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Abstract

Let N{(n,t1,...,tr) be the number of irreducible polynomials of
degree n over the finite field F; where the coefficients of the terms
z™1,...,z""" are prescribed. Finding the exact values for the num-
bers N(n,t1,...,t.) for r > 4 seems difficult. In this paper we give
an approximation for these numbers. We treat in detail the case
N(n,t1,...,t1), and we state the approximation in the general case.
We experimentally show how good is our approximation.

1 Introduction

Let n be a positive integer. The problem of estimating the number of irre-
ducible polynomials of degree n over the finite field F, with some prescribed
coefficients has been largely studied. Carlitz [1] and Kuz’'min [7] give the
number of irreducible polynomials with the first coefficient prescribed and
the first two coefficients prescribed, respectively; see [2] for a similar result
over Fa. Yucas and Mullen [13] and Fitzgerald and Yucas [6] consider the
number of irreducible polynomials of degree n over F5 when the coefficients
of z*~1, z"~2 and z"~3 are prescribed. Over any finite field F, Yucas [12]
gives the number of irreducible polynomials with prescribed first or last co-
efficient. More recently, Omidi Koma, Panario and Wang [10] consider the
number of irreducible polynomials with fixed trace and norm. For an ex-
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cellent survey paper (up to 2005) on polynomials (irreducible or primitive)
with prescribed coefficients, see Cohen [4].

For given n > 4 and 4 < r < n—1 we study the number N(n,ty,...,¢,)
of irreducible polynomials of degree n over [Fo where the coefficients of the

terms z"~1,...,2™" " are given as {j,...,t,. Finding the exact value of
N(n,t,...,t,) seems a difficult problem. A conjecture about the number
N(n,ty,...,t.), for even n, is given in [13]; see also [6]. We give some

results about the number N(n,t;,...,¢,) that allow us to find a good ap-
proximation for this number.

We now give the format of this paper. In Section 2 we review the
required background and fix the notation. Our main results are given in
Sections 3 and 4. In Section 3 we give several results and a formula for the
number N(n,t;,...,t4) that entails our approximation for this number.
We show with concrete examples that our approximation is close to the
exact value of N(n,t;,...,%1). In Section 4, we first state the formula for
the number N(n,t,,...,t,) and its approximation, where r = 5,6,7. We
explain how to find the formula for N(n,t,,...,t,) for r > 8, and we give
its approximation. Moreover, our experimental results allow us to sligthly
tighten Yucas and Mullen [13] conjecture for N(n,ty,...,t;).

2 Preliminary results and background

For a given polynomial f € Fa[z] of degree n, let Ti(f) be the coefficient
of z"k in f, where 1 < k < n — 1. By definition, T1(f) is the trace of
the polynomial f. For 8 € Fan and positive integer k, the k-th trace of 3
denoted by Ty (B) is defined as

T)= >, =~ BupEp

0<i) << En—1

Let f € F2[z], and d be a positive integer. Then the multinomial
theorem gives the coefficients of the polynomial f¢. Let P(n,ti,...,t,)
be the set of irreducible polynomials f € Fa[z] of degree n with given
Ti(f) = tx € Fg, for 1 < k < r. Let N(n,t1,...,t,) be the number of
polynomials in P(n,t;,...,t,). We define P(n) as the set of all irreducible
polynomials f of degree n over F;, and N(n) = |P(n)|. In [8] it is given
that

N = =3 w2t

din
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Let N(n,t1) be the number of irreducible polynomials f of degree n
over F; with given trace T1(f) = t;. If n is a positive even integer and
t1 =1, then in [1] it is proved that

1
= 2,
N(n,1) = .Z u(d)2
d odd
Hence, for the case trace zero we have N(n,0) = N(n) — N(n, 1).

Let F(n,t),...,t,) be the number of elements 8 € Fan with Tx(8) =
tx € F2, and k = 1,...,7. Then, F(n,t;,t3) = [{B € Fan : Th(B) =
t1, Io(B) = t2}|, and we also have N(n,t;,t3) = |{f € Fq[z] : f €
P(n), Ti(f) = tx, k = 1,2}|. For a statement P, we let [P] = 1 if the
statement P is true; otherwise we let [P] = 0. In [2] the formula for
F(n,t,,t3) is given; they use Mébius inversion formula to connect the num-
bers N(n,t1,t2) and F(n,t;,t3).

Theorem 1 Let n be a positive integer. Assume thata = b (mod 4) is
shortened to a = b. For different t1,t3 € Fy the formulas for N(n,t,t2)
can be given as

(i) nN(n,1,0) = Y p(d)F(n/d,1,0) + > u(d)F(n/d,1,1),

din d|n
d=1 d=3
nN(n,1,1) = Y u(d)F(n/d,1,1) + Y u(d)F(n/d,1,0),
= dvs
(i) nN(n,0,0) = > p(d)F(n/d,0,0) - [n even] > u(d)2%~1,
din din, 3 even
d Odd d odd
(#) nN(n,0,1) = > u(d)F(n/d,0,1) — [n even) > wd2f
din din, G €vVen
d odd d odd

In [13] the number N(n,t;,ts,¢3) of irreducible polynomials f € Fy(z] of
even degree n with prescribed traces Tx(f) = tx, k = 1,2, 3, is given. For
odd n, the number N(n,t;,ts,13) is treated in [6].

Theorem 2 Let n be a positive integer, and a =b (mod 4) be shortened
asa=b. Then

(i) nN(n,1,1,1) = Y u(d)F(n/d,1,1,1) + > u(d)F(n/d,1,0,0),

d|n din
d=1 d=3
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nN(n,1,0,0) = > u(d)F(n/d,1,0,0)+ > _ p(d)F(n/d,1,1,1),

pe) s
(ii) nN(n,0,0,1) = 3 u(d)F(n/d,0,0,1),
ddtl):ld
(i) nN(n,1,1,0) = >_ u(d)F(n/d,1,1,0) + > _ u(d)F(n/d,1,0,1),
=1 =3
aN(n,1,0,1) =Y u(d)F(n/d,1,0,1) + Y _ p(d)F(n/d,1,1,0),
] dZ3
(iv) nN(n,0,1,1) = > p(d)F(n/d,0,1,1),
d"é'&d
(v) nN(n,0,0,0) = > u(d)F(n/d,0,0,0) — [n even] Y u(d)2% ",
din din, 3 EVen
d odd d odd
(vi) nN(n,0,1,0) = Y u(d)F(n/d,0,1,0) — [n even] > u(d)2%".
din dn, 3 even
d odd d odd

For even number n formulas for the numbers F(n, t1,3,3) are given in {13],
and for odd n formulas for F(n,t,%2,t3) are given in [6].

3 The formula for N(n,t,...,ts)

In this section we study the number N(n,¢;,...,%4) of irreducible polyno-
mials f € Fy[z] of degree n with Ti(f) = tx, and k = 1,...,4. First we
give a formula for the number F(n,t;,...,t4) of elements 8 € Fan with

Ti(B) = tx € Fy, for k = 1,...,4. Then, we use the idea of Theorem 3.2
in [9] to give the number N(n,t1,...,t4) in terms of F(n,t1,...,t4). After
that, we provide a good approximation of the number N(n,t,,...,t). Fi-
nally, for different values of n we present the experimental results related
to our approximation.

3.1 Computing F(n,t,,ts,13,14)

Suppose that Ming = f € Fa[z] of degree n/d is the minimal polynomial of
a given B € Fan. The following lemma regarding the connection between
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the traces of B and the coefficients of f¢ is proved in [2].

