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Abstract

The Ramsey numbers »(F, G) are investigated, where F is a non-tree
graph of order 5 and minimum degree 1 and G is a connected graph
of order 6. For all pairs (F, G) where F' # K5 — K 3 the exact value
of r(F, G) is determined. In order to settle F' = K5 — K1,3, we prove
r(Ks — K1,3,G) = r(K4,G).

MATHEMATICAL SUBJECT CLASSIFICATION: 05C55
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1 Introduction

Ramsey numbers r(F, G) where F' and G both are rather small graphs were
first studied by Chvétal and Harary (5, 6] in 1972. Clancy [7] extended their
results to graphs F' with at most four vertices and graphs G with exactly
five vertices. In 1989, Hendry [9] gave a table of all but seven Ramsey
numbers where F' and G both have exactly five vertices. Meanwhile five of
the missing numbers have been determined in [1, 3, 17, 20, 22}, also cf. [19].
Thus, nearly all Ramsey numbers r(F, G) are known if p(F), p(G) < 5.
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Moreover, there are several results if G is a graph on exactly six vertices.
First, 7(Ps,G) and r(2K2,G) may be derived from general theorems [6].
The next attempt was on F' = K3. Here, Faudree, Rousseau, and Schelp
(8] obtained all Ramsey numbers r(X3, G) for connected graphs G of order
six. Hoeth and Mengersen [10] investigated 7(K} 3 +e,G) and (K4 —e,G),
only failing with r(K4—e, Kg). Later McNamara [18] completed their results
giving r(K4—e, K¢) = 21. All Ramsey numbers r(Cy4, G) were calculated by
Jayawardene and Rousseau (13, 21], additional erratum in [2]. The current
knowledge on Ramsey numbers 7(F, G) where p(F) < 4 and p(G) = 6 was
completed by Lortz and Mengersen [16] studying r(Ps, G) and (K, 3,G).
Only for the hardest case F' = K4 about half of the Ramsey numbers are
still unsettled (cf. Section 3.4).

Hence, it is a considerable further step to approach r(F, G) if p(F) = 5 and
p(G) = 6. Here, the first results were due to Jayawardene and Rousseau
[14, 15] who gave 7(Cs, G) for all graphs G of order six. Furthermore, Hua
Gu, Hongxue Song, and Xiangyang Liu [11] investigated (K 4, G) for some
special graphs on six vertices. Finally, Lortz and Mengersen [16] obtained
r(Ps, G), 7(S1,3,G), and r(K} 4,G) for all connected graphs G of order six.

In the present paper we study r(F, G) where F' is a non-tree graph of order
five additionally satisfying 6(F) = 1. There are eight such graphs as given
in Figure 1.

FUNEYYRY

Figure 1: The graphs Fy, Fy,..., Fg

Throughout this paper some specialized notation will be used. A 2-coloring
of a graph always means a 2-coloring of its edges with colors red and green.
A (G1, Ga)p-coloring is a 2-coloring of the complete graph K, containing
neither a red copy of G; nor a green copy of Gy. For the red subgraph of
a 2-coloring the degree of a vertex v is denoted by d.(v) and the set of v's
red neighbors is indicated by N,.(v). Moreover, d-(v1,...,9n) = [Nr(v1) N
... Ny.(vy)| for any vertices vy, ..., v,. Considering two disjoint subsets Uy
and U of the vertex set V' of a 2-colored Kp, ¢-(U1,Uz) means the number
of red edges between U; and Us. If U only consists of a single vertex v,
then we write g.(v,Us) instead. Furthermore, (U], denotes the red-edge
subgraph induced by the vertex set U. By Uy x U, we refer to the set of all
edges ujug where vy € Uy and ug € Us.
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2 Results

In Table 1 we give a survey of already known results on Ramsey numbers
r(F,G) where F € {K3,K13+e,Ks—e,C4} collected from [8, 10, 13,
21] as well as a listing of our new results for F € {F, F,...,F3}. The
respective proofs are presented in Section 3. In several cases we achieve
r(F,G) = r(F — v,G) where v € V(F) and dp(v) = §(F) = 1. In other
cases both Ramsey numbers differ by one, two, or three.

For the notation, the first column contains the number i of the connected six
vertex graph G;. A drawing of G; is given in the fifth column. Columns 2, 3,
and 4 provide G;’s common name (if any), its number of edges, and its clique
number. Most helpful within the subsequent proofs is G;’s complementary
graph (ignoring isolates) presented in column 6. All remaining columns con-
tain Ramsey numbers r(F, G;) with the graph F given in the column’s head-
line. As [10] and Theorem 1 yield (K3, G;) = r(K1,3 + ¢, G;) = r(F1,G;)
and our research proves r(Fy,G;) = r(F3,G;) = r(Fy,Gi), v(F5,G;) =
r(Fg, Gi), and r(K4, G;) = r(Fg,G;), we may use a single column in each
of these four cases. In the column concerning K4 and Fg there are some
gaps where the respective Ramsey number is currently unknown.

Finally, ). denotes a tailed star obtained from a star K, where an
additional vertex is joined to one of the star’s outer vertices. Therefore
P(Sin)=n+2.

Ks F Fs K,
No.} G: |q|d|D(G:) G: Kya+e|F;||Ka—e Cs| Fy

P Fy Fe Fs

| | [ (I

1| Ps |5{2({{ , Ger 11 11 11 11 7 7 16
2 5 2 < 1) Gas 11 11 11 11 7 7 16
3 514 5 2 < é:/ Gao 1 11 11 11 7 7 16
4 5 2 ‘I * Goo 11 11 1 11 7 7 16
5 5 2 ﬂ Go1 11 11 11 11 7 7 16
6 Kis 5 2 % Ks 11 11 11 11 8 9 16

