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Abstract

After introducing and discussing the notion of length two path
centered surface area for general graphs, particularly for bipartite
graphs, we derive a closed-form expression and an explicit expression
for the length two path centered surface areas of the hypercube and
the star graph, respectively.
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1 Introduction

Given a graph G, and a vertex v € G, a question one may ask is how
many vertices are at distance ¢ from v, ¢ € [0, D(G)], where D(G) stands
for the diameter of G. This quantity has been referred to as the Whitney
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numbers of the second kind of the poset [10], and the surface area with
radius i centered at v [5]. The surface area of a (di)graph can find several
applications in network performance evaluation, e.g., in computing various
bounds for the problem of k-neighborhood broadcasting [4], and identifying
spanning trees [12]. As a result, this surface area problem has been studied
for a variety of graphs, including the rotator graph, the star graph, the
k-ary n-cube, the (n, k)-star graph, and the arrangement graph. (For the
solution to this problem for the aforementioned and other graphs, readers
are referred to [5,13] and the references cited within.)

At first glance, this seems an easy problem from the computational
complexity point of view as it is clear that, via standard graph search al-
gorithms, such a surface area can be computed in polynomisal time with
respect to the size of the graph. However, in interconnection networks, the
number of vertices is often exponential, or factorial, in n, a network param-
eter. For example, the number of vertices in a star graph of n dimensions is
n!. What is needed is either an algorithm that computes this surface area
in time polynomial in n or an explicit formula solution with polynomially
many terms in n. As a matter of fact, it took a number of years for this
problem to be solved satisfactorily for the well-studied star graph, that is,
having a correct explicit formula (2,5, 10].

In this paper, we study an extension of this vertex centered surface area
problem: given a length two path p2 = (v, w, z) in a graph G, referred to as
the reference path henceforth, how many vertices are at distance i from p,
i € [0, D(G)]? We refer to this quantity as the pa-centered surface area with
radius i, denoted as BE’ (i) in this paper. In general, we have the notion of
H-centered surface area of G, where H C G, such that BE(0) = |V(H)|,
and for all i € [1, D(G)], BE (i) = Jl{u ¢ V(H)|m1mey {d(u,v)} =1i}|. We
find it convenient to refer to (BH(0), BE(1),...,BE(D(G))) as the H-
centered surface area sequence of G.

The above generalization might seem unnecessary as one can simply
identify all the vertices in a subgraph H to a single vertex, thus reducing
to the above regular surface area problem. Nevertheless, the reason for the
existence of nice explicit formulas for interconnection networks such as the
one for the star graph is due to symmetry, which will be destroyed once we
identify H to a single vertex.

The solution to this ps-centered surface area problem is certainly an in-
teresting combinatorial result in its own right. Moreover, this notion might
also serve practical purposes. As one application, the diagnosability of an
interconnection network is defined to be the maximum number of faulty
processors that can necessarily be diagnosed within a particular diagnostic
model, and a considerable amount of research has been done to determine
this important measurement for various networks [6,9]. It is recently sug-
gested in [14] that, under the popular comparison diagnosis model, the con-
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ditional diagnosability of G is at most, and often equal to, minp,cc BE (1).
Thus, this notion of py-centered surface area is also related to a valuable
fault-tolerance measurement of interconnection networks, although BE! (1)
itself can be directly calculated [3]. This application motivated us to study
this po-centered surface area problem.

The rest of this paper is organized as follows: In the next section, we
will define and discuss this notion of pa-centered surface area for the general
graphs, and particularly that of bipartite graphs. We then derive a closed-
form result for ps-centered surface area for the hypercube in Section 3, and
an explicit expression result for the star graph in Section 5, after charac-
terizing the relevant vertex structures of the star graph in Section 4. We
conclude this paper in Section 6 with some remarks.

