Decompositions of A\K, using Stanton—type graphs

Derek W. Hein and Dinesh G. Sarvate

ABSTRACT. A Stanton-type graph S(n,m) is a connected multigraph
on n vertices such that for a fixed m with n — 1 < m < (3), there
is exactly one edge of multiplicity ¢ (and no others) for each i =
1,2,...,m. In this note, we show how to decompose AKn (for the
appropriate minimal values of A) into Stanton-type graphs S(4, 3) of
the LOE and OLE types.

1. Introduction

A simple graph G is an ordered pair (V, E) where V is an n-set
(of points), and E is a subset of the set of the (3) pairs of distinct
elements of V' (the edges). This definition can be generalized to that
of a multigraph (without loops) by allowing E to be a multiset, where
edges can occur with frequencies greater than 1.

For an excellent survey on (simple) graph decompositions, see [2].
Chan and Sarvate [4] introduced Stanton graphs:

DEFINITION 1. A Stanton graph S, is a multigraph on n ver-
tices such that for eachi =1,2,..., (g), there is ezactly one edge of
multiplicity ¢ (and no others).

EXAMPLE 1. The unique (up to isomorphism) Stanton graph S3
onV = {1,2,3} with edge set E = {{1,2},{1,3},{1, 3}, {1, 3},{2,3},
{2,3}} can be drawn as
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1
DEFINITION 2. Given an integer n > 2 and an integer m such
thatn —1 < m < (3), a Stanton-type graph S(n,m) is a connected

multigraph on n vertices such that fori=1,2,...,m, there is exactly
one edge of multiplicity i (and no others).

EXAMPLE 2. A Stanton-type graph on V = {1,2,3,4,5} with

m = 4 and edge set E = {{1,2},{2,3},{2,3},{3,4},{8,4},{3,4},
{4,5},{4,5},{4,5},{4,5}} can be drawn as
1 2 3 4 é 5

NOTE 1. It should be noted that an Sy, is the same as an S(n, (3)).

Chan and Sarvate {4] decomposed AK,, into Stanton graphs S3
for some minimal number A. Recently, El-Zanati, Lapchinda, Tang-
supphathawat and Wannasit [5] have proved that the necessary con-
ditions are sufficient for the decomposition of AKX, (for any A) into
Stanton graphs. There are other types of connected multigraphs with
6 edges having edge frequencies only 1, 2 and 3. In this paper, we
show how to decompose AK, into Stanton—type graphs S(4, 3) of the
LOE and OLE types.

2. Preliminaries

DEFINITION 3. Let V = {a,b,c,d}. An LOE graph (a,b,c,d) on
V is a graph with 6 edges where the frequencies of edges {a, b}, {b, c}
and {c,d} are 1, 2 and 3 (respectively).

EXAMPLE 3. Consider G; = (V, E) where V = {1,2,3,4} and
E={{1,2},{2,3},{2,3},{3,4},{3,4}, {3, 4}}. Then G is an LOE
graph (1,2,3,4), drawn as

1 2 3 4
— 0

DEFINITION 4. Let V = {a,b,c,d}. An OLE graph [a,b,¢,d] on
V is a graph with 6 edges where the frequencies of edges {a, b}, {b,c}
and {c,d} are 2, 1 and 3 (respectively).

EXAMPLE 4. Consider Go = (V, E) where V = {1,2,3,4} and
E = {{1,2},{1,2},{2,3},{3,4},{3,4}, {3,4}}. Then G, is an OLE
graph [1,2,3,4], drawn as
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We have the following two results, which can be obtained easily
by two-way counting and divisibility requirements:

LEMMA 1. The graph AK,, can be decomposed by LOE or OLE
graphs only if 6 divides A(3).

This result (and also the next theorem) agrees numerically with [4,
Theorem 5], where the minimum number of copies A of the complete
graph K, that can be decomposed into Stanton graphs S3 was given:

THEOREM 1. The minimum number of copies A of the complete
graph K, that can be decomposed into LOE or OLE graphs is

a) A=3, whenn=0,1,4,5,8,9 (mod 12),
b) A =4, whenn =3,6,7,10 (mod 12), and
c) A=6, whenn=2,11 (mod 12).