Lemma 2.1 Assume that f € Fa[z] of degree n/d is the minimal polyno-
mial of B € Fan. Then we have Ti(B) = Ti(f9), where Ti(B) is the kth

trace of B and Ty (f?) is the k-th trace of f¢, that is, the coefficient of z"—*
in f¢, wherek=1,...,n.
For a given polynomial f € Fa[z] and positive integer d > 1, the con-
nection between different coefficients of f and f¢ is given in the following
proposition.
Proposition 2.1 Let d > 1 be an integer, and f € Fa[z]. Then

(i) Tu(f?) = dTo(f),

) Ta(Y = () Tlr) + dTal),
() Ta(% = (3) Tl + B,

(i) Tutr*) = ()70 + (3) Tt + ().

ProoF. We only prove (iv); the proofs of the other parts are similar. Sup-
pose that f € IFa[z] is given such that deg(f) = n. We assume that

f@) =2+ e, 12" +apn_2z™ % + .- + 017 + ao.

Therefore, by the multinomial theorem, the polynomial f¢ can be given as

dl(akr . ...g5n=1gkn
(f(l'))d = Z: (an—l a G ) (x"k°+(“‘l)kl+"'+kn-1) )

1ky! ]
ko+---+kn=d ko-kl. e kn-

To find Ty(f%), the coefficient of z"4~4 in f¢, we choose ko, ki1,..., kn_1
such that nko + (n —1)k; +- - - + k,—; = nd — 4. This is possible in one the
following three cases:

(1) When ko = d—4, ky = 4 and k; = 0 for all I # 0,1; then the
corresponding term in ¢ is (§)an_4z"4"4, or (DTa(f)amd4.

(2) If ko =d—2, ko =2 and k; = 0 for any ! # 0,2; then this gives us
the term (3)a2_,2™¢~4 or (§)T2(f)z"*~* in the polynomial f¢.
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(8) When kg =d—1, ky =1 and k; = 0, for | # 0,4; we have the term
dap-4z™4~4 = dTy(f)z"4—4.

From these three cases we have the coefficient of the term z"¢—4 in the
polynomial f¢, which is denoted by Ty(f¢). This proves (iv). [ |

Since the coefficients are in F,, each of (%),...,(}) is zero or one.
The following proposition gives the different situations, based on d = i

(mod 8).

Proposition 2.2 Let f € Fo[z], anda =b (mod 8) be shortened as a =
b. For any d > 1 assume that d = i, for some i € {0,...,7}. In Table 1
the values of (%),..., () are given. Moreover, for 1 < k < 4 Table 1 gives
Ti(f%), that is, the k-th coefficients of f¢ in terms of Ti,...,Ty where

Ty = Ti(f).

d=i [D[Q TGO TR [T ] G | U Ta(f%)
d=0]| 0 0 0 0 0 0 0 0
d=11{ 1 0 0 0 Th Ta T3 T4
d=2] 0 1 0 0 0 T 0 T>
d=31] 1 1 1 0 Th T+T | T1+Ts T+ T,
d=4] 0 0 0 1 0 0 0 Th
d=5 1 0 0 1 T T T3 T+T,
d=6] 0 1 0 1 0 T 0 T+T>
d="7 1 1 1 1 Ty i+ | T+T: | i+ T2+ T,

Table 1: Coefficients of f¢, and values of ({),..., (5).

PROOF. Let d > 1 be such that =6 (mod 8) or d = 8d + 6, for some
integer d . Since d is even, we have

d=0 (mod8), (9)=d=0 (modS8)and
(czi)= d(d2— 1) _ (8d'+6)2(8d'+5) _(4d +3)8d +5) =1,
(d) _dd-1)d-2) _ 8 +4) (8d' +5)3(4d' +3) — o,

3 6
(d) _dd-1)(d-2)(d-3) _(4d +3)(8d + 5)(2d + 1)(8d + 3) _1

4 24 3

Hence, by Proposition 2.1 we have Ty (f%) = T3(f¢) = 0, To(f¢) = T1(f) =
T, and T4(f%) = T1(f) +T2(f)- The proofs for other values of d are similar.
||

260



Let us recall that P(n) is the set of all irreducible polynomials of degree
n over Fo. We use c.P(n) to denote the multiset that contains ¢ copies
of the set P(n). The following lemma gives a formula for the number

F(n,t1,t3,t3,t4).

Lemma 2.2 Let n be a positive integer and (ty,...,ts) € F§. Assume that
a=b (mod 8) is shortened asa =b. Foranyk=1,...,4 and t; € Fs,
the number of elements B € Fan with prescribed traces Ty (B) = tr can be
given by

7
F(nrtl)t21t37t4) = Z U % IS‘Ll )

=0 djn
d=i

where the sets Sy, ..., S7 are defined as:

So= {feP(n/d):t; =0,i=1,2,3,4},
S1={f€P(n/d): Ti(f) =t;, i =1,2,3,4},
Sy = {f € P(n/d): t1 = t3 = 0, Ty (f) = ta, T2(f) = ta},
S3 = {f € P(n/d) : Ty (f) = t1, Ti(f) + To(f) = ta,

Ti(f) + I3(f) = t3, To(f) + Tu(f) = ta},
S;={feP(n/fd):t;=0,i=1,2,3, Ty(f) = t4},
Ss = {f € P(n/d) : Ti(f) = t;, i = 1,2,3, Tu(f) + Tu(f) =ta},
S¢ = {f € P(n/d) : ty = t3 =0, T1(f) = ta, Ta(f) + T2(f) = ta},
Sr = {f € P(n/d) : T1(f) = t1, Tu(f) + To(f) = t2,

Ti(f) + T3(f) = ta, Tu(f) + To(f) + Tu(f) = ta}-

PROOF. Let f = Ming be the minimal polynomial of a given 8 € Fan. A
classic result from finite field theory [8] imply the following equality about

multisets: U U U n (n)
Ming = Jd.P(d)=| }=.P(=).
BEFan g d|n d|n d d

If in the left side of this equality we choose 8 such that its first four traces
be given as T (8) = tx € Fa, where 1 < k < 4, then we get

F(n,t,tat3,t0) = | g.{f € P(n/d): Te(f%) =ty 1 < k < 4}|.
dln

Then, for different values of d and using Propositions 2.1 and 2.2, we have
eight different cases for d, and therefore the number F(n,ty,ts,t3,%4) can
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be given by

F(n,ty,ta,t3,ts) = Z Uds _ZU 1S4,

=0 | din =0 dln
d=i
where for i € {0,...,7} the sets S; are defined as above. |

3.2 Computing N(n,tl,tg,ta,t.;)

To give the formula for the numbers N(n,ty,...,t4) in terms of the numbers
F(n,ty,...,ts), we need the following generalization of Mdbius inversion
formula that can be obtained from Theorem 3.2 of [9].

Theorem 3 Assume that a =b denotesa=b (mod 8). Let f; and g; be
functions defined on N, wherei € S = {1,3,5,7}. Foranyn € Nandie S
we have

fim=2_ 3 9; (3) ifondontyif g(m)=3 > w@f; (7).

u€S din u€S din
d=u d=su

where for any i,u € S we let j=i-u (mod 8).

In the following theorem we give N(n, %1, ¢2,t3,%4) in terms of the numbers
F(n,ty,t2,t3, t4). For t1,...,ts € F5 there exists 16 cases for (1,t2,13,%4).
Since in some of these 16 cases the numbers N(n, t1,t2,t3,%4) are connected
to each other, we divide the 16 cases into 6 different groups.

Theorem 4 Let n > 4 be a given integer, and a = b (mod 8) be short-
ened as a = b. Assume S = {1,3,5,7}, and suppose that the 16 cases of
(t1,...,ta) € F4 are divided into 6 different groups G, ..., Gs which are
defined as

G = {(1,1,1,0),(1,1,1,1),(1,0,0,0),(1,0,0,1) },
G, := {(0,0,1,0),(0,0,1,1)},
G := {(1,1,0,0),(1,1,0,1),(1,0,1,0),(1,0,1,1)},
Gy == {(0,1,1,0),(0,1,1,1)},
Gs := {(0,0,0,0),(0,0,0,1)},
Gs := {(0,1,0,0),(0,1,0,1)}.