2 p.-centered surface area for general graphs

Let G(V, E) be a simple and connected graph, (v, w), (w,z) € E, we study
the surface area of G, centered at the length-2 path p; = (v, w, z), with ra-
dius ¢ € [0, D(G)]. It is clear that BE?(0) = 3. In general, let u € V\{v, w, z}
such that d(u, p2) =i > 1, by definition, for some z € {v,w, z}, d(u, z) = <.

o If d(u,w) = i then d(u,v) > i, otherwise, we would have d(u, ps) < i;
and d(u,v) < i+ 1, since (v,w) € E. Thus, i < d(u,v) <i+1. By
the same token, ¢ < d(u,z) <i4 1.

o If d(u,v) =4, then, i < d(u,w) <i+1andi <d(u,z) <i+2 We
note that, if (v,z) € E, we would have i < d(u,z) <i+1.

o By symmetry, if d(u,x) = i, then ¢ < d(u,w) <i+1and i < d(u,v) <
i+ 2. Again, if (v,z) € E, then i < d(u,v) <i+1.

We use Table 1 to summarize the above analysis on the relationship

among d(u, v), d(u, w), and d(u, z), after removing redundancy:
For all i € (1, D(G)], let

Bé(v: w,z,i) = |[{u]d(u,v) = d(u,w) =d(y, z) =1},

Bi(v,w,z,i) = |{uld(u,v)=d(u,w)=1i,d(u,z)=1i+1}],
Bi(v,w,z,3) = [{uld(x,v) =1+ 1,d(u,w)=d(u,z) =1},
B¢(v,w,z,i) = |{u|d(x,v)=d(u,z)=i+1,d(uv,w)=1i}|,
Bg(v,w,z,i) = |{uld(u,w)=1i+1,d(u,v)=d(u,z)=1},
Bg(v,w,z,%) = |{uld(u,v)=1,d(u,w)= d(u,z) =1+ 1},
Bi(v,w,z,i) = |{uld(u,v) =4i,d(u,w) =i+1,d(u,z)=i+2},
Bd(v,w,z,i) = |{u|d(u,v)=d(u,w)=i+1,d(u,z)= i}/, and,
BE(w,w,z,i) = |{uld(u,v)=1i+2,d(u,w)=i+1,d(u,z)=1},
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Table 1: Cases among d(u, v), d(u, w), and d(u, z)

Case | d(u,v) | d(u,w) | d(u,z)
1 1 1 i
2 i 1 141
3 1+1 1 %
4 i+4+1 7 i+1
5 1 i+1 1
6 i i+1 i+1
7 1 i+1 142
8 i+1 i+1 )
9 i+ 2 i+1 i

we have the following general expression for p-centered surface area of
G.

Proposition 2.1 Let G be a simple and connected graph, and let p; =
(v,w,z) be a length 2 path of G. Then, for all i € [1, D(G)],

B%(i) = Bi(v,w,z,i)+Bi(v,w,z,i)+ B3(v,w,z,i) + B&(v, w, z,1)
+B(5;(v, w, T, i)+ Bg (v, w,z,%) + Bé(v, w,z,1) + Bg(v, w,Z, %)
+B2(v,w,x,1). (1)

Note: for k € [2,9], B&(v,w, z, D(G)) = 0; BS(v,w,z,D(G) — 1) = 0 and
B} (v,w,z,D(G) - 1) =0.

It is well known that a bipartite graph does not contain any odd cycle.
On the other hand, any of the Cases 1, 2, 3, 6 or 8 as shown in Table 1
mandates that u is of equidistance to either v and w, or w and z. The
associated pair of shortest paths from u to any such a pair of vertices,
together with the corresponding edge, induces a cycle of odd length. As
a result, no vertex in any bipartite graph falls into any of the above five
cases. We thus have the following observation.

Proposition 2.2 Let G be bipartite, p; = (v, w, z) be a path in G, then for
i €[1,D(G) - 1],

B% () = Bi(v,w,x,1) + B&(v,w, z,i) + BL(v,w, z,1) + B&(v,w, z,1).

In the rest of this paper, we study the po-centered surface area for two
important bipartite interconnection structures: the hypercube and the star

graph.
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3 The p;-centered surface area of the hyper-
cube

A hypercube of n dimensions, denoted as Q,, contains 2" vertices, often
represented as n-bit vectors. The distance between any two vertices v, w €
Qn, is given as follows:

n

d(v,w) = Z(vi ® w;), (2)

=1

where @ stands for the bitwise exclusive-or operation. Figure 1 shows Q3.