Table 1: 7(F,G;) fori =1,...,6
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__ Ks |F; Fs K,
No.{ G; cd|D(G:)| Gi (|Kis+e|Fs)lKi—e Ci|Fy
F | F, Fs Fs
7 Cs 2 O Gs? 11 11 11 11| 7] 716
8 2 @ Ges 11 11 11 (11) 7 {9 |16
9 2 ® Geo 11 11 11 (11 7] 7| 16
10 3 @ Gro 11 11 11 |11 7916
11 2 & Gn 11 11 11 |11} 7|7 )16
12 2 & G2 11 11| 11 |11 7|7 | 16
13 3 @ G 11 11 11 11 7 [ 9 |16
14 3 N Gra 11 11§ 11 [11{f 7 (9|16
15| K15 +¢€|6]3 ﬁ Ks—e 11 11 11 111 89| 16
16 2 \D\' Grs 11 11 11 (11§ 7|7] 16
17 3 @ G 11 11] 11 (117916
18 3 ﬂ Gro 11 11 11 (11} 79 16
19 3 @ Gso 11 11 11 (11| 7|9 ] 16
20 2 @ Gas 11 1 11 |11} 7|7
21 3 CI> Gus 11 11 11 (11719
22 2 @ Gus 11 11 11 |11 719
23 3 @ Gae 11 11 11 |11f| 79| 16
24 3 N G 11 11 11 |11{{ 7916
25 3 M/ Gas 11 11 11 |11{|7 ]9 |t16
26 3 /Z\ Gao 11 11 11 j11ff 719 (16
Table 1: r(F,G;) fori=7,...,26
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— K, |[F Fs K,
No.| Gi cl| D(Gs) G Kiz+e|Fi||Ks—e Cs|Fy
R |F Fe Fs
27 3 @ Gso 11 11 11 |11} 7|9 16
28 3 ® Gs 11 11 11 |11f] 7|9
29 2 \D Ghs2 11 11 11 |11|[ 8|8 16
30 3 @ Gsa 11 11 11 [11({ 7 [9|j 16
31 2 @ Gss 11 11 11 {11} 8 | 8|16
32 3 @ Ks — P; 11 11 11 (11} 8 (9|16
33 3 % Ks - 2K, 11 11} 11 {111 8|9 | 16
34 3 @ Gss 11 11 11 (11} 79|16
35 3 /m/ Gs7 11 11| 11 |11} 7(9| 16
36 3 @\ Gss 11 11t 11 |11 7|9 | 16
37 3 @ Gso 11 11 11 |11) 8 |10
38 3 M Geo 11 11 11 |11{| 71916
39 3 @ Ks—(P3sUK3) 11 11 11 |11 8|9
40 3 @/ Ks - Py 11 11 11 (11) 8|9 16
41 3 @/ Ks - K3 11 11 11 |11 9|9 16
42 4 M Bs 11 13| 11 |[13}|{10}13( 18
43 3 @ G20 11 11 11 (11) 8 (10
4 3 @ G2 11 11 11 (11} 79
45 3 @ Ga22 11 11 11 |11} 8 |10
46 3 @ Gas 11 11 11 [11) 8] 9| 16

Table 1: r(F,G;) for i = 27,...,46
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_ Ki |F2 F K,
No. G el | D(G) G; Kia+e|Fs[|Ka—e Ci|Fr
F |F Fe Fs
47 3 @ Gaa 11 11 11 (11| 8|9
48 3 % Gas 11 11 11 |11} 8| 9] 16
49 3 @/ Gas 11 11| 11 11| 7|9} 16
50 3 ® Gor 11 11ff 11 |11y 7|9
51 3 @ Gas 11 11 11 |11( 8 ]9 |l 16
52 3 @ G2e 11 11| 11 [11] 8 |10
53| Kaa 2 @7 KUK, || 11 |11 13 [13]j9}9
54 3 @ Gao 11 |11 11 |11ff 7 (9
55 4 @ Ga 11 13| 11 |13f10[13( 18
56 3 @ Gaq 11 11 11 |11 7|9 | 16
57 3 @ Gas 11 11 11 |11 8 (9
58 4 \M/ Gse 11 13| 11 [13||10|13[{ 18
59| K3a3—e 2 @ Gaz 11 11f 11 |11 8|8
60 3 @/ Gas 11 11 11 (11l 9| 9| 16
61 Ba 3 @ K 11 11 13 |13})(11]11
62| K1+ Ps 3 ® Cs+e 11 11 11 |11 819
63 3 @/ Ki + 2K, 11 11| 11 [11ff 91} 9 (|17
64 4 @ Fe 11 13) 11 |13{10|13] 18
65| Ky + S1,3 3 @ Fy 11 11 11 |11 919
66 4 @ Ka3 11 13)| 11 [13([10}13

Table 1: 7(F, G;) for i =47,...,66
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Ky |F» Fs K,
No.| G q D(Gy) G: Kiste|F )| Ky—e Ci|Fy
P |F Fs Fg
67 9 @ Ce 11 11 11 |11 8 {10
68 9 @ Gs 11 11 11 |11 8 |10
69 9 @ Go 11 11 11 |11] 8 {10
70 9 @ Go 11 11| 11 [11){ 8 (9
71 9 @ Gn 11 11 11 |11) 8 |10
72 9 @/ G2 11 13 11 |13}/ 10{13] 18
73 9 @' G 11 11 11 {114/ 819
74 9 @/ G 11 11 11 J11) 9|9 || 17
75 9 @ Gis 11 13f| 11 [13}/10]13
76| Ks3 9 % 2Ks 12 12 16 (16411411
77 9 @ G 11 11 11 [11] 8 |10
78 9 @ (Ks—e)UK2 11 11 13 |13}4919
79 9 @ Gis 11 11 11 j114/ 919
80 9 @/ Gio 11 13| 11 (13| 1013} 18
81 10 @ B 11 13 11 |13j|10{13
82 Ws 10 @ Cs 11 13 11 |13/ 1013
83 10 @ Fy 11 11 11 1119 |9
84 10 @ i 11 13 11 (13}10(13
85! By +e |10 @ Kqy—e 11 13 13 |13]{11)13
86 10 % Kiqa+e 11 13 13 |13/ 11]13( 19

Table 1: r(F, G;) for i = 67,...,86
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Ks |F2 Fs K,
No.| G g |cl| D(Gy) G: Kia+e|Fs||Ki—e Ci|Fy

| F Fs Fs
87 10 @ Ps 11 [11] 11 11|l 8|10
88 10 @ G2 11 [13] 11 |13][10]13
89 10 @/ S1.4 11 [13) 13 13|11 [13}{ 19
80 10 @ Ga 11 |11} 11 11|l 9|10
91 10 @ Gs 11 [13]] 11 |13]/10|13
92| K33 +e (10 % K;UP; 12 |12 16 [16f[11(11
03 10 @ CiU K> 11 |1ff 13 |13l 9|10
94 10 @ (Kis+e)UKaf 11 f11f} 13 13|19 ]9
95 11 @ Kis+e 11 |13} 13 j13|11]13
96| K, + 2K |11 @ Ca 11 |13)} 16 [16]/11]13
97 11 @ Ps 11 (13| 11 {13{{10|13
98 11 @/ Kia 14 [17]] 16 |17| 14|17]f 25
99 11 @ S1,3 11 {13 13 [13]11]13
100| Ps + K3 (11 % KiUK> 12 12| 16 |16ff11{11
101 11 % 2P3 12 [13}} 16 {16{/11}13
102 11 @ PiUK, 11 [11ff 13 [13]{ 9 |10
103 11 @ K13 UK 12 [13] 13 |13}j11|13
104 12 @ P, 11 [13] 16 |16| 11}13
105 K3 + K3 |12 % K 14 |14|| 16 |16([13]13
106 12 @ Kia 14 |17)| 16 [17|[14}17| 25
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Ki |[F, Fy Ky
No.| G: g |d|D(G:)| Gi ||Kis+e|Fs||Ka—e Ci|Fy