3. Path Decompositions

DEFINITION 5. The graph P, is a path on n vertices.

1 2 3 n-2 n-1 n

NOTE 2. Note that P, has n — 1 edges.

DEFINITION 6. For any positive integers A > 1, k and n such that
n > k, a Pr,-decomposition of AK,, is a set of paths P, that partition
the edge set of AK,, (so that the multiunion of them is AK,).

EXAMPLE 5. Let V = Z4 = {0,1,2,3}. A Py—decomposition of
Ky is given by the set of paths 0-1-3-2 and 1-2-0-3.

0 1

3 %,

EXAMPLE 6. We present a Ps-decomposition of 2K that is gen-
erated by developing a base graph. Considering the point set to be
V = Zs, we begin with the base graph 0-2-3-4-1 and develop it (mod-
ulo 5). The next paths will be 1-3-4-0-2, 2-4-0-1-3, 3-0-1-2-4 and
4-1-2-3-0. We see that the multiunion of all of these Ps will be 2K
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0 2 3 4 1
- ” 0
1 3 4 0 2
multiunion
2 4 0 1 3 _ 4 1
d —
ecomposition
3 0 1 2
4 1 2 3 0 ’ 3 2

This notion of base graphs being developed to produce a decompo-
sition of AK,, will be extremely important in the sequel.

4. LOE-Decompositions

DEFINITION 7. For positive integers n and A, an LOE~decompo-
sition of MK, is a collection of LOE graphs such that the multiunion
of their edge sets contains A copies of all edges in a K,.

EXAMPLE 7. We present an LOE-decomposition of 3Ks that is
generated by developing a base graph. Considering the set of points
to be V = Zs, the LOE base graph (0,1,2,4) (when developed modulo
5) constitutes an LOE-decomposition of 3Ks.

multiunion

d .
ecomposition

THEOREM 2. If a Py—-decomposition of AK,, ezists, then an LOE-
decomposition of 4A\K, ezists.

PRroOF. Replace each P; a-b-c-d with the pair of LOE graphs
(a,b,c,d) and (d,c,b,a). Then each of the edges {a,b}, {b,c}, and
{c,d} will have multiplicity 4. [ |

NOTE 3. As stated in [3], there exists a Py-decomposition of AK,
if and only if n > k and An(n — 1) = 0 (mod 2k — 2). Thus, a Py-
decomposition of 4K, erists when n > 4 and n(n —1) =0 (mod 3).
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5. OLE-Decompositions

DEFINITION 8. For positive integers n and A, an OLE-decompo-
sition of AK,, is a collection of OLE graphs such that the multiunion
of their edge sets contains A copies of all edges in a K,.

EXAMPLE 8. Considering the set of points to be V = Zs, the
OLE base graph (0,1,2,4] (when developed modulo 5) constitutes an
OLE-decomposition of 3Ks.

multiunion

.
decomposition

Examples 7 and 8 are very important, for together they demon-
strate how a “base graph”-style construction of LOE-decompositions
can be carried out for OLE-decompositions, and vice versa. Addi-
tionally, Theorem 2 presents a construction method that cannot be
duplicated for OLE graphs. Hence, in general, one has to prove
existence of both decompositions separately.

6. Decompositions of \K,

We are now in a position to prove the main results of the paper.
We remind the reader that Theorem 1 gives the minimum number A
of copies of K, under discussion in each case. Also, since LOE and
OLE graphs have 4 vertices, we consider n > 4.

THEOREM 3. The minimum number of copies of K, can be de-
composed into LOE graphs.

PROOF. We note that in this proof, we use difference sets to
achieve our decompositions of AK,,. In general, we exhibit the base
graphs, which can be developed (modulo either n or n— 1) to obtain
the decomposition. We also note that special attention is needed
with the base graphs containing the “dummy element” oo; the non-
oo elements are developed, while co is simply rewritten each time.
We further note that the multiplicity of the edges is fixed by position,
as per the LOE graph.
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case 1: n=1,4 (mod 12)

case 2:

If a BIBD(n,4,1) exists, we replace each block {a,b,c,d}
in the design by the LOE graphs (a,b,c,d), (b,c,a,d) and
(c,a,b,d). We note from [1] that a BIBD(n,4,1) exists
exactly when n = 1,4 (mod 12). Hence, in this case, an
LOE-decomposition of 3K, exists. A&

n=3,6,7,10 (mod 12)

In all these cases, n is equivalent to either 0 or 1 modulo 3.