It is relatively easy to see that, for ¢ € [0,n], its vertex centered sur-
face area with radius ¢ is (7), and, for any edge e in Qn, the e-centered
surface area of Qn is 2(";'),¢ € [0,n]. For example, letting v (e) be any
vertex (edge) in @3, v- and e-centered surface area sequences for Q3 are
(1,3,3,1), and (2, 4,2,0), respectively.

110 m

Figure 1: Q3 Figure 2: Sy

We now derive the surface area of Qn, centered at p, = (v,w, z), with
radius 1 < i < n — 1. As Q, is vertex symmetric!, we choose w = 0j,.
Moreover, without loss of generality, for 1 < j < k < n, we choose v =
0,~10n_1_,-, and z = Oklon_l_k.

1. We first consider those vertices u as counted in Bén (v, w, z, 1), where
d(u,O,,) =1 and d(u, Ojlo,,_l_,-) = d(u, 0k10n_1_k) =1i+41.

If uj+1 = 1, since u;4; ®0 =1 and d(u, 0,) =1, El;éj-i-l (uz ®0) =
i — 1. But, since d(u,0;10n—1—5) = i+1, 3o, (w ®0) = i + 1.

1A graph is vertex symmetric if for each pair of its vertices, a and b, there is an
automorphism that maps a to b [1].
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Thus, u;4+; = 0. By an analogous argument, ux+; = 0. Finally, since
d(u,0,) =1, by Eq. 2, there exist exactly i 1’s in such a vertex u, where
two bits are fixed to be 0. Thus, for 1 <i<n—2, Bg).. (v, w,z,3) =
-2

"7

2. For those vertices u as counted in Bgn (v, w,z,1), where d(u,0,) =
i+ 1 and d(u,0;10,-1—;) = d(u,0£10n—1-%) = %, by the same token,
uj41 = Ugy1 = 1. Since d(u,0;10,-1-;) =4, for 1 < i < n -1,
B} (v,w,z,7) = (=3

3. For those vertices u as counted in B} (v, w, z, 1), Where d(u, 0;10,_,_;)
= i,d(u,0,) = i + 1, and d(u, 0x10n_1-x) = ¢ + 2, we can similarly
derive that uj41 = 1, but ug4+; = 0. Since d(u, 0,‘101,_1__7') = 1, for
1<i<n-2, B} (v,w,z,i) = "7?).

4. Finally, we consider those u as counted in B%n (v, w, z,1), where
d(u,0410n-1—;) =i +2,d(u,0,) =% +1, and d(u, 0£10n-1-k) = %, we
can similarly find out uj41 = 0, but ug41 = 1. Since d(u, 0xk10n 1) =
i, we also have that, for 1 <i<n-—2, B%n (v, w,z,%) = (*7?).

By Proposition 2.2 and the above analysis, we have achieved the following
general result, which also works for ¢ = 0 and ¢ = n, as B (0) = 3 and

BZ (n) = 0, respectively.
Theorem 3.1 Let p, be any length 2 path in Qn, fori € [1,n—1),

BZ (i) = ("';1) +2(";2).

For example, the ps-centered surface area sequence of Q3, centered at
any such a path, is (3,4, 1,0).

We also notice that for n > 3, ming,¢q, Bg, (1) = 3n — 5, confirming
an observation made in [14, §5.1], discovered via structural analysis.

Finally, it is clear that the H-centered surface area sequence of a graph
G necessarily constitutes a partition of all the vertices in G. To this regard,
we have the following calculation:

San = 45 ("7 +2( 7)) =

1=0

which is indeed the total number of vertices in Qp.
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4 Star graph and its vertex structure

The symmetric star graph was proposed in (1] as an attractive alternative
to the hypercube for interconnecting processors in a parallel computer, and
compares quite favorably with the hypercube in several aspects. It has been
widely studied and recent results include (5,7, 8].