Then, the different values of N(n,t1,t2,t3,ts) are given as follows:
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(2) For any (t1,12,t3,t4) € G1 we have

'nN(n,tl,tg,ta,t4) = Z Zl‘(d)F(n/d1t’l’t,2’t;1t;)a

u€S din
d=u

where (ty,%5,t3,t4) € G1. Moreover, for any u € S each (t,,ts,t3,t5) € Gy
appears ezxactly once at the right hand side of these four equations.

(i2) If (t1,t2,t3,t4) € Ga, then we have
nN(n,0,0,1,t) = Y p(d)F (n/d,0,0,1,ts).

din

d odd

(i) If (t1,t2,t3,t4) € Gs, then we have

nN(n1tlyt2’t3st4) = ZZﬂ(d)F(n/d’t;st;7t;)tl4)7

u€S din
d=u

where (t),ty,t3,ty) € Gs, and for a given u € S, any of (t1,t2,t3,t4) € G3
appears ezactly once at the right hand side of each of these four equations.

For ty € Fy we define ty = 1+ t4. In the following cases, let a = b
(mod 4) be shortened as a = b.

(iv) If (t1,t2,t3,t4) € Gy, thent, =0, to = t3 = 1 and in this case we have
nN(n,0,1,1,t4) = Y u(d)F(n/d,0,1,1,t4) + > u(d)F(n/d,0,1,1,£).

din din
d=1 d=3
(v) For (tl,tg,t:;,t.;) € Gs we have t; =ty =t3 =0, and

nN(n,0,0,0,24) = Y u(d)F(n/d,0,0,0,t,)

din

d odd
— [n even] Z uw(d)F(n/2d,0,t,).
din, § even
d odd

(vi) For any (t1,t3,t3,ts) € Gs we havet) =t3 =0, to =1 and
nN(n,0,1,0,t4)
= Y wd)F(n/d,0,1,0,ts) = Y u(d)F(n/d,0,1,0,E)

din din
d=1 d=3
— [n even] Z p(d) ([d = 1)F(n/2d,1,t4) — [@d =3)F(n/2d,1,1,)).
= ‘even
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PROOF. (7} If we let (t1,t2,t3,t4) = (1,1,1,0), then by Lemma 2.2 we have
F(n,1,1,1,0)
=¥ g. I{f € P(n/d): T«(f) =1, i =1,2,3, Ta(f) = 0}

din
d=1
+3° 21{f € P(n/d) : Ty(f) = Tu(f) = 1, To(f) = Ts(f) = 0}|
din
d=3
+§ g {f € P(n/d): Ti(f) =1,i=1,2,3,4}|
+Y 2. Hf € P(n/d) : Ti(f) = 1, Tu(f) =0, =2,3,4}|
din
d=7
= Y IN@®/d11,1,0+)] ZN(n/d,1,0,0,1)
4z d=3
+y 2 N (n/d,1,1,1,1) + Z %N (n/d,1,0,0,0)
i
= Y 3in (n/d, tl,tz,ta,t4)
u€S din
d=u

such that (t3,...,t,) € G1 = {(1,1,1,0,),(1,1,1,1),(1,0,0,0),(1,0,0,1)}
and S = {1,3,5,7}. For other (t1,t2,3,t4) € G1 we have

F(n,1,0,0,1) =Y %N(n/d,l,0,0, N+ gN(n/d, 1,1,1,0)

dy s
+3° 2N (n/d,1,0,0,0)+ 3 ZN (n/d,1,1,1,1)
dln dln
=Y >IN (n/d, tl,tz,t3,t4)
uesddlv:‘
F(n,1,1,1,1) =Y Z ZN (n/d, AR
u€Ss d|n
F(n,1,0,0,0) =Y }: N (n/d, tl,tz,ta,t4)
u€ES din
d=u
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This implies that for any (¢,%2,t3,t4) € G; we have

F(n t1,t2,t3,t4) —Z Z d (n/d,t;,t;,t;,t;) ’

uES din
=u
where (t1,%,,ta,t5) € G;. Applying Theorem 3, we obtain the formulas
given in (z). For other cases of (t;,%2,%3,t4) we have similar arguments to
find the given formula for the number N(n,t;,t2,t3,14). [ ]

3.3 An approximation of N(n,t;,t2,ts,t4)

In Theorem 4, the formula for the numbers N(n,ty,...,%4) is given in
terms of the numbers F(n/d,t;,...,t,) where (t1,...,t,) are from the same
groups Gy, ..., Gg as (t1, 12,3, t4) Unfortunately, 1t seems hard to find the
exact value of F(n,ty,ta,ta,t4). Hence, we use an estimate for this number
to present our approximation for N(n,t1,...,%). In [13], for n = 2m, it is
conjectured that

F-1
F(n,ty,...otr) = 277 4+ G(n, b, t) =277+ ) 2™, (1)
1=0

for some 1 < f < m, and ¢; € {-1,0,1}. Hence, in F(n,t,...,t,) we have
a term 2"~ and at most m other powers of two. Our experiments and
approximations not only agree with this conjecture but they also allow us
to slightly tighten this conjecture, as we will comment later.

From now on, to approximate the number N(n,t;,...,t,), we let

’ ’ 7 ’ 25_4 if n Z 4
F(n/d,t),t5,t3,t,) = { 0 otl?erwisé.

Using the notation introduced before Theorem 1, we have
F(n/d,t,,... ty) =~ [g > 4] 23-4

Since n > 4, we have F(n, t,,...,t;) ~ 274,

Assume that n = 2kop,*1...p ks > 4 where py,...,p, are odd prime
divisors of n, and ko > 0, ky,...,k; > 1. We use p,,...,ps to define the
sets Dy,...,D,. Let Dy = {py,...,ps}. Forany q = 2 ., s we define D,
as the set of all d where d | n, and d is the product of exa,ctly q dlstmct
primes from D;. Then, using our previous results, we have the following
approximation for N(n,t,,...,14).
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Theorem 5 For any (t1,%t2,ts,t4) from groups G,..., Gy given in The-
orem 4, the approzimation for the number N(n,ty,t2,t3,t4) can be given
as

1 . .
N(n,t1,t2,83,t0) = ~ (2"_4 +3 D (-1 [% 2 4] 2"-4) )
g=1deD,

where the sets Dy, ..., D, are defined above.