Subcase: n =0 (mod 3)

First note that LOE-decompositions of 4K3 do not ex-
ist since LOE graphs have 4 vertices. We consider two

cases (t even and t odd):

If n = 3t and t = 2s, then n = 6s. We consider the
set V as Zgs—1 U {c0}. Then the differences we must
achieve (modulo 6s—1) are 1,2,...,3s—1. The number
of graphs required is 4"(?2_1) = 63(6;"1) = 2s(6s — 1).
Thus, we need 2s base graphs (modulo 6s — 1). For
the first 2s — 2 base graphs, we use (1,3z — 1,0, 3z)
and (3z,0,3z — 1,1) for z = 1,2,...,s — 1. For the
last two base graphs, we use (3s — 2,0,3s — 1,00) and
(00,35 — 1,0,3s — 2). Hence, in this subcase, an LOE-
decomposition of 4K, exists. ¢

Ifn=3tand t = 2s + 1, then n = 6s + 3. We con-
sider the set V' as Zgs+2U{oo}. Then the differences we
must achieve (modulo 6s + 2) are 1,2,...,3s+ 1. The
number of graphs required is 4"({‘2'1) (68"'3)(63"'2)

(2s + 1)(6s + 2). Thus, we need 2s + 1 base graphs
(modulo 6s+2). For the first 2s —2 base graphs, we use
(1,3z-1,0,3z) and (3z,0,3z—1,1) forz = 1,2,...,5—
1. For the last three base graphs, we use (1,3s+1,0, 3s),
(3s —2,0,3s — 1,00) and (00,35 —1,0,3s — 2). Hence,
in this subcase, an LOE-decomposition of 4K, exists. A
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Subcase: n =1 (mod 3)

case 3:

case 4:

We again consider two cases (¢ even and ¢ odd):

Ifn=3t+1and t = 2s, then n = 6s+ 1. We con-
sider the set V as Zgs+1. Then the differences we must
achieve (modulo 6s + 1) are 1,2,...,3s. The number
of graphs required is 4"(;’2'1) = (6”';)(63) = 2s(6s + 1).
Thus, we need 2s base graphs (modulo 6s + 1). We use
(3z —2,0,3z — 1,6z — 1) and (6z — 1,3z — 1,0, 3z — 2)
for z = 1,2,...,s. Hence, in this subcase, an LOE-
decomposition of 4K, exists. ¢

Ifn=3t+1andt=2s+1, then n = 6s+ 4. We
consider the set V as Zgs+4. Then the differences we
must achieve (modulo 6s + 4) are 1,2,...,3s + 2. The
number of graphs required is 4"(I‘_l) = (6""4)3(63"'3) =
(2s + 1)(6s + 4). Thus, we need 2s + 1 base graphs
(modulo 6s + 4). For the first 2s base graphs, we use
3z —2,0,3z — 1,6z — 1) and (6z— 1,3z —1,0,3z — 2)
for z = 1,2,...,s. For the last base graph, we use
(6s + 3,3s + 2,0,3s + 1). Hence, in this subcase, an
LOE-decomposition of 4K, exists. A

n=0 (mod 12)

Let n = 12t. We consider the set V as Zjy-1 U {00o}.
Then, the differences we must achieve (modulo 12¢ — 1) are
1,2,...,6t — 1. The number of graphs required is 3—-"%'—12 =
%14%—"1) = 3¢(12t—1). Thus, we need 3¢ base graphs (mod-
ulo 12t —1). We use (0, 3¢,6t+1,9¢), (0,3t+1,6t+3,9t+1),
(0,3t + 2,6t + 5,9t + 2),...,(0, 6t — 3,12¢ — 5,12t — 3),
(0,6t —2,12¢t — 3,12t — 2) and (0,6t — 1,9t — 1, 00). Hence,
in this case, an LOE-decomposition of 3K, exists. &

n =2 (mod 12)