The vertex set of the n-dimensional star graph, denoted by S,,n > 3, is
simply the collection of all the permutations of (n)(= {1,2,...,n}), where
e, = 12.. .7 is called its identity vertez. For any two permutations v and w,
(v, w) is an edge in Sy, if and only if, for some j € [2, n], w can be obtained
from v by applying a transposition (1, j), i.e., w = v o (1, ). It is called
star graph since, as a Cayley graph, its generators, {(1, 7)|j € [2,n]}, form
a star. Thus, a better name for this graph might be star-generated graph.
Figure 2 shows S4, where 2134 is adjacent to 3124, since 3124 = 21340(1, 3).

It is well known that every permutation is a product of disjoint cycles
of length > 1; which is unique except for the order of these cycles. We
thus refer to this unique factorization of u € S, the cycle structure of u,
denoted by C(u), and will make no distinction between u and C() in the
rest of this paper. Furthermore, let u € Sy, C(u) be its cycle structure, and
let C € C(u), we call C a primary cycle, if 1 belongs to C; otherwise, C is
normal. We call a cycle trivial if it contains exactly one symbol, called a
fized point of C(u); non-trivial otherwise. We often drop those fixed points
from C(u) when the context is clear.

For any u € Sy, let g(u) be the total number of non-trivial cycles con-
tained in C(u), containing a total of b(u) symbols taken out of {n), Akers
et al derived in [1] the following distance formula between u and e,.

dwen) = b+ —{ 57 ol nTxedpomtinClu

’Zl[‘he dia.jneter of S,, is obtained by maximizing Eq. 3, and turns out to be
3(n-1
|

For example, let u = 635179284 € Sy, then C(u) = (1,6,9,4)(2,3,5,7),
where (1, 6,9, 4) is a primary cycle, and (2, 3,5, 7) a normal one. The trivial
cycle (8) is dropped from C(u). Since b(u) = 8, g(u) = 2, and 1 is not a fixed
point in u, we have d(u,eg9) = 8 + 2 — 2 = 8. Indeed, one of the minimum
routing paths from u to eg, of eight steps, is the following:

635179284 ‘1) 035176284 3 435176280 1P 135476289 12

315476289 2 513476280 15 713456289 17 213456789 12 ¢,

where, with “u o)y , we apply transposition (1, p) to a permutation u to

obtain v, another permutation.
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To identify the reference path, as S, is vertex symmetric, we select
en as vertex w. We may choose v = e, 0 (1,7), j € [2,n], in a total of
n — 1 ways, and then z = e, 0 (1,1),7 € [2,n]\ {5}, in a total of n — 2
ways. Considering the symmetry, there are a total of (n — 1){n — 2)/2
ways of choosing pa = (v, s, z). Out of this many choices, we choose v =
€,0(1,3) = 3214--.n,and = = €,0(1,2) = 213 - -n, based on a convenience
consideration?. Such a selection leads to the definition of the following two
automorphisms: For all u € Sy, by ¢1(u), we mean swapping symbols 1 and
3 in u; and by @2(u), we mean swapping symbols 1 and 2 in u. Henceforth,
we refer to p; = (v,w,z) = (p1(en), €n, P2(en)) as the reference path for
our enumeration.

Clearly, @1(p1(en)) = w2(p2(en)) = en, it thus follows, by the auto-
morphic nature of ¢; and 2, d(u, v) = d(p1(u), $1(v)) = d(p1(u), en), and
d(u, z) = d(p2(u), pa(z)) = d(p2(u), en). As a result, we can use Eq. 3 to
calculate the distance from any vertex u to v (resp. z) via the distance
from its image under ¢ (resp. @s3) to €.

To derive BE’ (¢), the surface area of Sp centered at ps with radius
i €[1,D(S,) — 1] we need to categorize, and enumerate, all the vertices in
S,. Let u € S,,, the three symbols, 1, 2, and 3, can belong to three separate
cycles, two separate cycles, or one cycle, in C(z). When they all belong to
the same cycle, since there are two distinct cyclic orderings of these three
symbols, and for each of them, extra symbols may or may not occur after
each of these symbols, there are sixteen different arrangements for this case.
When they belong to two cycles, there are three ways of choosing two out of
three symbols; and, depending on whether extra symbols occur after each of
these three symbols, there are twenty-four different arrangements altogether
for this case. Finally, when they belong to three separate cycles, there are
eight arrangements, depending on whether additional symbols occur after
each of these three symbols. After a thorough analysis of all these forty-
eight arrangements, we arrive at the following categorizing result.