In group Gs the approzimation for N(n,0,0,0,t4) is
N(n, 0,0,0, t4)

< (oS g o)

g=1deD,

- In e'uen]% (F(n/2,0,t4) +§3: 3 (—1)"F(n/2d,0,t4)) .

g=1deD,
For (0,1,0,t4) € Gs, where {4 =t4+ 1 for t4 € F2, we have
N(n,0,1,0,t4)

-1 (2 303 (17 [§ 2 4] 227 < cvenl (o2 w)

g=1d€D,

- [n even]-:; i Z (-1)9[d = 1]F(n/2d,1,14)

g=1deD,

- In even]% Z > (-1)%d = 3|F(n/2d, 1,£,).

q=1deD,

PROOF. Let us define § = {1,3,5,7}, S = {1,3} and n = 2%op, k1...p ks
be the prime factorization of n. Assume that D,...,D, are defined as
earlier. Suppose that (1,%s,3,t4) = (1,1,1,0) € G;. Then by Theorem 4
(2) we have

nN(n,1,1,1,0) = > u(d)F(r/d,1,1,1,0)+ Y pu(d)F(n/d,1,0,0,1)

e aay

+ 3" uw(dF(n/d,1,1,1,1) + Y p(d)F(n/d,1,0,0,0).
din din
d=5 d=7
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The divisor d of n can be 1 or d € Dy, where g = 1,...,s. Clearlyd =1
is in the first sum at the right side, and it defines the term F(n,1,1,1,0).
Then the equation for N(n,1,1,1,0) can be given as

nN(n,1,1,1,0) = F(n,1,1,1,0)
+ 3 T WAF(M/41,1,1,0 + > > u(dF(n/d,1,0,0,1)

q=1deD, g=1deD,
d=1 d=3
8 8
+ YY) wdF(n/d,1,1,1,1)+ Y > u(d)F(n/d,1,0,0,0).
=l =y

Since F(n/d,t1,t2,t3,t4) ~ [3 > 4]22% and p(d) = (—~1)? for all d € Dy,
the last equation simplifies to

nN(n,1,1,1,0)
~ 2n—4+za:2(_1)q[g ]23 4+ZZ( 1)‘1[ 24]2'5—4
g=1ldeD, q=1deD,
d=1 d=3
+ 3 S (-1 [Z— 4] 9%-4 +Z 3 (-1) [-;3 4] 9%-4
g=1 dde_Dq q=1 ‘iiefq
= 2"-4+Z > (12 z4f2r Y d=u)
a=1deD, ueS
For a given d € Dy where g = 1,...,s there exist a unique u € S =

{1,3,5,7} such that d =« (mod 8), and therefore
Yld=vy=1.
u€s

This implies that the approximation for N(n,1,1,1,0) can be given as

N(n,1,1,1,0) ~ = (2""4+Z Y (-1 [- >4] 23-4)

g=1deD,

If one follow the same argument, then for any other (¢,,%3,%3,%4) from
each of the groups G, G; and G3 the same estimate for N(n,t;,t2,ta,t4)
is obtained.

Now let us (¢1,t3,t3,t4) € G4, and @ = b (mod 4) be shortened as
a = b. Clearly for any d € D, where g = 1,...,s we have either d = 1 or
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d = 3. Hence, there exists a unique ves = {1,3} such that d = u’. This
implies
Y d=v]=1
u'es’
If we let (t1,t2,t3,t4) = (0,1,1,1), then by Theorem 4 (iv) we have

nN(n,0,1,1,1)
= F(n,0,1,1,1) + E )" u(d)F(n/d,0,1,1,1)

g=1deD
dslq

£ 3 WdF(0/4,0,1,1,0

g=1deDg
d=3
8 -
~ 2 Y Y0 (1[5 2] (4= 1230+ [d = 328
g=1deD, )
S .
= Y S [fet T sy
¢=1deD, . u'es’
3
= 24y D (-1 F% > 4] 284,
g=1deD, ¥

This implies that

N(n,0,1,1,1) =~ % <2n—4 + Zs: 3 (-0 [g > 4] 25-4) .

g=1deD,

In a similar way, for (t3,1s,ts,ts) = (0,1,1,0) in group G4 we have the
same estimate for the number N(n,0,1,0,0). This means we have an iden-
tical estimate for the number N(n, t,t2,t3,t4), when (¢1,t2,t3,t4) is chosen
between one of the first 12 cases in groups Gi,...,Gs.

In group Gs, let (t1,t2,%3,t4) = (0,0,0,0). It is clear that any d € D, is
odd and n/d is even, where g =1,...,s. Then by Theorem 4 (v) we have

nN(n,0,0,0,0)

= F(n,0,0,0,0)+ > p(d)F(n/d,0,0,0,0)
g=1deS,

— [neven]F(n/2,0,0) —[n even]i: Z u(d)F(n/2d,0,0)
g=1deD,
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~ g +28: > (-7 2 2 4] 22

q=1deD,

— [n even] F(n/2,0,0)+Z Z (-1)9F(n/2d,0,0) | .
g=1deD,
Hence, the approximation for the number N(n,0,0,0,0) can be given as
nN(n,0,0,0,0)
~ Lfgn-ay ¥ —1)e [ 3-4
~ 5(2 +3° 5 (1) [d24]2
g=1deD,

- [n even]-rl; (F(n/2,0,0)+ ; Z (—-1)2F(n/2d, 0,0)) .
g=1deD,

If one follow the same lines, then a similar approximation can be found
for the number N(n,0,0,0,1) in Gs. Finally, if (¢1,%2,%3,t4) = (0,1,0,0) €
Ge Theorem 4 (vi) implies that

nN(n,0,1,0,0)
= F(n,0,1,0,0)+ Y > u(d)F(n/d,0,1,0,0)
q=l deDq
d=1
+ ). w(d)F(n/d,0,1,0,1) — [n even|F(n/2,1,0)
=

— [ even] i > u(d)F(n/2d,1,0)
q=1deDy
d=1

— [neven) Z > u(d)F(n/2d,1,1)

g=1deDqg
d=3
~ "4 i > (-1 [g > 4] 2¢ Y[d=1]+[d=3))
q=1deD,
— [n even] (F(n/2, 1,0) + Z > (-1)%[d = 1]F(n/2d, 1,0))
q=1deD,
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— [n even] i Z (—1)%[d = 3]F(n/2d,1,1),

g=1deD,

which implies that

N(n,0,1,0,0)
= (2“'4 + Z Z (-1)? [g ] 23— — [n even]F(n/2,1, 0))
g=1deD,
— [neven]= Z > (-1)%d = 1]F(n/2d,1,0)
9"‘1 deD,
— [n even]— Z Z( 1)9[d = 3]F(n/2d,1,1).
M a=1deD,

A similar proof gives the approximation for N(n,0,1,0,1) in group Gs. W

From Theorem 5 one can observe that if n is odd, for any (t;,%2,¢3,t4) €
F4 the approximation for N(n,t;,t2,t3,t4) can be given as

N(n,t1,ta,t3,ts) = = (2" 4+Z 3 (=10 [g ]2%-4).

g=1de€D,

3.4 Experimental results

For n < 25 we use Maple to compute the exact values of N(n,t;,...,t4) and
our approximations. Due to the lack of space, we report our experimental
results for the cases n = 16,17, 20, 21, 22, 24, 25; see Tables 3, 4, 5, 6, 7, 8
and 9 in the appendix.

For the case n = 2% where kg > 3, we have the best approximation.
This is true because in this case the only odd divisor of n is d = 1. Hence,
we have u = d = 1. Indeed, for n = 2% and (t1,...,t4) from groups
Gi,...,G4 of Theorem 4, we have

nN(na tl’t% t3’t4) = F(na tl,tQat3)t4) 211 4

or N(n,t,...,ts) ~ 2"~*"ko_ which is the exact value of N(n,t;,...,14)
in most of the first 12 cases in groups Gi, G2, G3 and G4. For the other 4
cases in Gg and Gg we have

nN(n,ty,... ,ta) = F(n,tl, U F(n/2, to,t4) = on—4 _ F(n/2,ts,t4),
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which has a small error. For the other values of n, our approximations do
not achieve the exact values, but they are very good approximations for
the numbers N(n,t,,...,%,).

To compare our estimate and the exact value of N(n,t;,...,%4) in each
table we let

error = exact(N(n,t1,...,t4)) — estimate(N(n,t1,...,t4)).

Then for different case number ¢ = 1,...,16 we define
estimate of N  ; ; s4s
exac IX/ if error is positive,
i = if e is negative
pi estimate of y 1. STTOT 18 negative,
1 if error is zero.