F |F Fg Fg
107 12|14 % PsUK; 12 13 16 (161113
108 12|13 @ 3K; 13 13 14 [14(/1111
109 135 % P 14 17( 16 17|14 (17} <L27
110 1314 % 2K» 13 13|| 16 [16( 1313
111| Ke—e [14|5 % K, 17 17 17 |17|[16|17| < 36
112 Ke 15|16 % — 18 21 21 [21)[18]21]<£41

Table 1: The Ramsey numbers r(F, G;) where F is a non-tree graph of order
% and minimum degree 1 and G; is a connected graph of order 6

3 Proofs

The subsequent proofs are sorted by the four vertex graphs F; — v, where
dr,(v) = 1, the extended graphs F; may be derived from. Actually we have
the four vertex subgraphs K, 3 + e for F, F3, Fy, K4 — e for Fs, Fg, Cy for
Fy, and K, for Fy. Especially, each subsection’s results are summarized in
a preceding theorem, while the proofs are split in a number of appropriate
lemmas. Mind that already known Ramsey numbers used within the proofs
are either taken from the known results reminded in Table 1 or from the
papers of Chvatal and Harary [6], Clancy [7), Hendry (9], or McKay and
Radziszowski [17]. To improve readability we omit the respective references
throughout this section’s proofs.

In order to settle the only disconnected case F; = K3U K> we have a short
look at the following straightforward result.
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Theorem 1 Let G be any connected graph of order 6. Then
(18 if G =Gg,
17 if G =G,
14 if G =Gos or Geg C G C Gy,
T(FI,G) =
13 if G =Gos or G = G,

12 'if G= G103 or Gog CG C G107,

| 11 otherwise, i.e. if G C Gioa-

Proof: Considering the known results on r(K3,G), it suffices to prove
r(F,G) = r(K3,G). Clearly, K3 C F implies 7(F1,G) > r(K3,G). In
order to obtain r(F}, G) < r(K3,G) = r, we assume that there is a (F}, G)-
coloring x by definition producing a red subgraph K. Avoiding a red sub-
graph Fi, the r — 3 remaining vertices induce a green subgraph K,_3. Since
r — 3 > 8, we achieve K,._3 D G for any connected graph G of order 6,
contradicting the initial assumption and completing the proof.

3.1 Extending K3+ e

Theorem 2  Let i € {2,3,4}, and let G be any connected graph of order
6. Then
( 21 if G=0Gg,
17 ’lf Ggg C GC G,
14 if G = Gos,
r(FyG) = 4
13 if G = Gga or G = Gyo8 or G C G0 where cl(G) =4,

12 if G cCGcC G100,

L 11 otherwise, i.e. if G = G¢1 or G C Gg3 or G C Gp2.

Lemma 3.1.1
r(F3,G112) = 21.

Proof: As the Turan-type {F3, G112)20-coloring given by a red subgraph
5K4 and a green subgraph Kj 4,4,4,4 yields r(F2,G112) > 21, we continue
assuming that there is a (Fo, G112)21-coloring x. Then, r(K13+e,G112) =
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18 demands a red subgraph K} 3+ e to exist in x. Avoiding a red subgraph
F,, K 3+¢€’s vertices of degree 2 must not have any red neighbors among the
17 remaining vertices. Moreover, these vertices produce a green subgraph
K5 since r(Fy, K5) = 17. Thus, a green subgraph K, + K5 D Gy is to
occur in x, and our proof is done. [ ]

Lemma 3.1.2
( 17 if G =G,

14 if G = Gos,
T(Fz,G) = J 13 if G= GIOS or G= Guo,
12 if G76 C G C G0,

\ 11 if G C Gz or G C Gigs.

Proof: To verify the lemma’s results we prove r(F3, G) = r(K1 3+e,G) = r.
Obviously, K33 + e C F; yields r(F3,G) > r. Hence, we may assume
that there is a (F3, G),-coloring x, by definition containing a red subgraph
K3 + e. Avoiding a red subgraph F;, K 3 + e’s vertices of degree 2 and
the r — 4 remaining vertices induce a green subgraph Kj,—4. For r = 17,
r—4 =13 = r(F, K5 — e) forces a green subgraph K, + (K5 —e) D Gi1 to
be found in x. Now, consider r =14. Due to r —4 > 9 = r(F3, K5 — K3), a
green subgraph K; + (K5 — K3) D G105 may not be avoided in this case. If
7 = 13, then a green subgraph K- (K4 —e€) = G110 O Gios is to oceur in x
by r—4 =9 =r(F;, K4—e). Next, let r = 12. Here, r—4 > 7 = r(F3, K1 3)
implies the existence of a green subgraph K» + K13 = Gig0 O Grs. We
conclude our case analysis with 7 = 11. Because of r—4 = 7 = r(F3, K1 3) =
r(F3,C,), x produces green subgraphs K2 + K3 3 = K¢ — (K3 U K3) and
Ky +Cy = K¢ —3Ks,and as 7 = 7(Ky 3+¢€,G) = 11 requires G C Kg — P,
for 7(Fy,G) = 11 we have to demand G C Gssz or G C Gipa. Thus, the
proof is complete.

Lemma 3.1.3 Let G be a connected graph of order 6 satisfying cl(G) =5
and G # G111. Then
’I‘(Fz,G) =17.

Proof: The lemma’s assertion is a direct consequence of 7(F», K5) = r(Fz,
G111) = 17 (for the latter result cf. Lemma 3.1.2) and K5 C G C Gi11.

Lemma 3.1.4 Let G be a connected graph of order 6 satisfying cl(G) = 4

and G ; Guo. Then
r(Fy,G) = 13.
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Proof: From r(Fz, K,) = r(F2,G110) = 13 (for the latter result cf. Lem-
ma 3.1.2) and K4 C G C Gyyo we derive all the Ramsey numbers specified

above. [ |

Lemma 3.1.5
r(F2,Gs2) = 13.

Proof: Regarding r(Fs, G110) = 13 (cf. Lemma 3.1.2) and Gz C G110, We
obtain 7(F3, Gg) < 13. The corresponding lower bound may be established
by a (F2, Gsz2)12-coloring with red subgraph 3K and green subgraph Ky 4,4.
|

Lemma 3.1.6
r(Fa,Ge1) = 11.