Theorem 4.1 Let v,w,z,u € Sp, n > 3, such that v = ¢1(en), w = e,
z = pa(en), and d(u,p2) = i.

1. The vertez u falls into Case 4 of Table 1, i.e., d(u,p1(en)) =i+ 1,
d(u,e,) = i, and d(u,pa(en)) = i + 1, if and only if C(u) contains

either
(a) A=(1,ay...,az), B =(2),C = (3), where (az,...,a;) may be
empty; or

(b) D=(1,az,...,8z,2,ba,...,by), C = (3), where (az,...,a:) may
be empty, but (ba,...,by) is not; or

2We will see later that the derivation of the formulas is independent of this choice.
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(c) D=(1,az,...,05,3,c,...,Cs), B =(2), where(ay,...,a;) may
be empty, but (cq,...,c;) is not; or

(d) D = (1,a2,...,8z,2,b2,...,by,3,¢2,...,¢;), where (az,...,az)
and (b, ..., by) may be empty, but (ca,...,c;) is not; or

(e) D = (1,az,...,0z,3,¢c3,...,Cz,2,by,...,b,), where (ag,...,az)
and (cz,...,c,) may be empty, but (by,...,by) is not.

2. The vertez u falls into Case 5 of Table 1, i.e., d(u,p1(en)) = i,
d(u,e) = i+ 1, and d(u,p2(en)) = i, if and only if C(u) contains
either

(a) A=(l,0y,...,a5), B=(2,bs,...,b,),C = (3,ca...,cz), where
(az,...,az) may be empty, but neither (by, ..., by) nor(cs,...,c;)
s; or

(b) A=(Q,az,...,az), D=1(2,bs,...,by,3,¢2,...,¢;), where
(az,...,az), (bz,...,by) and (cz,...,c;) may be empty, or

(¢c) D = (1,a2,...,a:,3), B = (2,by,...,by), where (ag,...,a;)
may be empty, but (by,...,by) is not; or

(d) D=(1,aq,...,0.,2),C =(3,¢cq,...,¢;), where(as,...,a;) may
be empty, but (cz,...,c;) is not.

3. The vertex u falls into Case 7 of Table 1, ie., d(u,pi(en)) = 1,
d(u,en) =i+1, and d(u, p2(en)) =i+2, if and only if C(u) contains
either

(a) A=(1,aq,...,a;), B=(2),C=(3,¢cq,...,c;), where(az,...,az)
may be empty, but (co,...,c;) is not; or

(b)) A=(1,eaz,...,az,3), B=(2), where (a,...,a.) may be empty;
or

(¢c) D=(l,az,...,a5,2,bs,...,by), C=(3,cq,...,c;), where
(a2,...,az) may be empty, but neither (b, ..., by) nor(cz,...,¢c;)
is empty; or

(d) D = (1,as,...,a5,2,b,...,by,3), where both (as,...,a,) and
(b2,...,by) may be empty.

4. The vertez u falls into Case 9 of Table 1, i.e., d(u,p1(en)) = i+ 2,
d(u,en) = i+ 1, and d(u, pa(en)) = 1, if and only if C(u) contains
either

(a) A= (l,a,...,az), B=(2,bs,...,b,),C = (3), where(ay, .. .,as)
may be empty, but (by,...,by) is not; or

(b) D= (1,as,...,as,2), C = (3), where (az, . ..,a:) may be empty;
or
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(¢) D=1,az,...,az,3,¢3,...,¢;), B=(2,bs,...,by), where
(a2, ...,az) may be empty, but neither (b, ...,by) nor(ca,...,c;)
is; or

(d) D = (1,aq,...,az,3,¢2,...,C5,2), where both (az,...,as) and
(ca,...,cz) may be empty.