Now assume that p = min{p;,...,p16}. Therefore p < 1, and if p =
1 then our estimate is the exact value of N(n,t;,...,%4). For degree
n = 16,20,22,24 we have p = 0.9504,0.9884,0.9916,0.9971, while for
n = 17,21,25 we have p = 0.9712, 0.9968, 0.9978. Numerical results give
evidence that as n grows, p gets closer to one, which means for large n our
approximation for N(n,t,,...,ts) is likely to be closer to its exact value.
One can see this from Theorem 5. For even n, in the first 12 cases of
Theorem 5 which are given as groups Gy, ..., G4 we have

Y n -
N(n, t1,t2,t3,t4) = ; on—4 4 z;dzD (—l)q [E > 4] 2%-4] . (2)
g=1ld€ q

In the double-sum we divide n by d, and for a large n the term 234 has
a smaller weight comparing with 2"~4. This is also true for the remaining
four cases given in groups Gg and Gg.

We conclude this section with two remarks. In our approximations for
odd n, there are no extra terms, and simply in all the 16 cases for (¢1,...,t4)
we have the same approximation given by Equation (2). Moreover, we
observe that as n grows, the total number of irreducible polynomials with
given (t1,...,t4) and the total number of irreducible polynomials given by
our approximations are very close.

4 Approximating N(n,t,...,t.), for r > 5

Let us consider > 5. We give a formula for N(n,t;,...,t,) in terms of
F(n,ty,...,t.). First we state the formula for N(n,ty,...,t5). Then we
present our approximation for N(n,t,,...,t.), wherer = 5,6, 7. Finally, for

7 2 8 we explain the methodology to find the formula for N(n,t,,...,t,).
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4.1 Approximating N(n,t,...,t.), where r =5,6 and 7

In Section 3 to study the number N(n,t,,...,ts), we found a formula for
F(n,ty,...,t4) in terms of the sets Sp,...,S7; see Lemma 2.2. Each of
these sets are defined based on the connections between the coefficients of
the polynomials f and f¢ given in Propositions 2.1 and 2.1, where f € F|z]
such that deg(f) = n and d > 1. In general, for any j > 1,

7 = ¥ () Twth: @)

kli

Let us fix 5 < r < 7. Then by (3), and for any 1 < j < 7, the j-th coefficient
of f¢ depends on (), for some k € {1,...,7}. Similar to Proposition 2.2,

for different i = 0,...,7ifd =i (mod 8), one can show that (“1!), ey (fi,)
are zero or one. The values of (%),..., (§) are given in Table 2. To find our

d=i [Q[E[E[Q[E GG

d=0]| 0 0 0 0 0 0 0

d=1 1 0 0 0 0 0 0

d=21| 0 1 0 0 0 0 0

d=3 1 1 1 0 0 0 0

d=41] 0 0 0 1 0 0 0

d=5 1 0 0 1 1 0 0

d=6] 0 1 0 1 0 1 0

d=7 1 1 1 1 1 1 1

Table 2: Values of (%),..., (5), for integer d > 1.

formula for F(n,ti,...,t,) where 5 < r < 7, we make slight changes in the
definition of the sets Sy, ..., 97 given in Lemma 2.2. The following lemma
gives the numbers F(n,ti,...,ts). We omit its proof since it is similar to

the proof of Lemma 2.2.

Lemma 5.1 For a given integer n > 5, we have

7
F(n,tl,...,ts) =ZU %IS,|,

i=0 din
d=i

where a = b representsa =b (mod 8), and the sets Sy, ..., S; are defined
as:

So={fePn/d):t;=0,i=1,...,5},
Si = {f € P(njd) : Ti(f) = t;, i=1,...,5},
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Sz = {f € P(n/d): t1 = t3 = t5 = 0, T1(f) = ta, Ta(f) = ta},
Sz = {f € P(n/d) : Ti(f) = t1, Ti(f) + Ti(f) = t:;, i = 2,3,

To(f) + Ta(f) = tq, Ts(f) = ts},
Sy={f€eP(n/fd):t;=0,i=1,2,8,5, T\(f) = ta},
Ss = {f € P(n/d) : Ti(f) = t;, 1 =1,2,3, Ti(f) + Ti(f) = t;, i = 4,5},
Se = {f € P(n/d) : t1 = t3 = t5 = 0, T1(f) = ta, T1(f) + T2(f) =14},
Sy = {f € P(n/d) : Th(f) = t1, i(f) + Ti(f) = t;, i = 2,3, 5,

TV(f) + Ta(f) + Tu(f) = ta}-

Lemma 5.1 and Theorem 3 immediately give the following theorem for
N(n,tl,. .. ,ts).

Theorem 6 Let n > 5 be a given integer and suppose that a = b denotes
a=b (mod 8). Assume that S = {1,3,5,7}, and for any (t1,...,t5) € F3
let (t1,...,t4) be from one of the 6 groups Gy, ..., Gg defined in Theorem 4.
For different (t1,...,ts4) the formulas for N(n,t;,...,ts) are given as fol-
lows.

(‘L) If (tl,. .o ,t4) € Gy, then
nN(nty,..ots) = )Y pdF(n/dty,... k),

u€S din
d=u

where (t'l, . ,t;) € Gy, and for any u € S each (t'l, .ee ,t;) appears ezactly
once at the right hand side of these 8 equations.
(i?) If (t1,...,t4) € G, thenty =t =0,t3 =1 and

aN(n,0,0,1,tsts) = D p(d)F(n/d,0,0,1,t4,t5).
d|n

d odd
(1,1.1) If (tl,... ,t4) S Ga, then

aN(n,ty,...,t5) = Y > w(dF(n/d,ty,...,1t5),

uE€S din
d

=u

where (ty,...,ty) € Ga, and for a given u € S any of (t'l,. .. ,t;) appears
ezactly once at the right hand side of these 8 equations.

In the following cases, let a = b (mod 4) be shortened as a = b, and
forta€Fyletty =1 +t4.
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() If (1,...,t4) € Gy, thent; =0,t =t3=1 and
niN(n,0,1,1,t4,ts)
= Z#(d)F(n/da Os 1) ly t4) t5) + Z p(d)F(n/da 0: 1: 1, t_4)t5)'

din din
d=1 d=3

(v) For (t1,...,t4) € Gs we havet; =tz =t3 =0, and
nN(n, 0,0,0,%4, ts)
= Z u(d)F(n/d,O,O,O,t4,t5)

din

d odd
— [n even] Z u(d)F(n/2d,0,t4).

din, § E€VEN
d odd

(vi) For any (t1,...,t4) € Gg we havet; =t3 =0, t2 =1 and
nN(n, 0,1,0, t4,t5)
= Zu(d)F(n/d,O, 1:0,t4) t5) + Z“(d)F(n/d’ 01 11 Oa t-4)t5)

din din
d=1 d=3

— [n even] Z u(d)F(n/2d,1,t4)

d(n, even

=1

— [neven] Y wdF(n/2d,1,8).
din, 3 €ven
d=3

For i = 1,...,6 one can obtain (¢;,...,t5) in group G; of Theorem 6
by adding two cases of t5 = 0,1 to the corresponding (t,,...,t4) in group
G; from Theorem 4. One can easily obtain the formulas for the numbers
N(n,ty,...,t,) when r = 6,7, using a similar process like the one used to
obtain Theorem 6.

With an argument similar to Theorem 5, we have the following approx-
imation for N(n,t,...,t,) where r =5,6,7.

Theorem 7 Let n = 2kop *1...p % where py,...,ps are odd prime divi-
sors of n, and ko > 0, ky,...,ks 2 1. Let Dy,...,D, be the same sets
defined before Theorem 5. For any (t1,...,t,) € Fy where 7 = 5,6,7 we
consider (ty,...,t4) in one of the 6 groups Gy, ..., Gg given in Theorem 4.