Proof: For r(F3,Ge;) > 11 we consider r(K3,Ge1) = 11 and K3 C F3.
Hence, we assume that there is a (F3, Ge1)11-coloring x. Since r(K; 3 +
e,Gg1) = 11, x contains a red subgraph K} 3+ e with edges vy v;, vou3, v2vy,
v3v4. Avoiding a red subgraph F, vs, v4, and the seven remaining vertices
u1,...,u7 are to induce a green subgraph Kj 7. Now, have a look at v;. If
vy produces at least four red neighbors in U = {u4,...,u7}, then a green
subgraph K is forced in [U], yielding a green subgraph K2+K4 D Ge; in x.
Therefore, v; must have at least four green neighbors in U. So, all possible
spines of a green subgraph Gé;, i.e. edges vyuz and v;v4, have to be colored
red. Thus, we find [{v1,v2,v3,v4}}r = K4, demanding v;u; to be colored
green where i € {1,...,4} and j € {1,...,7}. As any single green edge in
[U] would become the spine of a green subgraph Ge1, (U] = K7 D F3, and
the proof is done. [ ]

Lemma 3.1.7
r(F3, Gi12) =21.

Proof: The lower bound 7(F3,G132) 2> 21 may be derived from a Turan-
type (F3,G112)20-coloring given by a red subgraph 5K4 and a green sub-
graph K 4,4,4,4. For the proof of the corresponding upper bound we assume
that there is a (F3, G112)21-coloring x. Because of (K} 3 +e,G112) =18, x
produces a red subgraph K, 3 + e. Avoiding a red subgraph F3, K) 3 +¢€’s
vertex of degree 3 must not have any red neighbors among the 17 remaining
vertices. Since r(F3, K5) = 17, these vertices yield a green subgraph Ks. So,
x contains a green subgraph K; + K5 = G112, and this argument completes
the proof. |
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Lemma 3.1.8

(17 f G=G,

14 if G =Gos,
r(F3,G) = J 13 if G =Gos,

12 i Gre C G C Gigo,
( 11 if G C Gga.

Proof: Regarding the known results on r(K3, G), due to K3 C F3 we only
have to prove 7(F3,G) < r(K3,G) = r. Thus, we assume that there is a
(F3,G),-coloring x, definitely containing a red subgraph Kj3. Avoiding a
red subgraph F3, any of K3'’s vertices must have at most one red neighbor
among the r — 3 remaining vertices. Hence, for vertices vy, vp, vs of a red
subgraph K3 we obtain dg(v;) > r—4, dg(v;,v;) = r—5, and dg(v1, ve,v3) >
r—6.

First, consider » = 17. Here, dg(v;) 2 r — 4 = 13 = r(F3, K5 — ) forces
a green subgraph K + (K5 — e) G111 to exist in x. Now, let 7 = 14.
Then, a green subgraph K + (K5 — K3) = G105 may not be avoided in x
since dg(vi) 21 —4 > 9 = r(F3, K5 — K3). For r = 13, due to dg(v;,v;) >
r—5 > 7= r(F3,C4) a green subgraph K + + Cy = Gios is to be found in
x- If r = 12, then we meet a green subgraph K, + K13 = G100, and any of
its subgraphs, in x because dg(v;,v;) 27— 5 7 = r(F3, K1 3). Finally, we
discuss r = 11. As dg(v1,v2,v3) > r — 6 =5 = r(F3, P3), a green subgraph
K3 + P; = K¢ — (K3 U K3) is to occur in x. However, r = r(K3,G) = 11
holds for graphs G with G C Kg — P, only, and we must constrain our
argument to graphs G with G C Ggs for this reason, completing the proof
for r = 17 through r = 11.

Lemma 3.1.9 Let G be a connected graph of order 6 satisfying cl(G) =
and G 9é Gnl. Then
r(F3,G) = 17.

Proof: The lemma’s assertion immediately follows from r(F3, K5) = r(F3,
G111) = 17 (for the latter result cf. Lemma 3.1.8) and K5 C G C G1.

Lemma 3.1.10 Let G be a connected graph of order 6 satisfying cl(G) =
4 and G C G110. Then
r(F3,G) = 13.
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Proof: Since K4 C G, r(F3,G) > 13 is settled by r(F3, K4) = 13. Thus, we
are left with r(F3, G110) < 13, assuming that there is a (F3, G110)13-coloring
x- Regarding r(F3, Gy10) = 13 (cf. Lemma 3.1.2), x contains a red subgraph
F> with edges v1v2, Vav3, vovs, V3vg, v4vs. Avoiding a red subgraph F3, ve,
v4, and the eight remaining vertices uy, ..., ug yield a green subgraph Ky g.
Then, U = {u;,...,us} must fulfill

(P1) Ky s¢ [Ulr

because otherwise a green subgraph K> + K4 D Ghy0 would occur in x.
Moreover, a green subgraph K3 in [U] would force each of the five remaining
vertices of U to have at least two red neighbors among K3's vertices. Hence,
the vertices of a green subgraph K3 incide with at least ten red edges,
producing a red subgraph Kj 4 in [U]. As this argument contradicts (P1),

property
(P2) K3 ¢ [Ul,

has to hold, too.

Considering (P1), u4 must have at least four green neighbors among U'’s ver-
tices. Let us, . . ., ug be such neighbors. Now, (P2) demands [{us,...,us}}, =
K4, and (P1) implies that wju;, upu;,usu; are colored green where i €
{5,...,8}. Next, have a look at us. Since u;us is colored green where
i€ {1,...,4}, (P2) yields [{uy,..., us}}r = K4, and we obtain [U], = 2K
and [U], = K4,4. Avoiding a red subgraph F3, v1v4 is to be colored green
and v; must not have any red neighbors among U’s vertices. Thus, the
green subgraph K> + C4 = Gyyo in [{‘Ul, Vg, U3, Ug, U5, 'U.s}] contradicts our
initial assumption, and the proof is done. |

Lemma 3.1.11
r(F3,Gg2) = 13.

Proof: From r(F3,G110) = 13 (cf. Lemma 3.1.10) and Gga C G110 we
achieve 7(F3,Gs2) < 13. On the other hand, a red subgraph 3K, and a
green subgraph Ky 4,4 determine a (F3,Ga2))2-coloring, and the proof is
complete. [ |

Lemma 3.1.12 Let G be a connected graph of order 6 satisfying G C

sz. Then
r(F3,G) = 11.