Proof: This result does cover all the forty-eight possible vertex structures,
but not just the seemingly seventeen of them, since some of these structures
are equivalent to each other. For example, as Case 1a shows, when C(u)
contains (1, az, as, . . ., az), (2) and (3), it always falls into Case 4 of Table 1,
whether (as,...,a;) = € or not.

We will not give a complete proof of this result for all the seventeen
cases, which is rather tedious, though not difficult. Basically, for each
of the forty-eight cases into which u might fall, we apply Eq. 3 to find
out d(u,ey,),d(u, p1(u)), and d(u,p2(u)), and then categorize u into one
of the above four cases accordingly. We demonstrate this process with
Case la: Let C(u) contain A = (1,ay,...,a;), B =(2), and C = (3), where
(a2,...,a;) may be empty. We discuss two cases:

o If (az,...,a;) = ¢, A = (1) is a fixed point. Then, by Eq. 3,
d(u,en) = b(u) + g(u). Since ¢;(u) contains a new primary cycle
(1,3), containing two extra symbols, as compared with v = (1)(2)(3),
by Eq. 3, d(p1(u), en) = (b(u) +2) +(g(u) +1) -2 = b(u) +g(uv) +1 =
d(u, e,) + 1. Similarly, since @2(u) contains a new cycle (1,2), we also
have d(p2(u), en) = d(u, e,) + 1. Thus, u falls into Case 4 of Table 1.

e Otherwise, by Eq. 3, d(u,e,) = b(u) + g(u) — 2. For this case, we
have that ¢;(u) contains a new primary cycle (1,as,...,az,3), and
@2(u) contains a new primary cycle (1, as,...,az,2). In both cases, as
the number of the cycles stays the same, but an additional symbol is
added, d(p1(u), en) = d(pa(u), en) = (b{u)+1)+g(u)—2 = d(u, e.)+
1. Thus, u also falls into Case 4 of Table 1. 0

We use S3 as an example to demonstrate the results as reported in
Theorem 4.1. Let u = 123, i.e., C(u) = (1)(2)(3), falling into Case 4.a, then
w1(u) = 321 and C(p1(u)) = (1,3)(2); and p2(u) = 213 and C(p2(u)) =
(1,2)(3). As a result, d(u, p1(e3)) = d(w1(u), e3) =1, and d(u, p1(e3)) = 1.
The whole situation regarding S; is summarized in Table 2, where Case
label refers to the case index as given in the Theorem.

5 Derivation of the p,-centered surface area

We note that, in Theorem 4.1, Cases 1b and 1c, Cases 1d and le, Cases 2¢
and 2d, and the corresponding structures in Cases 3 and 4 are symmetric to

232



Table 2: Vertex structures for S3

u d(u,es) | d(u,pi(e3)) | d(u,pa(es)) [[ d(u,p2) || Case
123 0 1 1 0 4.a
321 1 0 2 0 7.b
213 1 2 0 0 9.b
231 2 1 3 1 7.d
312 2 3 1 1 9.d
132 3 2 2 2 5.b

each other. Hence, we have ten cases of structures to enumerate, which we
will carry out by constructing the associated cycle structures C(u) contain-
ing b(u) symbols organized in g(x) non-trivial cycles, subject to constraints
as imposed in various cases, as well as the distance formula. More specifi-
cally, we first construct those cycle(s) containing symbols 1, 2 and 3, then
use the rest of the symbols to construct the remaining non-trivial cycles,
each containing at least two symbols.

The general quantity of d(g,r), namely, the number of ways of decom-
posing q distinct symbols into r non-trivial cycles, is discussed in [11, §4.4)].
Based on (11, Egs. 4.9 and 4.18]: for ¢ > 2r > 1,

dar) = 3 (- (1) stg s =) @

j=0

In the above, s(-, -) stands for the signless Stirling numbers of the first kind,
which can be represented as an explicit formula itself [5, Eqs. 5 and 6]
in terms of a two-layer summation, when factorial is treated as a basic
operation.