Let n = 12t + 2. We consider the set V' as Zjg41 U {o0}.
Then, the differences we must achieve (modulo 12¢ + 1) are

1,2,...,6t. The number of graphs required is 21 —

Q2424241 _ (¢ + 1)(12¢ + 1). Thus, we need 6t + 1
base graphs (modulo 12t + 1). For the first 6¢ — 1 base
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case 5:

case 6:

case 7:

graphs, we use (0,1, 3,6t + 2}, (0,2,5,6t + 3), (0,3,7,6t +
4),...,(0,6t—3,12t — 5,12t — 2), (0,6t — 2,12 — 3,12t — 1)
and (0,6t — 1,6t,6t + 1). For the last two base graphs,
we use (0, 6t,12t, 00) twice. Hence, in this case, an LOE-
decomposition of 6K, exists. &

n=5 (mod 12)
Let n = 12t + 5. We consider the set V' as Zj9,45. Then, the
differences we must achieve (modulo 12t+5) are 1,2, ..., 6t+

2. The number of graphs required is 3"("QJ (12”’5)(12”4) =
(3t +1)(12t + 5). Thus, we need 3t + 1 base graphs (modulo
12t +5). We use (0, 1, 3,6t +5), (0,2, 5,6t +6), (0,3,7,6t +
7),....(0,3 — 1,6¢ — 1,9¢ + 3), (0,3t,6¢ + 1,9 + 4) and
(0,3t + 1,3t + 2,6t + 4). Hence, in this case, an LOE-
decomposition of 3K, exists. A

n =8 (mod 12)

Let n = 12t + 8. We consider the set V' as Zjg47 U {o0}.
Then, the differences we must achieve (modulo 12t 4 7) are
1,2,...,6t+ 3. The number of graphs required is 3—"%‘—11 =
leslél—%ﬂl = (3t +2)(12t + 7). Thus, we need 3t + 2 base
graphs (modulo 12t + 7). For the first 3¢+ 1 base graphs, we
use (0, 1,3,6t+5), (0,2,5,6t+6), (0,3,7,6t+7),...,(0,3t—
1,6t—1,9t+3), (0, 3t, 6t+1,9t+4) and (0, 3t+1, 342, 6t+4).
For the last base graph, we use (0, 6t +3, 12t +6, co). Hence,
in this case, an LOE-decomposition of 3K, exists. A

n=9 (mod 12)
Let n = 12t +9. We consider the set V as Zj2¢+9. Then, the
differences we must achieve (modulo 12t+9) are 1,2, ...,6t+

4. The number of graphs required is 321 = (12“"9)(12""8) =
(3t +2)(12t +9). Thus, we need 3¢+ 2 base graphs (modulo
12t +9). We use (0,1,3,3t +6), (0,2,5,3t+9), (0,3,7,3t +
19),...,(0, 3¢, 6¢ +1,12¢ +3), (0, 3¢ + 1,66+ 3, 12¢ + 6) and
(0,3t + 2,3t + 3,9t + 7). Hence, in this case, an LOE-
decomposition of 3K, exists. A
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case 8: n =11 (mod 12)
Let n = 12¢ + 11. We consider the set V as Zjg;4+11. Then,
the differences we must achieve (modulo 12t+11) are 1,2,.. .,
6n(n—-1) __

6t + 5. The total number of graphs required is =
gl_Z’t+_11221Qtﬂq1 = (12t + 11)(6t + 5). Thus, we need 6t + 5
base graphs (modulo 12¢ + 11). We use (0,1, 3,6t + 8),
(0,2,5,6t+9), (0,3,7,6t+10),..., (0, 6t+2, 12t +5,12t+9),
(0,6t + 3,12t + 7,12t + 10), (0,6t + 4,12t + 9,12t + 10) and
(0,6t + 5,6t + 6,6t + 8). Hence, in this case, an LOE-
decomposition of 6 K,, exists.

