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Abstract

An H; graph is a multigraph on three vertices with a double edge be-
tween a pair of distinct vertices and a single edge between the other two
pairs. The problem of decomposition of a complete multigraph 3K into
Hp graphs has been completely solved. In this paper, we describe some
new procedures for such decompositions and ask a question: Can these pro-
cedures be adapted or extended to find a unified proof of the existence of
Hoa(8t, A)'s?

1 Introduction

A graph can be decomposed into a collection of subgraphs such that every
edge of the graph is contained in one of the subgraphs. Decomposing a graph into
simple graphs has been well studied in the literature. For a well written survey on
the decomposition of a complete graph into simple graphs with small number of
points and edges, see [1].

A multigraph is a graph where more than one edge between a pair of points
is allowed. The decomposition of copies of a complete graph into proper multi-
graphs has not received much attention yet, see [3, 4, 7, 8]. A complete multigraph
AK, (A = 1) is a graph on v points with A edges between every pair of distinct
points. In this paper we address different techniques used in the decomposition
of a 3K: (t > 1) into Hy graphs (defined in section 1.1). A well studied com-
binatorial design (BIBD, which can also be used to find graph decompositions) is
defined below. On the other hand, a BIBD(v, k, A) can be considered as a decom-
position of AK, into complete graphs K}.’s.
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Definition 1 Given a finite set V' of v points and integers k and A > 1, a balanced
incomplete block design (BIBD), denoted as BIBD(v, k, A), is a pair (V, B) where
B is a collection of subsets (also called blocks) of V such that every block contains
exactly k < v points and every pair of distinct points is contained in exactly A
blocks.

Definition 2 A 2-factor of a graph G is a spanning subgraph of G which is regular
of degree 2. A 2-factorization of a graph G is an edge disjoint decomposition of
G into 2-factors.

It is also known that a K241 (n > 1) has n 2-factors.

Lemma 1 [2] (Agrawal’s Lemma) In every binary equi-replicate design of con-
stant block size k (hence bk = vr and b = mv), the treatments in each block
can be rearranged such that in the k by b array, formed with ordered blocks as
columns, every treatment occurs in each row exactly m times.

1.1 H, Graphs

Definition 3 An H; graph is a multigraph on three points with a double edge
between a pair of distinct points and single edges between the other two pairs of

distinct points.

If the set of points of an Hz is V = {a, b, ¢} and the double edge is between a
and b, then we denote the H; graph by (a, b, ¢) i, (see Figure 1). An Hy(v, ) is
a decomposition of AK, into Hy graphs. In particular, an H>(8¢,3) is a decom-
position of a 3K, graph into 3t(8¢ — 1) H; graphs.

b

a c

Figure 1: An H2 Graph

1.2 Difference Sets for H>(8t, 3) Decompositions

One of the powerful techniques to construct combinatorial designs is based on
difference sets and difference families; for example, see Stinson [9] for details and
how to develop the difference sets to get the blocks of a design including the use
of (“dummy”) elements co’s (refer Example 1 below).

Definition 4 Suppose (G, +) is a finite group of order v in which the identity

element is denoted “0”. Let k and )\ be positive integers such that 2 < k < v.
A (v, k, ) difference set in (G, +) is a subset D C G that satisfies the following
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properties: 1. |D| = k, 2. the multiset [z—y : z,y € D,z # y] contains every el-
ement in G\{0} exactly X times. A difference family is a collection [Dy, ..., Dj]
of k-subsets of G such that the multiset of the differences from all sets in the
collection [Dy, ..., Dj] together cover all nonzero elements of G as differences

exactly A times.

In many cases, G is (Z,, +), the integers modulo v. For example, a (7, 3,1)-
difference set in (Z7,+) is D = {3,0,2}. Note0 —3 = 4,2 -3 =6,3—-0 =
3,2-0=2,3—-2=1and 0 — 2 = 5, hence we get every element of Z,\{0
exactly once as a difference of two distinct elements in D.

To connect the difference set concept to an Hy(8t, 3), we define the difference
set D = (a, b, c¢) for H, graphs as the difference set such that it gives |a — b| twice
(corresponding to a double edge between a and b), |a — ¢| once (corresponding to
a single edge between a and c) and |b — c| once (corresponding to a single edge
between b and c). For example, the difference set (3, 0, 2) gives the difference 3
twice, the difference 1 once and the difference 2 once. A graphical illustration is
given in Figure 2.