As mentioned earlier, when (¢1(en), €n, pa2(en)) is used as the reference
path, the three symbols 1, 2 and 3 can belong to one cycle, two cycles, or
three cycles. When these three symbols belong to one cycle, D, we need to
select b(u) symbols, use some of them to construct D, and the rest for the
other g(u) — 1 non-trivial cycles. We have to deal with two different cases:
Cases 1.d, which is equivalent to Case 1.e, and Case 3.d.

For Case 1.d, i.e., C(u) contains D = (1,a3,...,@4,2,ba,...,by,3,ca,
.-.yCz), Where (az,...,a;) and (bs,...,b,) may be empty, but (cq,...,c;)
is not, since D is a non-trivial primary cycle, d(u, e) = b(u) + d(u) — 2.

To construct C(u), we select b—3 symbols out of n—3 symbols, excluding
1,2 and 3, in (7~ 3) ways. We first construct D, by selecting Ip symbols

out of those b— 3 symbols, ip € [1,b—3],in (b 3) ways. For each and every
of those [p! permutations of this many symbols out of Ip total positions:
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to the left of the first symbol, and in between any two adjacent symbols,
but not to the right of the last symbol, since (ca, ..., ¢;) # €, we select two
positions to insert symbols 2 and 3, respectively, corresponding to the case
that (as,...,a;) may be empty, but neither (bs,...,by) nor (cq,...,c;) is;
and, out of the same lp total positions, we select one position to insert both
symbols 2 and 3, in this order, corresponding to the case that (as,...,az)
may be empty, (ba,...,by) is empty, but (c2,...,c;) is not. Thus, for
each such a set of chosen /p symbols, there are Ip! ( (lf) + (li’)) unique
constructions of cycle D.

We finally use the remaining b — 3 — [p symbols to construct the other
g—1 non-trivial cycles. To make sure that (}°3) > 0,n > b=d—g+2, thus
g > max{l,d —n+2}, since u contains at least one non-trivial cycle in this
case. The fact that every non-trivial cycle contains at least two symbols
leads to the upper bound of g, b > 2g, i.e., g < |42 ] . Finally, as Case 1.d
falls into Case 4 of Table 1, d(u, e,) = i. Therefore, for i € [1, D(S,) — 1],

Bra(i) = Bre(i) = %J 3 (_g__l)("‘li‘l)z,,!

g=max{1,i—n+2} Ip=1

(5 (ac-s-s-mas o

By analogous arguments, we have also derived formulas for all the other
cases as listed in Theorem 4.1 as follows. For ¢ € [1, D(Sy,) — 1],

By (%)

_ l%J —ngl( g+1)(i_li+1)l"!

g=max{l,i—n+4} la=1
di@i-g+1-14,9-1)

+ % (?:;) d(i - g,9). (6)

g=max{1,i—n+3}

B1.6(3) = B1.c(i)
L#J i—g (n -3

)BEDD

g=max{l,i—n+3}!p=1.

i _g) (i l;-")zpupd(i —g-lp,g=1). (7)

B2.a. (7')
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5] img—1

= (M) iy

g=max{2,i—-n+2} Ip=2
d(i-g-1-Ip,g-2)
L) i~g

S S {3 ooy

g=max{3,i—n+3}ip=3
d(i-g-Ilp,g-3). (8)

By ()
I."X"J i—g—1

_ D ( )("i‘l)zul(lpn)

g=max{l,i-n+2} ip=0
d(i—g_1_1D7g_1)
2] i

* o () G2 () ()]

g=max{2,i-n4+3}ip=0

d(i—-g—1Ip,g—2). (9)
Ba.c(t) = Ba.a(?)
I.L#J i—-g
n—3
= ) ipl
g=max§—n+3} lpz=:1 ( —g)( b ) beo
d(i—g—Ip,g-2) (10)

For i € (1, D(S,) — 2],
[32]  i—gi

Bsa(i) = Z Z (z f;i 1) (2 _li)-'- 1)lD!(lD -1)

g=max{2,i—-n+4} {p=2
d(i-g+1-Ip,g-2)
[55] i—g

i o) ()

g=max{l,i—n+3}lc=1

d(i-g-lc,g-1). (11)
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152] i-g+1 .
Bu@®) = Y. . (if ot 1) (z o 1) !