THEOREM 4. The minimum number of copies of K, can be de-
composed into OLE graphs.

PRroOOF. We first note that several cases of this proof (OLE-
decompositions) are exactly the same as the proofs of the correspond-
ing cases of the proof of Theorem 3 (LOE-decompositions), with
“LOE” replaced by “OLE”, and “(a, b, ¢,d)” replaced by “[a, b, c, d]”
(including the base graphs using “c0”); specifically, cases 1 and 3-8,
corresponding to n = 0,1,2,4,5,8,9,11 (mod 12). This is true be-
cause of the way the index A is achieved for LOE-decompositions.
All we must yet address are the cases n = 3,6,7,10 (mod 12). In all
these cases, n is equivalent to either 0 or 1 modulo 3.

Subcase: n =0 (mod 3)
First note that OLE-decompositions of 4K3 do not exist
since OLE graphs have 4 vertices. We consider two cases (¢
even and ¢ odd):

If n = 3t and t = 2s, then n = 6s. We consider the set V as
Zgs—1U{oo}. Then the differences we must achieve (modulo
6s —1) are 1,2,...,3s — 1. The number of graphs required
is 4"(""1) 63(6;‘1) 2s(6s — 1). Thus, we need 2s base
graphs (modulo 6s — 1). For the first 2s — 2 base graphs,
we use (3z — 1,0,3z — 2,6z — 3] and [3z — 1,0, 3z, 6z — 2]
forz =1,2,...,s — 1. For the last two base graphs, we use
[00,35—2,0,3s5— 1] and [00,3s 1,0, 3s — 2]. Hence, in this
subcase, an OLE—-decomposition of 4K, exists. ¢
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Subcase:

Ifn=3tand t = 2s + 1, then n = 6s + 3. We consider
the set V as Zggpo U {oo} Then the differences we must
achieve (modulo 6s +2) are 1,2,...,3s+ 1. The number of
graphs required is 4"({‘2—1) . (63'*'3)3(6'”'2) = (25 +1)(6s +2).
Thus, we need 2s + 1 base graphs (modulo 6s + 2). For the
first 2s — 2 base graphs, we use [3z—1,0,3z — 2,6z — 2] and
[3z-1,0,3z,6z—2] forz =1,2,...,s—1. For the last three
base graphs, we use [3s + 1,0, 3s, 6s], [00,35 —2,0,3s — 1]
and [00,3s — 1,0, 3s — 2]. Hence, in this subcase, an OLE-
decomposition of 4K, exists. A

n=1 (mod 3)
We again consider two cases (t even and t odd):

If n=3t+1 and t = 2s, then n = 6s + 1. We consider the
set V as Zgs+1. Then the differences we must achieve (mod-
ulo 6s+ 1) are 1,2,...,3s. The number of graphs required

4"("'1) (6"";)(6’) 25(6s + 1). Thus, we need 2s base
gra.phs (modulo 6s + 1). We use [3z — 1,0, 3z,6z — 2] and
[z —1,0,3z — 2,6z — 2] for z = 1,2,...,s. Hence,mthls
subcase, an OLE—-decomposition of 4Kn exists. ¢

Ifn=3t+1and t = 2s+ 1, then n = 6s + 4. We consider
the set V as Zgs14. Then the differences we must achieve
(modulo 6s + 4) are 1,2,...,3s + 2. The number of graphs
required is 421 — (Bet)Bo+3) _ (95 4 1)(6s + 4). Thus,
we need 2s + 1 base graphs (modulo 6s +4). For the first 2s
base graphs, we use [3z—1,0,3z,6z—2] and [3z-1,0,3z —
2,6z — 2] for z = 1,2,...,s. For the last base graph, we
use [3s + 2,0,3s + 1,6s + 2]. Hence, in this subcase, an
OLE—-decomposition of 4K, exists.

7. Conclusion

There are other types of (connected) multigraphs with six edges
on four vertices having edge frequencies only 1, 2 and 3. We continue
to search for constructions of the so—called LEO-decompositions of
MK, corresponding to the graph e——e<=<—» and so-called ELO-

decompositions of AK,, corresponding to the graph I
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