Figure 2: An H> graph (3,0, 2) g, corresponding to a difference set (3,0,2)

We label the points of 3K, with the points in V = {00,0,1,2,...,8t—2} =
Zgt—1|J{00}, where Zg;_; is the set of the integers modulo 8¢ — 1. The aim
here is to construct a difference family [D;,..., Ds,] where all differences in
{1,2,..., 852} appear exactly 3 times except one difference d which occurs
twice in 3¢ — 1 difference sets, and then it occurs once in the difference set
{d, 00, 0). We expand the difference sets in the difference family modulo 8t — 1
to obtain an H3(8¢, 3) where each difference set (or base block) is expanded to
obtain 8¢ — 2 additional blocks (i.e., H graphs). The total number of blocks after
the expansion is 3¢(8¢ — 1), each of which corresponds to an H; graph in the
decomposition, and each edge between a pair of distinct points appears 3 times in
these Hy graphs as required.

Example 1 For an H5(8,3), we have t = 1, so we need 3 difference sets in
a difference family where each difference in {1,2,3} appears exactly 3 times.
One such difference family is [(3,0,2), (2,0,3), (1,00,0)]. Next, we expand the
difference sets cyclically modulo 7 to obtain an Hy(8, 3).

Hurd and Sarvate [4] show that the necessary condition for existence of an

H3(v,3) isv(v — 1) = 0 (mod 8), i.e, v = 8t or 8 + 1, for all t > 1. They
proofed that this necessary condition is sufficient for the existence of an H(v, 3),
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except possibly for the cases v = 8¢ and 24 < v < 1680. Sarvate and Zhang
resolve all these cases in the affirmative in [8]. Although an H(8t, 3) exists for
all t > 1 [8], the different techniques used for obtaining decompositions can be
very interesting and intriguing. Our focus here is to present some new techniques
believing that they may be useful for other combinatorial design problems but
mainly to ask if they can be generalized to obtain another unified existence proof

for Ha(v, A).
2 New Techniques and Tools

Procedure SPLIT({b;, b2,b3},a): Given a triangle {b1,b2,b3} and a new
point a, construct three Hy graphs (a, b1, b2) #,, (@, b2, b3) 1, and {a, b3,b1) n,.

A graphical illustration of SPLIT({;, b2, b3}, @) is shown in Figure 3.

by by a by
bz ba b2 a b2 bs a bs

Figure 3: SPLIT({b;,b2,b3},a) results in three Hz graphs (a,b1,b2)H,,
(a'7 627 b3>H2 and (CL, b37 bl)Hz-

Clearly, SPLIT({b;, b2, b3}, a) results in three H graphs where each of the
three pairs ({a,b;}, {a,b2}, {a,bs}) involving the new point a appears three
times and the three pairs ({b1, b2}, {b2, b3}, {1, b3}) of the original triangle ap-
pear once.

Procedure COPY({by, b2,b3},a): Given a triangle {b1,b2,b3} and a new
point a, construct three Ho graphs (b1, bz, b3) #,, (b1, b3, b2) u, and {a, ba, b3) o,

A graphical illustration of COPY({b, b2, b3}, @) is shown in figure 4.

b1 by b by b a
b2 by b2 bs b2 bs b2 by b2 bs b2 b3

Figure 41 COPY({b;,bs,b3},a) results in three Hz graphs (b1,b2,bs)H,,
(b1, b3, b2) o, and (@, bz, b3) H,.

Clearly, COPY({b1, b2, b3}, @) results in three Hy graphs, where each edge (or
pair) of the original triangle appears three times, and the edge between a and by
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appears twice, and the edge between a and b3 appears once and no edge is created
between a and b,.

2.1 Techniques Utilizing STS and Difference Sets

A BIBD(v, 3, 1) is also called a Steiner triple system (STS), and it is cyclic if
it has an automorphism that is a permutation consisting of a single cycle of length
v. The necessary condition for the existence of a STS(v) is that v = 1, 3(mod 6)
([5]). Also, there exists a cyclic STS(v) for all v = 1, 3(mod 6) except v = 9
([6]). Difference sets can be used to construct a cyclic STS(v). The number of
difference sets in a difference family for a STS(v) is s if v = 6s + 1 or s + 1 if
v = 6s + 3 where one of the (s + 1) difference sets is a short difference set. This
short difference set when developed gives a parallel class. This concept will be
needed in the proofs of upcoming results.