If n is an even integer, then we have the following cases.
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(¢) For (t1,...,ta) from G,..., Gy the approzimation for N(n,t,...,t,)
can be given as

N(n,ty,...,t.) = % (2n—r + i E (-1)? [_Z_ > 7.] 25—1-) .

q=1deD,

(i2) For any (t1,...,t4) € Gs we have

1
N(n,tl,...,tr) = ;(2""7‘ —F(n/2,t2,t4))

+ %i Z (1) ([% > 7‘] 23" — F(n/2d, tz,tq)) .

g=1deD,

(243) If (t1,...,t4) € Ge, then we have

N(n,tl,...,t,.)

T% (2"" — F(n/2,ta,t) +)_ Y (=1) [-3- > 1'] 2-2"-r)

q=1deD,

2

-1 >3 (-1)%(|d = 1 F(n/2d, ta, ts) + [d = 3|F(n/2d, t2, £3)),
" 4=1deD,
where £4 = t4 + 1, for t4 € Fy.
Ifn is an odd integer, then for any (t1,...,t,) € F} we have

N(n,ty,...,t;) =~ % (2""" +Zs: Z (-1)2 [fdl. > r] 2'3"') .

q=1ldeD,

As examples of our approximations, see Tables 10 and 11 in the appendix
where we give the computational results for N(n,t;,...,t5) when n =
16, 18.

4.2 Approximating N(n,t,,...,t), where r > 8

Now we are ready to explain how to derive a formula for N(n,t,,...,t.),
r > 8, and its approximation.

In the general r case, to study the number N(n,ty,...,t;), we let r
be in the range [29,29% — 1), where ¢ > 2. For f € Fa[z], d > 1 and

275



1 £ j £ r, Equation (2::) gives the coefficients of f¢ in terms of the co-
efficients of f and (9),(5) ..., (5s%_,). For each k = 1,...,29%1 — 1 the
number (:) is either zero or one, depending on d = ¢ (mod 29+1) where
i=0,...,29%! — 1. Then, similar to Lemma 2.2, to give the formula for
F(n,t1,...,t.) we need 291! sets S; where i = 0,...,29! — 1. Moreover,
in the definition of each set S;, the congruence is mod 29t1. Suppose that
S ={1,3,...,29%1 —1}. Then using Theorem 3.2 of [9) we can give a for-
mula, similar to the one in Theorem 3, to find the number N(n,t,,...,t,)
in terms of the numbers F(n,t,,...,t;) as we did in Theorem 4. Finally,
let (1,...,t4) be from different groups Gy, ..., Gg as defined in Theorem 4.
By expanding each (%,...,t4) to (t1,...,t,), as we did in the case r = 5,
we have the new groups Gy, ...,Ge. This implies that any (¢3,...,t,) € F}
can be from one of the new groups Gy,. .., Gg, and the formula for the num-
ber N(n,t1,...,t), similar to Theorem 5, can be given when (t1,...,t,) is
from different groups Gj,...,Gg. We show a concrete example. Let r = 8
and n = 22; Table 12 in the appendix gives the values of N(22,t,,...,ts)
where (ti,...,ts) € G;. This accounts for 64 cases of the 28 = 256 cases
when r = 8. Due to the lack of space we omit the rest of the table.

5 Conclusion

We study the number of irreducible polynomials of degree n over the finite
field F, where the coefficients of the terms z"~},...,z" " are prescribed.
For r > 4 finding the exact values of N(n,?,...,t,) seems involved and
difficult. We give an approximation for these numbers using an estimate for
the number F(n,t;,...,t,) of elements B € Fo~ with given traces T;(8) = t;
andi=1,...,7.

If n = 2m, then by Equation (1) it is conjectured that in F(n,ty,...,t,)
we have 2"~", and at most m other powers of two. If n is odd, we let
n = 2m + 1 and we assume Equation (1) for the number F(n,t;,...,t.).
Our experimental results show that for any even or odd n, there exists a
small number of these powers in F(n, ty,...,tr) which is much smaller than
m. This means that most of the coefficients ¢; in Equation (1) are zero,
and our approximation for N(n,t1,...,t.) is likely to be very close to its
exact value.

The exact estimation of the number of irreducible polynomials over
F, with several prescribed coefficients remains an open problem for future
research. We hope that the results proved in this paper help in solving this
problem.
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Appendix

Case No. | (t1,t2,t3,t4) | our estimate | exact value | error pi
1 (1,1,1,0) 256 260 4 0.9846
2 (1,0,0,1 256 260 4 0.9846
3 (1,1,1,1 256 252 . -4 0.9843
4 1,0,0,0 256 252 -4 0.9843
5 0,0,1,0) 256 256 0 1
3 (0,0,1,1) 256 256 0 T
7 (1,1,0,0) 256 756 0 1
8 (1,0,1,1) 256 256 0 1
9 (1,1,0,1) 256 256 0 1
10 (1,0,1,0) 256 256 0 1
11 (0,1,1,1) 256 264 8 0.9697
12 0,1,1,0) 256 264 8 0.9697
13 0,0,0,0) 252.5 240 -12.5 | 0.9504
14 (0,0,0,1) 251.5 256 -4.5 0.9824
15 (0,1,0,0) 252 248 -4 0.9841
16 10,1,0,1) 252 248 4 [ 09841

Total 4080 4080

Table 3: Different values of N(16,¢;,12,%3,%4).
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Case No. | (t1,t2,%3,t4) | our estimate | exact value | error Pi
1 (1,1,1,0) 481.88 292 10.1 | 0.9795
2 (1,0,0,1) 481.88 484 2.1 [ 0.9957
3 1,1,1,1 481.88 468 -13.9 | 0.9712
1 (1,0,0,0 481.88 401 9.1 | 0.9815
5 0,0,1,0 481.88 468 -13.9 [ 0.9712
6 {(0,0,1,1) 481.88 492 10.1 0.97“£
7 (1,1,0,0) 381.88 476 5.0 | 0.0878
8 (1,0,1,1) 481.88 492 10.1 | 0.9795 |
9 (1,1,0,1) 481.88 484 2.1 | 0.9957
10 (1,0,1,0) 481.88 468 -13.9 | 0.9712
11 0,1,1,1) 481.88 476 -5.9 | 0.9878 |
12 (0,1,1,0) 481.88 484 3.1 | 0.9957
13 (0,0,0,0) 481.88 491 9.1 | 0.9815
14 {0,0,0,1) 481.88 484 2.1 | 0.9957
15 (0,1,0,0 481.88 468 -13.9 | 0.9712
16 {0,1,0,1) 481.88 492 10.1 | 0.9795
Total 7710.4 7710
Table 4: Different values of N(17,t;,t2,t3,4).
Case No. | (t1,%2,t3,t4) | our estimate | exact value | error Pi
1 (1,1,1,0) 3276.75 3275 -1.75 | 0.9995
2 (1,0,0,1) 3976.75 3304 27.25 | 0.9917
3 (1,1,1,1) 3276.75 3304 27.25 | 0.9917
4 (1,0,0,0) 3276.75 ~ 3275 1.75 | 0.9995
5 (0,0,1,0) 3276.75 3264 -12.75 | 0.9961
6 {0,0,1,1) 3276.75 3315 38.25 | 0.0884
7 (1,1,0,0) 3276.75 3264 -12.75 | 0.9961
8 (1,0,1,1) 3276.75 3264 -12.75 | 0.9961
9 (1,1,0,1) 3276.75 3264 -12.75 | 0.9961
10 (1,0,1,0 3276.75 3264 -12.75 | 0.9961
11 0,1,1,1 3276.75 3264 -12.75 | 0.9961
12 0,1,1,0 3276.75 3264 -12.75 | 0.9961
13 (0,0,0,0) 3264 3264 0 1
14 0,0,0,1) 3264 3264 0 1
15 0,1,0,0) 3264.75 3280 15.25 | 0.9953
16 (0,1,0,1) 3263.25 3248 -15.25 | 0.0953
Total 53350 52377