Proof: From the known results on 7(K3,G) and by K3 C F3 we derive
r(F3,G) = r(K3,G) = 11 for any graph G with G C Gioz. Thus, as-
sume that there is a (Fi, Gig2)11-coloring x. Due to 7(F2,Gio2) = 11
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(cf. Lemma 3.1.2) x contains a red subgraph F; that may be given by
the edges v1vz, vovs, vovy, v3vs, v4vs. Then, va, vy, and the six remaining
vertices ui,...,us have to induce a green subgraph K¢ since otherwise
a red subgraph F3 would be obtained in x. Additionally, avoiding a green
subgraph G102 = K3 + P; demands properties

(Pl) P4 ¢ [{U1,. .. ,UG}]Q’
(P2) K1’4 ¢ [{ul, e ,us}],-.

Furthermore, r(F3,2K>) = 6 yields two independent green edges, say u;us
and uaug, in [{u1,...,us}] and (P1) forces [{uy,...,us}}r = Cs. Now, (P2)
requires uqus to be colored green, and as a direct consequence of (P1)
ujUus, Uglis, UsUe Must be colored red. By (P2) ujug and uoug are green,
from (P1) we derive that ugus and usug have to be red, and (P2) implies
ugus to be green, resulting in [{uy,...,us}]y = 2K3 and [{u1,...,us}]r =
K3 3. Avoiding a red subgraph F3, v; must not have red neighbors in both
{u1,u2,ue} and {us,uq,us}. Therefore, vjus,viuq, v1us may be assumed
green. Moreover, v1v4 has to be green, too, and we obtain a green subgraph
(K2 U K1) + K3 D Gioz in [{v1, v2, v4, u3, ug, us}). So, the proof is done.

Lemma 3.1.13
r(F3,Ge1) = 11.

Proof: As 7(F3,Ggy) > 11 immediately follows from r(K3,Gs;) = 11 and
K3 C F3, we may assume that there is a (F3, Gg; )11-coloring x. Then, due to
7(Fy, Ge1) = 11 (cf. Lemma 3.1.6) a red subgraph F5 is to exist in x. Hence,
let vyv2, vava, V24, V3v4, v4Us be the edges of such a subgraph. Now, neither
v nor v4 may have any red neighbors among the six remaining vertices,
say uy,...,us, and both v1v4 and veus must not be red, too. Additionally,
v3Uy, ..., V3us may be assumed green.

Since any green subgraph K3 in [{u,...,ug}] would yield a green subgraph
Gg1 in x, we are to demand property

(P1) Ki¢ [{u1,-..,ue}]q-

Considering vy, we have to discuss three cases. If v; produces at least four
green neighbors in {uy,...,us}, then Ge1 & [V], forces K4 C [{u1,- .., us}}r
and the absence of a red subgraph F; implies [Ny (ug) N {u1,...,us}| > 4,
making vsue the spine of a green subgraph Gs;,. Furthermore, v; must
not have three or more red neighbors among u;,...,us because other-
wise we would obtain a red subgraph F3 in x or a green subgraph K3
in [{u1,...,us}], the latter contradicting (P1). Thus, we are left with v,
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having exactly three green neighbors in {u,,...,us}. Without loss of gen-
erality assign vju;, v1us, vius green and vyug, vius red. As vyv4 must not
become the spine of a green subgraph Gg;, v1ug has to be colored red, too.
Hence, we fail to avoid a red subgraph F3 in x as well as a green sub-
graph K3 in [{u1,...,us}], where (P1) forbids the latter coloring. By this
argument both the case analysis and the proof are complete. |

Lemma 3.1.14

(21 if G =G,

17 if Ggs C G C Giny,
14 if G = Gos,
r(F4,G) =
13 'l,f G = Ggs or G = Gyos or G C G0 where Cl(G) =4,
12 if G76 C G C Gioo,

11 if G=Ge or G C Ggs.

\

Proof: In fact, we prove r(Fy,G) = r(F32,G) = r for all graphs G men-
tioned in the lemma’s assertion. So, we may assume that there is a (Fy, G),-
coloring x, containing a red subgraph F, by definition. Avoiding a red
subgraph Fy, in x we find a green subgraph B,_s given by F>’s vertices of
degree 1 and the r— 5 remaining vertices. For r = 21, 7—5 > 13 = r(Fy, K4)
demands the existence of a green subgraph Ko+ K4 = G112 in x. If r > 14,
thenr—5 > 9 = r(Fy, K4 —e) forces a green subgraph K>+ (K4—e) = G113
and all of its subgraphs in x. In case of r > 12 a green subgraph K, +Cy =
G110 D Gs2, G100, G10s may not be avoided in x since r—5 > 7 = r(Fy, Cy).
Finally, we discuss 7 = 11. Due to r — 5 > 5 = r(Fy, Ps), a green subgraph
Ky + (Ps U K1) D Gei1,Gss is to occur in x. Regarding the known results
on 7(F3, G), these arguments determine the respective upper bounds for all
graphs G dealt with in this lemma. The corresponding lower bounds may be
derived from r(Fy,G) > r(K3,G), v(F4,G) = r(Fy, Kg) = 13 if cl(G) 2 4,
r(Fy,G) = r(F4, Ks) = 17 if cl(G) > 5, or the Turan-type colorings cited
in Lemma 3.1.1 and Lemma 3.1.5, respectively. Thus, the proof is done.

Lemma 3.1.15 Let G be a connected graph of -order 6 satisfying G C

sz. Then
r(F, G) = 11.

Proof: As r(Fy,G) > r(Ks,G) = 11 for any graph G with G C Gjo2 im-
mediately follows from the known results on (K3, G) and K3 C Fy, we are
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left with the proof of r(Fy,G1o2) < 11. Hence, we assume that there is a
(Fa, G102)11-coloring x. Considering r(F3, G1o2) = 11 (cf. Lemma 3.1.12), x
produces a red subgraph F3 that may be given by the edges vy vs, v1v3, vavs,
v3v4, V3vs. Avoiding a red subgraph Fy, v4, vs, and the six remaining ver-
tices uy,. .., us have to create a green subgraph Bg, anyway. If there is even
a single red edge running from v; or v, to u;, say vyu;, then u; must not have
any red neighbors among us,...,us, and any green edge in [{uz,...,us}]
would yield a green subgraph K¢ — P3 D Gyp2 in x. On the other hand,
[{u2,...,ue}]r = K5 D Fy, and in consequence all edges vu; and vau; may
be supposed green. Since r(Fy, P3) = 5, ujup and ugus have to be colored
green, too, and we obtain a green subgraph Ks — (P3 U K3) D Gz in
[{v2,v4, vs, u1, ug, us}], completing our proof. |

3.2 Extending K, — e

Theorem 3  Let i € {5,6}, and let G be any connected graph of order
6. Then

(21 if G=Go,

17 if Gog C G C Gin1,

16 if G € {Gos, G104, G105} or Gr6 C G C G0,
r(FnG) =1 14 if G =Gos,

13 if Ge1 C G C Ggs or G C Ggg where cl(G) =4
or Gs3 C G C Gip2 or G € {Gsz, Ggs, Go7, G103},

L 11 otherwise, i.e. if G C Ggz or G C Gg7 or G C Ggy.