For a STS(v) on V = {0,1,2,...,14} there should be 3 difference sets in a
difference family, e.g., {0,1,4}, {0,2,8} and {0, 5, 10}. Note that the first two
difference sets account for the differences 1,2,3,4,6 and 7. Each of the first
two can be be expanded cyclically modulo 15 to obtain 15 triangles/blocks. The
third difference set {0, 5,10} is a short difference set and when expanded cycli-
cally modulo 15, we get 5 triangles, {0,5,10}, {1,6,11}, {2,7,12}, {3,8,13}
and {4,9, 14} (note if we continue, the next one would be {5, 10,0}, same as
{0,5,10}). These 5 triangles form a parallel class (or resolution class) since
they partition the point set V. The 35 triangles thus obtained give a solution
to STS(15). Note that the short difference set is {0,2s + 1,4s + 2}, (if V =
{0,...,6s + 2}) and gives the difference 2s + 1 and generates 2s + 1 trian-
gles(blocks) for the design when expanded cyclically modulo 6s + 3.

Theorem 1 An H(8t, 3) exists for t = 1(mod 7).

Proof: Let s = 1(mod 8) = 82+ 1 (z > 0), then an Hj(s,3) exists
[4]. Let the set of points of an Hy(s,3) be U = {ooy,...,00,}. Also, let
v = 6s + 1, then cyclic STS(v) exists [6]. Let the set of v points of STS(v)
beV ={0,1,2,...,65} and D; = {a;, bi,c:},i=1,...,s be the 5** difference
set for the STS(v).

Fori = 1,...,s, we perform the procedure COPY(D;, oo;). Each proce-
dure results in three H; graphs, to be used as the difference sets for the H graph
decomposition. The three resulting difference sets are {a;, b;, ¢;), {a:, c;, b;) and
{004, bi, ;). Notice that these three difference sets give the difference |a; — b
three times, the difference |a; — ¢;| three times and the difference |b; — ¢;| three
times. Since the s difference sets for STS(v) give each difference between 1 and
3s exactly once, after s procedures are performed, we will have 3s difference sets
which give each difference between 1 and 3s three times. Therefore, these 3s
difference sets can be used to form a difference family to generate H, graphs by
expanding each difference set modulo 6s + 1 cyclically.
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Note that when we expand the difference set {004, b;,¢i) G = 1,...,s) cycli-
cally, oo; remains the same in each expansion. Furthermore, each point in V' ap-
pears once in the second position in some H; block and once in the third position
in another Hy block after the cyclical expansion on the difference set (0o, b;, c;).
This implies that there are three edges between co; and every point in V' in the
H, blocks generated. The Ho graphs generated by the 3s difference sets in the
difference family together with the H; graphs from the H3(s, 3) on the points in
U form an Ha(v +s,3) = Ha(7s+1,3) = Hz(562+8,3) = H2(8(7z+1),3),
i.e., an Ho(8t, 3) exists for t = 1(mod 7). O

Theorem 2 An H,(8t,3) exists for t = 6(mod 7).

Proof: Let s = 8z + 6. Since s + 3 = 1(mod 8), an Ha(s + 3, 3) exists.
Let the set of points of an Hy(s + 3,3) be U = {001, ...,00541, 0542, 00543}
Also, let v = 6s+ 3 (note s = 8z +6 > 6,v = 6s+ 3 > 39), then cyclic STS(v)
exists [6] and there are s + 1 different sets. Let the set of v points of STS(v)
beV = {0,1,2,...,6s + 2} and D; = {as, bi,ci},i = 1,...,5 + 1 be the i*#
difference set for the STS(v). The last difference set D, is a short difference
set {0,2s +1,4s + 2}.

Fori = 1,...,s, we perform the procedure COPY(D;, o0;). Each proce-
dure results in three difference sets {a;, b;, ¢;), (4, i, b;) and (00;, b;, ;). Except
for difference 2s + 1, each difference between 1 and 3s + 1 appears three times
in the 3s difference sets obtained. Expand each of the 3s difference sets cycli-
cally modulo 6s + 3 to obtain H graphs. For the short difference set D,.,, first
expand it cyclically modulo 6s + 3 to obtain a total of 2s + 1 triangles/blocks
which form a parallel class {B;,...,B2s+1}. Fork = s+ 1,5+ 2,s+ 3 and
j=1,...,2s+1, perform SPLIT(B;, 0o), and as a result, we will have 9(2s+1)
H, graphs where there are three edges between cox (k = s+ 1,5+ 2,5+ 3) and
every point in V' and three edges between each pair in the parallel class. Combine
all the H, graphs obtained and the H» graphs from the Hz(s + 3, 3) , we have an
Hy(v+ s +8,3) = Hy(7s + 6,3) = H(56z + 48, 3) = H2(8(72+6),3) . O