Table 5: Different values of N(20,¢),t2, ta, t4).
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Case No. | (t1,t2,t3,24) | our estimate | exact value | error Pi
1 (1,1,1,0) 6241.14 6221 -20.86 | 0.9968
2 (1,0,0,1) 6241.14 6224 -17.86 | 0.9973
3 (1,1,1,1 6241.14 6237 -3.86 | 0.9993
4 (1,0,0,0 6241.14 6258 17.14 | 0.9973
3 (0,0,1,0 6241.14 6221 ~20.86 | 0.0968
5 (6,0,1,1) 6241.14 6237 3.86 | 0.0993
7 (1,1,0,0) 6241.14 6258 17.14 | 0.9973
8 (1,0,1,1) 6241.14 6221 -20.86 | 0.9968
9 (1,1,0,1 6241.14 6237 -3.86 | 0.9993
10 (1,0,1,0 6241.14 6237 -3.86 | 0.9993
11 (0,1,1,1) 6241.14 6237 -3.86 | 0.9993
12 (0,1,1,0) 6241.14 6258 17.14 | 0.9973
13 (0,0,0,0) 6241.14 6224 ~17.86 | 0.9973
14 0,0,0,1) 6241.14 6258 17.14 | 0.9973
15 0,1,0,0) 6241.14 6221 -20.86 | 0.9968
16 (0,1,0,1) 6241.14 6237 -3.86 | 0.9993

Total 99858.24 99858
Table 6: Different values of N(21,¢;,t2,t3,%4).

Case No. | (t1,t2,t3,ta) | our estimate | exact value [ error Pi
1 (1,1,1,0) 11915.64 11904 -11.64 | 0.99
2 (1,0,0,1) 11915.64 11904 -11.64 | 0.999
3 (1,1,1,1) 11915.64 11904 -11.64 | 0.999
1 (1,0,0,0) 11915.64 11904 -11.64 | 0.999
5 - (0,0,1,0) 11915.64 11992 76.36 | 0.9936
6 (0,0,1,1) 11915.64 11816 -99.64 | 0.9916
7 (1,1,0,0 11915.64 11904 71164 | 0.999
8 (1,0,1,1 11915.64 11952 36.36 | 0.9969
9 (1,1,0,1) 11915.64 11904 -11.64 | 0.999
10 (1,0,1,0 11915.64 11949 33.36 | 0.9972 |
11 0,1,1,1 11915.64 11816 -99.64 | 0.9916
12 (0,1,1,0 11915.64 11992 76.36 | 0.9936
13 0,0,0,0) 11893.14 11928 34.86 | 0.997
14 0,0,0,1) 11891.68 11880 -11.68 | 0.999
15 (0,1,0,0) 11891.73 11880 -11.73 | 0.999
16 (0,1,0,1) 11893.09 11928 34.91 0.997

Total 180557.32 190557

Table 7: Different values of N(22,%1,¢2,t3,%4).
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Case No. | (t1,%2,t3,t4) | our estimate | exact value | error pi
1 (1,1,1,0) 43690 43759 69 0.9984
2 (1,0,0,1) 43690 ~ 43759 60 0.9984
3 (1,1,1,1) 43690 43621 -6 0.9984
4 (1,06,0,0) 43690 43621 69 0.9984
5 (0,6,1,0) 43690 43754 64 0.9985
6 (0,0,1,1) 43650 43754 64 0.9985
7 (1,1,0,0) 43690 43690 0 1
8 (1,0,1,1) 43690 43680 0 1
9 (1,1,0,1) 43690 43650 0 1
10 (1,0,1,0) 43690 43690 0 1
11 0,1,1,1) 43690 43711 21 0.9995
12 (0,1,1,0) 43680 43711 21 0.9995
13 (0,0,0,0) 43646.25 43520 -126.25 | 0.9971
14 (0,0,0,1) 43648.75 43562 -86.75 | 0.9980
15 (0,1,0,0) 43647.5 43669 21.5 | 0.9995
16 (0,1,0,1) 43647.5 43669 21.5 | 0.9995
Total 608870 698870
Table 8: Different values of N(24,¢;,2,%3,84).
Case No. | (t1,%2,%3,t4) | our estimate | exact value | error 2i
1 (1,1,1,0) 83886 83920 34 | 0.9996
2 (1,0,0,1) 83886 83824 62 | 0.9997
3 (I,1,1,1) 83886 83811 75 | 0.9991
4 (1,0,0,0 83886 84071 185 | 0.9078
5 (0,0,1,0) 83886 83811 75 | 0.9991
6 0,0,1,1) 83886 83920 34 | 0.9996
7 (1,1,0,0) 83886 83507 21 | 0.0997
8 (1,0,1,1) 83886 83920 34 | 0.0096
9 (1,1,0,1) 83886 83824 62 | 0.0997
10 (1,0,1,0) 83886 83811 75 | 0.0991
11 (0, 1,1,1) 83886 83907 21 | 0.9997
12 0,1,1,0) 83886 83920 34 | 0.0996
13 0,0,0,0) 83886 84071 185 | 0.9978
14 0,0,0,1) 83886 83824 62 | 0.0997
15 (6,1,0,0) 83886 83811 -75 | 0.9991
16 {0,1,0,1) 83836 83920 34 | 0.0996
Total 1342176 1342176

Table 9: Different values of N(25,t;,ts,t3,%4).
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Case No. | (t1,...,ts) | our estimate | exact value | error Pi
1 (1,1,1,0,0 128 128 0 1
2 1,0,0,0,0 128 128 0 1
3 1,1,1,1,0) 128 124 4 | 0.9688
4 1,0,0,1,0) 128 132 2 0.9697
5 1,1,1,0,1) 128 132 1 0.9697
6 1,0,0,0,1) 128 124 4 | 0.0688
7 1, 1,1,1,1 128 128 0 1
8 (1,0,0,1,1 128 128 0 1
9 (0,0,1,0,0) 128 120 -8 | 0.9375
10 (0,0,1,0,1) 128 136 8 0.9412
11 0,0,1,1,0) 128 120 8§ | 0.9375 |
12 (0,0,1,1,1) 128 136 8 | 0.9412
13 (1,1,0,1,1) 128 128 0 1
14 1,1,0,0,1) 128 128 0 1
15 (1,0,1,1,1) 128 128 0 1
16 (1,0,1,0,1) 128 128 0 1
17 (1,1,0,0,0) 128 128 0 1
18 (1,0,1,0,0) 128 128 0 1
19 (1,1,0,1,0) 128 128 0 1
20 (1,0,1,1,0) 128 128 0 1
21 (0,1,1,0,0 128 136 8 | 0.9412
22 (9,1,1,0,1 128 128 0 1
23 (9,1,1,1,0) 128 136 8 | 0.0412
24 0,1,1,1,1) 128 128 0 1
25 (0,0,0,0,0) 124.5 120 45 | 0.9639
26 0,0,0,0,1) 1235 120 3.5 | 0.9717
27 (0,0,0,1,0) 124 120 -4 | 0.9677
28 (6,0,0,1,1 124 136 8 0.0118
20 (0,1,0,0,0 124 120 4 | 0.9677
30 (0,1,0,0,1 124 128 4 0.9688
31 (0,1,0,1,0 124 120 -4 | 0.9677
32 (0,1,0,1,1) 124 128 4 0.9688