Lemma 3.2.1 Let i € {5,6}. Then
(21 if G =G1ya,

17 i G =G,

16 if G € {Ggs, G104, G105} or G7g C G C Gy,
r(F;, G) = {

14 if G =Gos,

13 if Gs3 C G C Gioz2 or G € {Ggs, Gog, G103},
11 if G C Ggz or GC Gg7 or G C Gyo.
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Proof: For all graphs G mentioned in the lemma’s assertion the lower
bound may be derived from the known results on r(Ks—e,G) = r and Ky —
e C F, Fs. In order to prove the corresponding upper bounds we assume
that there is a (F;, G),-coloring x where i € {5, 6}. Clearly, x contains a red
subgraph K;—e, and due to the absence of a red subgraph F; we find a green
subgraph K3 4 in x. If 7 = 21, then a green subgraph Kz + K5 D G112
may not be avoided in x as r — 4 = 17 = r(Fj, K5). Regarding r = 17,
r—4 = 13 = r(F;, K4) demands a green subgraph K+ K4 = G111 to exist in
x. Now, let r = 16. Here, r—4 > 11 = r(F;, K5~ K3) yields a green subgraph
K2+ (K5 — K3) D G1os. Moreover, because of 7 —4 > 10 = r(F;, K4y — e) we
obtain a green subgraph Ko+ (K4 —e) = G110 D Ggs, G104, Gios for r > 14.
Next, we discuss r = 13. Since r —4 = 9 = r(F;, K1,3 + €) a green subgraph
Ko+ (K1,3+e€) D Gss, Gog, G102, G103 is to occur in x. Finally, we consider
r = 11, meeting green subgraphs Kz + K13 O Gss and K3 + Cs D Gsz,Geo
as T —4 =7 =r(F;, K,3) = r(Fi, Cs). Thus, the proof is done. [ |

Lemma 3.2.2 Let i € {5,6}, and let G be a connected graph of order 6
satisfying cl(G) =5 and G # Gi11. Then

r(F;,G) = 11.

Proof: Due to Ks C G C Gij; this result is a direct consequence of
r(F;, Ks) = r(F;,G111) = 17 (for the latter Ramsey number cf. Lemma

3.2.1). ™

Lemma 3.2.3 Let i € {5,6}, and let G be a connected graph of order 6
satisfying cl(G) =4 and G G Ggg. Then

~(F;,G) = 13.

Proof: The upper bound r(F;, G) < 13 immediately follows from 7(;, Ggg)
=13 (cf. Lemma 3.2.1) and G C Ggg, while the corresponding lower bound
is determined by r(F;, K4) =13 and K4 C G. [ |

Lemma 3.2.4 Let i € {5,6}, and let G € {Gs2,Gor}. Then
r(F;, G)=13.

Proof: As r(F,Gs2) = 13 (cf. Lemma 3.1.5) and F3 C F; imply r(F, Gga)
> 13, we may assume that there is a (F;, Go7)13-coloring x where i € {5, 6}.
Then, 7(K4 — e,Gg7) = 11 forces a red subgraph K4 — e to exist in x.
Avoiding a red subgraph F;, we obtain a green subgraph Kpg, yielding a
green subgraph K, + (Cs + €) D Go7 D Gsa because r(F;,Cs +¢e) = 9.
Hence, the proof is complete for Gsz as well as Gor. n
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Lemma 3.2.5 Let G be a connected graph of order 6 satisfying Ge; C

G C Gos. Then
r(F5,G) = 13.

Proof: Regarding (K4 — e,G¢1) = 13 and K4 — e C Fs we achieve
7(Fs,Ge1) = 13. Next, we assume that there is a (Fs, Gos)13-coloring x.
Due to r(K4 — e,Gos) = 13, x produces a red subgraph K; — e, and avoid-
ing a red subgraph Fs a green subgraph Ky is to be found in x, too. If
x actually contains a red subgraph Ky, then the arising green subgraph
K, and 7(Fs, K3) = 9 force a green subgraph K3 + Kz O Goes. Thus, a
green subgraph By is to exist in x, and r(Fs, K1 3 + e) = 9 implies a green
subgraph K3 + (K13 +e) D Gogs. So, we have verified r(Fs, Gos) < 13, and
the proof is done for all graphs G with Gg; C G C Ggs.

Lemma 3.2.6 Let G be a connected graph of order 6 satisfying Gg1 C

G C Ggos. Then
r(Fs,G) = 13.

Proof: From r(K4 — e,Gs1) = 13 and K4 — e C Fg we derive r(F5,Gs1) >
13. Additionally, we may assume that there is a (Fg,Ggs)13-coloring x.
Since (K4 — e,Ggs) = 13, x yields a red subgraph K4 — e with vertex set
V = {v1,v2,v3,vs} and |Ny(v1) N V| = |N.(v2) N V| = 3. Moreover, the
absence of a red subgraph Fg demands a green subgraph K¢ to occur in
X- Now, consider K3 g’s 9-element vertex subset U = {uy,...,ug}.

If any of U’s vertices produces at least five green neighbors in U itself,
i.e. without loss of generality ujus,...,u1us may be supposed green, then
P3 C [{ug,...,us}]y creates a green subgraph P; + P; D Gos with vertices
v1, Ve, u; determining the second green subgraph P3. Hence, [{u2,...,us}r
D Ks — 2K, D Fg, yet another contradiction to our initial assumption.
Therefore, |Ng(u;) NU| < 4 where i € {1,...,9}. On the other hand, if any
of U’s vertices has at least five red neighbors in U itself, then 7(P;, Ky—e) =
5 forces either a red subgraph K; + (P3 U K;) = Fg in [U] or a green
subgraph Kz +(K4—e) D Ggs in [{v1,v2,us, uj, uk, w1 }} with an appropriate
selection of 4, j, k,l. Thus, both [U), and [U], are regular of degree 4, and
Wwe may assume ujus,...,u1us to be colored red and ujug,...,ujug to be
colored green. Avoiding a red subgraph Fg in x as well as a green subgraph
Ky—ein [U], Ps ¢ [{ua,...,us}], and Ps ¢ [{us,...,us}]y, implying
[{‘U,z, .o ,'u.5}]g = (Cy, [{ug, ces ,u5}]r = 2K5, and C; C [{ue, caey UQ}]T.
Furthermore, from [{us, ..., us}}; D K4 — e and |[N,(u;) NU| = 4 we would
immediately obtain a red subgraph Fg in x. So, [{us,...,us}}r = C4 and
({ue, ..., ug}]g = 2K,. Certainly, this situation does not only apply for u,
but for any of U’s vertices.
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Having a closer look at one of K4 — e’s vertices of degree 2, say vs, it
must produce either nine red neighbors or at least one green neighbor
among U’s vertices. In the first case, we easily find a red subgraph K; +
(K1 + 2K3) D Fg in x. In the latter case, we may suppose that wvzu;
and wyug, uiugz, Uug, U U, UgU3, Uals are colored green. As any additional
green edge in {v3} x {ug,...,us} would complete a green subgraph Gos
in [{v1,v2,v3,u1,ui,u;}] with appropriately selected 4,5 € {2,...,5}, all
these edges have to be colored red, and regarding the previous paragraph'’s
results a red subgraph K; + C; D Fg may not be avoided in x. Due to
Ge1 C G C Ggg we achieve 13 < T(Fs,Gsl) < T(Fe,G) < T(Fs,Ggs) <13,
and the proof is done for all graphs from Ge; through Gos.