g=max{l,i—n+4} Ip=0

d(i—g+1-Ip,g—1). (12)

Boli) = [§J i( (55w

g=max{2,i~n+3}ip=2
d(i—g—1Ip,g—2) (13)

Bz.4(1)

L§J § ( )(i_g)lpl(lp+1)
g=max{1,i—n+3} {p=0 lD
d(i—g-lIp,g—1). (14)

Moreover, because of the aforementioned symmetry between Cases 3
and 4, for ¢ € {1, D(S,) — 2],

By o(i) = Bs,a(3), Ba,b(i) = B3 p(), Ba,c(i) = B,c(i), and, Byd(i) = Bs (i)

By Proposition 2.2 and the above analysis, we have achieved the follow-
ing main result of this section.

Theorem 5.1 Let n > 3, the surface area of the star graph, centered at
p2(p1(en), en, p2(en)) with radius i € [1, D(S,) — 1], is given as follows:

BE () = Byra(i) + Ba.a(i) + Ba,s(i) + 2 [B1,5(é) + Br.a(%) + Ba,c(¥)]
+2 [Bs.a(i) + Bap(8) + Ba.c(d) + Ba,a(i)] , (15)

where explicit formulas for Bj..(i) through Bs4(i) are given in Egs. 5
through 14.

Each and every of these expressions is given in terms of five layers of
summation, including three layers for the d term, when factorial is con-
sidered as a basic operation. Obviously, the number of terms as included
in all these expressions is polynomial in terms of n, thus computationally
feasible. Indeed, it is straightforward to write a program to calculate Bg:
for small values of n, as shown in Table 3, where we note the sum of all
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Table 3: Sample data for BE (1(en), en, 2(en),i),n € [3, 8]

(]

nff[0]J1] 2] 3 4 5 6 7 | 8 | 9
3ffaJ2T 1O 0 0 0 0 | 0 0
43757 9 7 0 0 0 0 0 0
53] 8] 23] 45 | 38 3 0 0 0 0
6 [[3]11] 43 [132] 249 | 241 41 0 0 0
73714 60 [286 ] 840 [ 1,648 [ 1,737 | 428 15 0
83

17 [ 101 | 525 | 2,090 | 6,220 | 12,577 | 14,013 | 4,429 | 345

the numbers in each row corresponding to n equals n!, the total number of
vertices in S,.

Although we choose a specific path pa(@1(en), en, p2(en)) to work with
in Section 4, it is clear that, if we select (v1,en, 1) as the reference path,
where, for ky # ks, v; = eno(1, k1), and z; = e, 0(1, k3), we would have the
same structures as listed in Theorem 4.1, except the two symbols 2 and 3
will be replaced with k; and k2, respectively. Thus, all such length 2 paths
lead to the same surface area. We therefore have the following result.

Corollary 5.1 Letn > 3, v,w,z € S, such that (v, w), (w,x) are edges of
Sn. Then, let p2 = (v,w,z), for alli € [1,D(S,) — 1),

BE: (3) = B1.4(1) + Ba.o(i) + B2,5(¢) + 2 [B1,5(3) + B1.4(3) + Ba (1))
+2(Bs.a(?) + Bap(i) + Ba.c(i) + Bs,a(3)], (16)

where explicit formulas for By o(i) through Bj4(i) are given in Egs. 5
through 14.

By Corollary 5.1 and Table 3, min,,es, B’é: (1) =3n-7,n > 3, agreeing
with the result as derived in [9], which is also obtained through a structural
analysis.

6 Concluding remarks

We discussed the notion of length two path centered surface area for gen-
era] graphs, particularly for bipartite graphs. We also derived a closed-from
expression for the length two path centered surface area for the hypercube,
and an explicit expression for the star graph, by enumeration and construc-
tion.
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We believe that, when solving the subgraph centered surface area prob-
lem, this technique of identifying and enumerating vertices of equidistance
from a subgraph can be applied to other Cayley graphs, particularly those
defined on symmetric groups, when a distance formula is available.
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