Total 4064 1080

Table 10: Different values of N(16,1,...,ts).
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Case No. | (t1,...,t5) | our estimate | exact value | error pi
1 (1,1,1,0,0) 455 469 14 | 0.9701
2 (1,0,0,0,0) 455 448 -11 | 0.9846
3 (1,1,1,1,0) 455 448 -11 | 0.9846
4 (1,0,0,1,0) 455 448 -11 [ 0.9846
5 (1,1,1,0,1) 455 448 -11 | 0.9846
3 (1,0,0,0,1) 455 448 -11 | 0.9846
7 (1,1,1,1,1) 155 469 14 | 0.9701
8 (1,0,0,1,1) 455 448 -11 | 0.9846
9 (0,0,1,0,0) 455 462 7 0.9848
10 (0,0,1,0,1) 455 452 -3 | 0.9934
11 (0,0,1,1,0 455 448 -7 | 0.9846
12 (0,0,1,1,1 455 444 -11 | 0.9846
i3 (1,1,0,1,1) 458 445 -10 | 0.9780
14 (1,1,0,0,1) 455 448 -7 | 0.9846
15 (1,0,1,1,1 455 469 14 | 09701
16 (1,0,1,0,1 455 448 7 | 0.9846
17 (1,1,0,0,0) 455 479 24 | 0.9499
18 (1,0,1,0,0) 455 469 14 | 0.9701 |
19 (1,1,0,1,0) 455 448 -7 | 0.9846
20 (1,0,1,1,0 4585 448 7 | 0.9846
21 (0,1,1,0,0 455 444 -11 | 0.9846
22 (0,1,1,0,1) 455 448 -11 | 0.9846
23 0,1,1,1,0) 455 452 -3 | 0.9934
24 (0,1,1,1,1) 455 469 14 | 0.9701 |
25 (0,0,0,0,0) 447 444 -3 | 0.9933
26 {6,0,0,0,1) 447 469 22 | 0.9531
27 (0,0,0,1,0) 448 452 4 0.9012
38 (0,0,0,1,1) 448 448 0 1
29 (0,1,0,0,0) 448 444 -4 | 0.9911
30 (0,1,0,0,1) 448 469 21 0.952
31 (0,1,0,1,0) 448 452 4 09912
32 (0,1,0,1,1) 448 448 0 1
Total 14502 14532

Table 11: Different values of N(18,t,,...,ts).
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Casc No. ty,...,t8 our cstimato axact valuo arror 'R
1 ,1,1,0,0,0,0,0 744,73 732 ~12.78 5830 ]
2 ,1,1,0,0,0,0,1 744.73 716 -28.73 9614
3 ,1,1,0,0,0,1,0 744.73 756 11.27 9861 |
4 ,1,1,0,0,0,1,1 744.73 756 11.37 | 0.986
5 ,1,1,0,0,1,0,0 744.73 762 17.27 | 0.9773
[ ,1,1,0,0,1,0,1 744.73 758 13.27 8825
7 ,1,1,0,0,1,1,0 744.7: 733 11.73 9842
[] ,1,1,0,0,1,1,1 744.7 736 8.73 9883 |
[ .1 1,1,0,1,0,0, 744.7 74 3.73 9080 |
10 1,1,1,0,1,0,0,1 744.7. K 6.27 0.9917 |
11 1,1,1,0,1,0,1,0 744.7. 7 16.27 0.97806 |
12 1,1,1,0,1,0,1,1 744.7 723 1.73 0.9708 |
13 1,1,1,0,1,1,0,0 744.7 741 73 0.0050
14 ,1,1,0,1,1,0,1 744.7 751 6.37 0.9917
3 1,1,1,0,1,1,1,0 744.7 723 21.73 9708 _|
1,1,1,0,1,1,1,1 744. 761 16.27 9786 |
1,0,0,1,0,0,0,0 748.7 74l 3.73 0050
18 1,0,0,1,0,0,0,1 744.78 739 18.73 0.9780
19 1,0,0,1,0,0,1,0 744.73 771 76.27 | 0.0680 |
20 1,0,0,1,0,0,1, 744,73 74 37 0.9990_|
21 ,0,0,1,0,1,0, 744.73 72 -23.73 | 0.0682 |
32 ,0,0,1,0,1,0, 744,73 73 <13.73 9816
23 ,0,0,1,0,1,1, 34.7; 743 -1.73 9977
24 ,0,0,1,0,1,1,1 4.7 7665 20.27 9738
25 1,0,0,1,1,0,0,0 744.7. 728 -16.73 | 0.9778
[ 26 1,0,0,1,1,0,0,1 744.73 744 0.23 0.099 |
27 1,0,0,1,1,0,1,0 744,73 740 =3.73 0.9936 |
28 ,0,0,1,1,0, 1, 744.73 740 ~4.73 0.9936_|
| 29 ,0,0,1,1,1,0, 744.73 764 10.27 | 0.9748
30 ,0,0,1,1,1,0, 744,73 748 3.27 0.9956
31 ,0,0,1,1,1,1, 744.73 748 3.37 0.0066 |
32 .0,0,1,1,1,1,1 744.73 744 -0.23 0.999 |
33 1,1,1,1,0,0,0.0 744.73 745 0.37 0.9096 |
34 1,1,1,1,0,0,0,1 744.73 a7 2.27 0.9970 |
,1,1,1,0,0,1, 0 744.73 769 34.37 0.0684 |
36 1,1,1,1,0,0,1, 7447 716 ~29.79_|_0.9601
37 1,1,1,1,0,1,0, 744,73 746 0.27 0.9096
38 1,1,1,1,0,1,0, 744.7 747 2.27 0.9
39 1,1,1,1,0,1,1, 33.7: 716 -29.73_| 0.9601 |
30 1,1,1,1,0,1,1, 4.7 760 —24.27 | _0.0684 |
a1 1,1,1,1,1,0,0,0 744.7 760 16.27 | 0.0790 |
42 1,1,1,1,1,0,0,1 744.73 760 _ 15.27 0.9700 |
43 1,1,1,1,1,0,1,0 744.73 736 B.73 9883
a4 1,1,1,1,1,0,1,1 744.73 736 B.73 9883
a5 1,1,1,1,1,1,0,0 744.73 718 -26.73 9641
46 1,1,1.1,1,1,0,1 744.73 762 17.27 0.9773
a7 1,1,1,1,1,1,1,0 744.73 740 <3.73 0.9936 |
48 | (A, 1., 1,1, 1,11 744,73 740 ~4.73__| 0.9936 |
a9 1,0,0,0,0,0,0,0 744,73 728 | -16.73 | 0.9775
50 1,0,0,0,0,0,0,1 744,73 744 ~0.23 0.099 |
51 ,0,0,0,0,0,1,0 744.73 740 ~4.73 0.9936
[¥] ,0,0,0,0,0,1,1 43.73 740 -4.73 0.9936
3 ,0,0,0,0,1,0,0 744.73 764 10.27 0.9748 |
4 ,0,0,0,0,1,0,1 744.73 748 3.27 -9056 |
5 ,0,0,0,0,1,1,0 744.73 744 0.900 |
6 ,0,0,0,0,1,1,1 744.73 744 0.099 |
57 ,0,0,0,1,0,0,0 744.73 721 [0.0682 |
58 1,0,0,0,1,0,0, 744.73 733 0.9542 |
1] 1,0,0,0,1,0,1, 744.73 7 ~0.9735 |
60 1,0,0,0,1,0,1, 744.73 743 0.9977
61 ,0,0,0,1,1,0, 744.73 Ta7 0.9970 |
62 1,0,0,0,1,1,0, 744.73 720 18.73 0.9789 |
63 1,0,0,0,1,1,1,0 744.73 746 0.27 0.99
64 1,0,0,0,1,1,1,1 744.73 771 ~38.27 | 0.9650 |
Total 47662.72 37616

Table 12: Values of N(22,¢,...,ts), for different (¢;,...,ts) € G;.
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