3.3 Extending C,

Theorem 4 Let G be any connected graph of order 6. Then
(21 if G =Gz,
17 if Geg C G C Gy11,
13 if G = Gys or G C Gyio where G ¢ Ge1, Gro0, G1gs,
11 if G =G¢1 or Gr¢ C G C Gyoo or G = Gygs,
10 if G C Giro2 where G ¢ Ge1,Goo,

r(F7,G) = {
9 if G C Gey where A(G) =5
or G € {G41,Gs3, Geo, Ge3, Ges, Gro, Gez}
or G C Goq where G is not bipartite,
8 if G € {G29,G3,Gso},
7 otherwise, i.e. if G is a tree where A(G) <4
{ or G € {G+,Gs,G11,G12,G16,G20}-
Lemma 3.3.1

T(F7, Gug) = 21.

Proof: The lower bound r(F7,G112) > 21 is a direct consequence of the
Turan-type (F7, G112)20-coloring given by a red subgraph 5K4 and a green
subgraph Kj 4,4,4,4. In order to verify the corresponding upper bound we
assume that there is a (F7, Gy12)21-coloring x. Since r(Cy, G112) = 18, x
contains a red subgraph Cy, and none of Cy’s vertices may have any red
neighbors among the 17 remaining vertices. Moreover, a green subgraph
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Ky is forced by these vertices because r(F7, K5) = 17. Hence, we obtain a
green subgraph K, + Ks D G2 in X, and the proof is complete. [ ]

Lemma 3.3.2 Let G be a connected graph of order 6 satisfying cl(G) =

5. Then
T(F7,G) =17.

Proof: Assuming that there is a (F7, G111)17-coloring x, due to r(Cy, G111)
= 16 a red subgraph C4 may not be avoided in x. Furthermore, the absence
of a red subgraph F7 demands a green subgraph K} 13 to exist in x, induced
by C4’s vertices on one hand and the 13 remaining vertices on the other
hand. Then, r(F7, Kz —e) = 13 yields a green subgraph K3 +(Ks—e) D G111
in x, implying r(F7, G111) < 17. Thus, the lemma’s assertion may be derived
from 17 = r(F7, Ks5) < r(F7,G) < r(F7,G111) < 17 where K5 C G C Gi11,
and the proof is done. u

Lemma 3.3.3

(13 if G =Gigs or G = Gy,

11 if G=Ge or G76 C G C Groo or G = Gyos,
H(Fy, ) = J 9 if G € {Ga,Gs3,Ge0,Ge3,Ges, Gr9, Gs3, Gos},
8 if G € {Ga9,G31,Gso},

7 if G is a tree where A(G) < 4
{ or G € {G+,G9,G11,G12,Gh6,G20}-

Proof: With regard to the known results on r(Cy, G) we prove r(F7,G) =
m(Cy,G) = r. As r(F7,G) > r follows from Cy C F;, we may assume
that there is a (F%, G),-coloring x, definitely producing a red subgraph
Cs. Avoiding a red subgraph F,, we find a green subgraph Kyr—q in x,
too. For r = 13, we achieve green subgraphs K + (K5 — K3) D G5 and
E+(K5—2Kz) D Giosincer—4=9= r(F7, Ks—Kg) = r(Fy, K5—2K2).
Next, we discuss 7 = 11. Here, r — 4 = 7 = r(Fy7,K1,4) forces a green
subgraph K3 + K 1,4 D Ge1,Gio0 to occur in x. Additionally, x contains
a green subgraph K; + Fy D Gyos because r — 4 > 6 = r(F7, Fy). Now,
let 7 = 9. Due to r — 4 = 5 = (Fy, P3) a green subgraph K4 + P; is to
exist in x, along with its subgraphs Gy, ...,Gos. Hence, we are left with
r € {7,8} where x’s green subgraph produces any bipartite graph on six
vertices except K 5, and the proof is complete. [ ]
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Lemma 3.3.4 Let G be a connected graph of order 6 satisfying G G G110
and G ¢ Ge1,G100,Gios. Then

r(Fy, G) = 13.

Proof: Considering r(F7,G110) = 13 (cf. Lemma 3.3.3) and G C Gyj0, we
obtain »(F7, G) < 13. The corresponding lower bound may be derived from
the Turan-type (F7, G)j2-coloring x given by a red subgraph 3K, and a
green subgraph Ky 44. As x’s maximum green subgraphs on six vertices
are Gg1, G100, and Gios, the proof is done. |

Lemma 3.3.5 Let G be a connected graph of order 6 satisfying G C Gio2
and G ¢ Gey,G100- Then

+(Fy, G) = 10.

Proof: First, we assume that there is a (Fy, Gio2)10-coloring x. Since
r(Cy, Gro2) = 9, x contains a red subgraph Cy4. Then, a red subgraph Fy
may only be avoided if C4’s vertices and the six remaining vertices yield
a green subgraph K46. Moreover, 7(F7,F7) = 6, and a green subgraph
K, + Fy D G2 is to be found in x. Thus, 7(F7,G1o2) < 10. Regarding
Ky's edge two-coloring given by a red subgraph 2K, and a green sub-
graph K + K3 4, it does neither create a red subgraph F7 nor produce any
green subgraph on six vertices that is no subgraph of Ge; or Gigo. So, by
10 < r(Fy,G) < r(Fr,G102) < 10 the proof is complete. |

Lemma 3.3.6 Let G be a connected non-bipartite graph of order 6 sat-
isfying G C Goa. Then
r(F7,G) = 9.