Let us call the procedure performed in the proofs of Theorem 1 and Theorem
2 DSET(v, A,n) where v = 6s + 1 or 6s + 3 and A is the collection of n new
points 0o’s. If v = 6s + 1, thenn = s. If v = 65+ 3, thenn = s + 3. The
H, graphs resulted in DSET(v, A,n) contain three edges between each pair of
distinct points from V and three edges between every pair of points where one
point is from V' and the other point is from A.

Theorem 3 An Hj(8t, 3) exists for t = 2(mod 15).

Proof: Let s = 1(mod 8) = 8z + 1 (z > 0). Since 9s = 1(mod 8), an
Ho(9s, 3) exists. Let the set of points of an Hy(9s,3) be U = {oo},...,00%,...,
00}, ...,00%}. Also, let v = 6s + 1, then cyclic STS(v) exists [6]. Let the set of
v points of STS(v) be V = {0,1,2,...,6s} and D; = {a;,b;,ci},i=1,...,s
be the it* difference set for the STS(v).
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Fori = 1,...,s, we obtain 9 H, difference sets {00}, a;, b;), (00?, a;, b;),
<oo-'_3’ a;, bi)! (003, i, ct)a (007,51 ag, C;), (00?7 aq, ct)a (wi ) bi, Ci); (ooi 1 bi: Ci) and
(007, bi, c;). Notice that each difference appears three times. These 9s differ-
ence sets form a difference family. Expand each difference set in the differ-
ence family cyclically modulo 6s + 1 to obtain Hy graphs. Combining the re-
sulting Hy graphs and the Hj graphs from the H3(9s,3) on U, we have an
Ha(v + 9s,3) = H(15s + 1,3) = Hp(120z + 16,3) = H,(8(15z + 2), 3),
i.e., an Hy(8t, 3) exists for t = 2(mod 15). O

Theorem 4 An Hy(8t, 3) exists for t = 12(mod 15).

Proof: Let s = 82 + 6. Since s = 6(med 8), 95 + 3 = 1(mod 8), an H2(9s +
3, 3) exists. Let the set of points of an H3(9s+3,3) be U = {oc},...,00},..., 00},
.14 003,00441,00542,00,43}. Also, let v = 6s + 3, then cyclic STS(v) ex-
ists [6] and there are s + 1 different sets. Let the set of v points of STS(v) be
V =1{0,1,2,...,65 + 2} and D; = {a;, b;,¢;}, = 1,...,s+ 1 be the i*» dif-
ference set for the STS(v). The last difference set D, is a short difference set
{0,254+ 1,4s + 2}.

Similar to the proof of Theorem 3, fori = 1,..., s, we obtain 9 H difference
sets using the 9 00’s: oo} - - - 0of. Expand each of the 9 H, difference sets cycli-
cally modulo 6s-+3 to obtain H; graphs. For the short difference set D, .1, similar
to the proof of Theorem 2, we first expand it cyclically modulo 6s + 3 to obtain
a total of 2s + 1 blocks/triangles which form a parallel class {Bj, ..., Bas41}.
Fork =s+4+1,8+2,s+3andj = 1,...,2s + 1, perform SPLIT(B;, ook),
and as a result, we will have 9(2s + 1) H, graphs using 3 co’s. Combine all
the H; graphs obtained and the H; graphs from the H(9s ++ 3, 3) on U, we have
an Hz(v+9s+3,3) = Hy(15s+6, 3) = Hy(1202+96,3) = H(8(152+12). O

Let us call the procedure performed in the proofs of Theorem 3 and Theorem
4 NINE-DSET (v, A, n) where v = 65 + 1 or 6s + 3 and A is the collection of n
new points 00’s. If v = 6s+ 1, thenn = 9s. If v = 65 + 3, then n = 9s + 3. The
H; graphs resulted in NINE-DSET(v, A,n) contain three edges between each
pair of distinct points from V' and three edges between every pair of points where
one point is from V and the other point is from A.

Theorem 5 An H3(8t, 3) exists for t = 7(mod 11).

