pyx,1 O Py, (which is described in
Subcase 1.2) and let H; = Cy2¢—1) be a subgraph of F*. Let H be
the even subgraph of G consisting of edge-disjoint subgraphs H; and

H, and then the size of Hy, is 252, "

3 Optimal Powers of Cycles

For a connected graph G and a positive integer k, the kth power G* of G
is that graph whose vertex set is V(G) such that uv is an edge of G* if
1 < dg(u,v) < k. The graph G2 is called the square of G and G® is the
cube of G. If k > diam(G), then G* is a complete graph. It is known that
all complete graphs of order at least 4 is optimal, as we state next.

Theorem 3.1 [1] The complete graph K, of order n is optimal if and
only if n > 4.

By Theorem 1.1, the n-cycle C,, is not optimal; while by Theorem 3.1,
the complete graph K, is. Thus if k = 1, then C} = C, is not optimal;
while if £ > |n/2], then C¥ is. We show, in fact, that C¥ is optimal for each
integer k > 2. In order to do this, we introduce an additional definition.
For a positive integer t, the ¢-step Gl of a connected graph G is that graph
whose vertex set is V/(G) such that uv is an edge of Gl if dg(u,v) =¢t. In
particular, G!Yl = G. Furthermore, if t < k, then Gl is a subgraph of G*
and

E(G*) = E(Gyu E(GP) u...u E(GW),

For the n-cycle C, = (v1,v2,...,%n,Vn41 = v1) where n > 3 and each
integer ¢ with 1 < i < n, the vertex v; is adjacent to v;;; and v;_; in Glt],
where the subscripts are expressed as integers modulo n. Thus clisa
2-regular graph of order n if ¢ # n/2 and cHl = K2 if t = n/2 where then
n is even. The kth power C¥ of C, is then a 2k-regular graph of order n
and size kn if k < n/2

Theorem 3.2 For each pair k,n of integers, where 2 < k < |n/2| and
n 2 4, the kth power C¥ of the n-cycle is optimal.

Proof. If k = [n/2|, then C* = K,,, which is optimal by Theorem 3.1.
Thus, we now assume that k < |[n/2]. Let Cp, = (v1,v2,...,Vn, Vnp1 = v1)
where n > 4. The size of C¥ is m = kn. If k is even, say k = 2p for
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some positive integer p, then the subgraph C? is a (2p)-regular graph of
size pn = [m/2]. It then follows by Theorem 1.1 that C¥ is optimal if &
is even. Thus, it remains to consider the case when k£ > 3 is odd. Since
k < |n/2), it follows that n > 8. We show that C% contains a subgraph Hj
of size [m/2], each of whose vertex is even. We begin with the cube C3 of
C,. There are two cases, according to whether n is even or n is odd.

Case 1. n is even. Let C* = (v1,vs,¥s,...,%n-1,?1) be the cycle of
order n/2 in C3 and let Hj be the spanning subgraph of G with E(H3) =
E(C,) U E(C*). Then the size of H3 is 3n/2 and each vertex of H3 has
degree 2 or 4. By Theorem 1.1, C3 is optimal if n is even.

Case 2. n is odd. Let n = 2£+ 1 for some integer £ > 4. Then
[m/2] = [3n/2] = 3¢ + 2. First, suppose that £ is even. Let C’ be the
cycle of order n — 4 in G defined by

!
C' = (V2,03 ..y Ve—1, Ve42, Vet1, Veta, VetBs -+« Un—1,2)
and let C” be the circuit in G defined by
c’= ('01, U3y +oey V1, Ve Vet 2, V43, Vb4 1, Ve, V43, V44, V465 -+ - s Un—1, '01).

Figure 8(a) shows C’ and C” for n =9 and n = 13, where the edges of C’
are drawn in solid lines and the edges of C" are drawn in dashed lines. Let
Hj be the subgraph of G induced by E(C’) U E(C"). Then the size of H3
is |[E(C")| +|E(C")| = (n—4)+ 7+ (n—5)/2 =3¢+2 = [3n/2] and each
vertex of H3z has degree 2 or 4.

Next suppose that £ is odd. Let C’ be the cycle of order n — 4 in G

defined by
C' = (v1,V3,V4, ..., Vp—1,Ve42, Vet1, Ve+-ds Ve45, - - - +Un—1,71)
and let C” be the circuit in G defined by
C" = (V2,Vay. - . Ve—1, Ve, Vo2, Vet 3 Ve4 1, Ve, Vet3) Vitd, VE46y - - - » Uny U2)-

Figure 8(b) shows C’ and C” for n = 11 and n = 15, where the edges of
C' are drawn in solid lines and the edges of C" are drawn in dashed lines.
Let Hj be the subgraph of G induced by E(C’) U E(C"). Then the size of
H; is |[E(C")| + |E(C")| = (n—4)+ T+ (n—5)/2 =3¢+ 2 = [3n/2] and
each vertex of Hs has degree 2 or 4.

In general, if k > 5 is odd and n = 2£ + 1, then [m/2] = [kn/2] =
ke + [k/2]. For k = 5, let Hy consists of Hz and CH. Since each vertex
in Hz and C,(f] is even, every vertex of Hs is even and the size of Hs is
|E(H3)| +n = (3¢+2) + (2¢+ 1) =50+ 3 = 5£+ [5/2]. More generally
then, for an odd integer k > 7 with k < {n/2| — 3, the subgraph Hy.»
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Figure 8: Subgraphs C’ and C” in C2 for n = 9,11,13,15

consists of Hy and C,[.k“], where every vertex of Hy and C¥*1 is even and

the size of Hy is k¢ + [k/2]. Hence, every vertex of Hy.,., is even and the
size of Hyyo is |E(Hy)|+n = (k€+[k/2])+(20+1) = (k+2)¢+[(k +2)/2].
Therefore, C¥ is optimal for each integer odd integer k with 3 < k <

ln/2). .
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