Proof: Clearly, r(F7,Gos) = 9 (cf. Lemma 3.3.3) and G C Gg4 imply
r(Fr,G) < 9. Verifying the corresponding lower bound, we consider a red
subgraph 2K, and a green subgraph K, 4 determining a (F7, G)s-coloring
avoiding any non-bipartite green subgraphs at all. Hence, we are done with
the proof. n

Lemma 3.3.7 Let G be a connected graph of order 6 satisfying A(G) =5

and G C Ggz. Then
r(F7,G) = 9.
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Proof: For all graphs G' mentioned in the lemma’s assertion the lower
bound r(F7,G) > 9 is a direct consequence of the Turan-type (F7,G)s-
coloring given by a red subgraph 2Ky and a green subgraph K4 4. Now, we
assume that there is a (F7, Gg2)g-coloring x where r(Cjy, Gg2) = 8 forces a
red subgraph Cj to exist in x. Due to the absence of a red subgraph F,
Cy’s vertices and the five remaining vertices must induce a green subgraph
K45, and we may have a look at an arbitrary vertex v of K4 5’s 5-element
vertex subset U. If [Ny(v) NU| > 2, then x contains a green subgraph
K, + K33 D Gez2. Therefore, |N.(u) NU| > 3 holds for any vertex u € U,
and we achieve (U], D K5—2K> D Fy, contradicting our initial assumption.
Thus, 9 < 7(F7,G) < r(Fr,Gs2) <9, and the proof is complete.

3.4 Extending K,

Theorem 5 Let G be a connected graph of order 6 satisfying 6(G) =1,
orlet G =G7 or G = Gog. Then

(25 if G=Gogg or G = Ggs,
19 if G = Ggg or G = Ggg,
18 if cd(G)=4but Ks—e¢ G,
17 if G = Gez or G =Gy,

(Fs,G) = ¢

16 otherwise, i.e. if G=Gr or GC H
\ where H € {G40,Ga1,Gas, Gas, Ga9,Gs1, G, Geo}-

In a first step we reduce the problem of calculating 7(Fs, G) to determining
r(Ks,G).

Lemma 3.4.1 Let G be any connected graph of order 6. Then
r(Fs,G) = r(K4,G).

Proof: The inequality r(Fs,G) > 7(K4,G) = r is immediately obtained
from K4 C Fz. So, we may continue assuming that there is a (Fs, G),-
coloring x, by definition producing a red subgraph K4. Avoiding a red sub-
graph Fg, X yields a green subgraph Ky ,—4, too. Hence, r—4 > r(K4,T) —
4 =12 > 11 = r(F3, K4 — e) where T C G is a spanning tree demands a
green subgraph K + (K4 — €) to occur in ¥, settling the proof if G = Gios
or G C Gro. Next, let cI(G) = 5. As 7 —4 > r(K4,Ks) —4 = 21 >
18 = r(Fs,K4), x contains a green subgraph K4 + K4 O Gy in this
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case, and we are done if Ggg C G C Gi1. Finally, we are left with
G = Giy2. Here, a green subgraph Ky + K5 D Gi12 is to exist in x be-
cause r — 4 > 31 > 25 = r(Fs, Kg). Thus, our initial assumption fails for
all connected graphs on six vertices, and the proof is complete. [ |

With regard to Lemma 3.4.1, we may apply already known results on
(K4, G) obtained by Chvétal [4] and by Jayawardene and Rousseau [12].

Theorem 6 [4] Let m,n > 2. Then
r(KmTn)=(m-1)(n-1)+1.
Especially,
r(K4,T6) = 16.

Theorem 7 [12]
(K4, Cs) = 16.

Moreover, we derive some additional results considering known Ramsey
numbers (K4, G — v) where dg(v) = 1 or precisely counting certain edges
if (G) = 5.

Lemma 3.4.2 Let G be a connected non-tree graph of order 6 satisfying
8(G) = 1. Then

(25 if G =G,

19 if G = Gsg or G = Gy,

r(Ka4,G) = J 18 if cl(G)=4 but Ks ~e¢Z G,

17 if G = Gg3 or G = Gy,

\ 16 otherwise.

Proof: With regard to the known results on 7(K4, H) where H is an arbi-
trary graph on five vertices, we define

r= max({r(K4, G —v):v e V(G) and dg(v) = 1}
U{r(K4,T): TC Gisa tree}) > 16,

directly implying 7(K4,G) > r. In order to prove the corresponding upper
bound we assume that there is a (K4, G)r-coloring x, however forcing a
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green subgraph G — v. Avoiding a green subgraph G, we are to find a red
subgraph K, ,._s in x with appropriately selected s > 1. Now, consider
7(K3,G). Since r — 5 = 20 > 14 = r(K3, Ggs), x produces a red subgraph
K+ K3 D K4 ifr = 25. For all the other graphs from the lemma’s assertion
we may apply a similar argument where r —5 > 11 = r(K3, G). Hence, the
proof is done.

Lemma 3.4.3
(K4, Gios) = 25.

Proof: The lower bound r(K4, Gios) 2 25 is a direct consequence of K5 C
Gios and r(K4,K5) = 25. For proving the corresponding upper bound
we assume that there is a (K4, Gig6)25-coloring x. As r(K4, K5) = 25, x
produces a green subgraph K, and we divide K5’s vertex set into subsets
Vi = V(Ks) and Vo = V(Kos5) \ V(K5). Due to the absence of a green
subgraph Gigs any vertex from V5 is limitted to at most one green neighbor
among V) ’s vertices. Thus, we have g,(v, V) > 4 for any v € V3, implying
q-(V1,V2) > 80. Moreover, we obtain a vertex w € V) satisfying d.(w) =
gr(w, V) > 16. Hence, 7(K3, G10s) = 14 forces a red subgraph K; + K3 =
K, to exist in x, and the proof is complete.

Lemma 3.4.4
T(K4,G109) < 27.

Proof: Assume there is a (K4, G109)27-coloring x. As r(K,, K5) = 25, we
find a green subgraph K5 in x. Now let V; = V(K;) and Vo = V(Ka7) \
V(K5). The absence of a green subgraph Gigg forces g4(v, V1) < 2, i.e.
g-(v, V1) 2 3, for any vertex v € V3. So, we achieve g.(V;,V2) > 66 yielding
a vertex w € Vi where d,(w) = g-(w, V2) > 14. Because of r(K3, G199) = 14
we obtain a red subgraph K; + K3 = K4 in x, proving the stated upper
bound. [ ]

Furthermore [19] offers upper bounds for (K4, G111) and 7(K4, G112).
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