Proof: Let s = 5(mod 8) = 8z + 5 (z > 0). Since 5s = 1(mod 8), an
Hy(5s, 3) exists. Let the set of points of an Hp(5s,3) be U = {oo},...,05,. ..,
ool,...,008}. Also, let v = 65 + 1, then cyclic STS(v) exists [6]. Let the set of
v points of STS(v) be V = {0,1,2,...,6s} and D; = {ai,bi,ei},i=1,...,s
be the i** difference set for the STS ().

Fori = 1,...,s, we obtain 6 H; difference sets {a;, b;, c;), (00}, ai, i),
(003, bi, ¢}, (003, a5, b;), {00f, a4, ¢;) and (0of, by, ;). Notice that each differ-
ence appears three times. These 6s difference sets obtained using 53 co’s form a
difference family. Expand each difference set in the difference family cyclically
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modulo 6s + 1 to obtain H; graphs. Combining the resulting H» graphs and the
H, graphs from the Ha(5s, 3) on U, we have an Hy(v+5s,3) = Hp(11s+1,3) =
H3(88z +56,3) = Hy(8(11z + 7),3) , i.e., an Ha(8t, 3) exists for t = 7(mod
11). 0 :

Theorem 6 An H(8t,3) exists for t = 9(mod 11).

Proof: Let s = 6(mod 8) = 8z + 6 (z > 0). Since 5s + 3 = 1(mod
8), an Hy(5s + 3, 3) exists. Let the set of points of an Hz(5s +3,3) be U =
{ool,...,00},...,00},...,008, 00s11,00512,00s43}. Also, let v = 65 + 3,
then cyclic STS(v) exists [6] and there are s + 1 different sets. Let the set of
v points of STS(v) be V = {0,1,2,...,6s + 2} and D; = {a;,b;,c;i},i =
1,...,s+ 1 be the it* difference set for the STS(v). The last difference set Dy
is a short difference set {0, 2s + 1,4s + 2}.

Similar to the proof of Theorem 5, fori = 1,..., s, we obtain 6 H difference
sets using 5s 0o’s. Expand each of the 6s H, difference sets cyclically modulo
6s + 3 to obtain H, graphs. For the short difference set Dy, similar to the
proof of Theorem 2, we first expand it cyclically modulo 6s + 3 to obtain a to-
tal of 2s + 1 triangles/blocks which form a parallel class {B, ..., Bas41}. For
k=s+1,5+2,s+3andj=1,...,2s+ 1, perform SPLIT(B;, 0o), this will
result in 9(2s + 1) H; graphs using 3 co’s. Combine all the H; graphs obtained
and the H, graphs from the Hy(5s + 3, 3) on U, we have an Ha(v+55+3,3) =
Hy(115+6,3) = H2(88z+72,3) = Ha(8(112+9),3) , i.e., an Ha(8t, 3) exists
for t = 9(mod 11). O

Let us call the procedure performed in the proofs of Theorem 5 and Theorem
6 FIVE-DSET (v, A, n) where v = 6s + 1 or 65 + 3 and A is the collection of n
new points 00’s. If v = 6s+ 1, thenn = 5s. If v = 65+ 3, then n = 55 4- 3. The
H,; graphs resulted in FIVE-DSET (v, A, n) contain three edges between each pair
of distinct points from V' and three edges between every pair of points where one
point is from V" and the other point is from A.

2.2 Techniques Utilizing 2-Factorization

Theorem 7 An H2(8t,3) exists for t = 2(mod 5).

Proof: Let v = 2n + 1 (n > 1), then a K, has n 2-factors Ty, ..., Tn. For
i=1,...,nletT; = {(a,b}),...,(ai,bi)} where each pair represents an edge
between the two points. Fori = 1,...,nand j = 1,...,v and w = 1,2,3,
construct a (0o, a3, b})nr,. That is, three new points (c0’s) are applied to each
of the v edges in ’.IJ} to create H, graphs. As a result, 3n new points are used
to create Hy graphs which contain three edges between any pair of two distinct
points from V and three edges between a point from V' and a new point (note that
for any new point used in a 2-factor to create Hy graphs, every point in V appears
exactly once in the second position and once in the third position, so three edges
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between every point in V' and the new point are created in these Hy graphs con-
structed). If n = 3(mod 8), then 3n = 1(mod 8), so an H2(3n, 3) exists. Obtain
an H3(3n, 3) on the 3n new points. Combine all the H, graphs obtained, we have
an Hy(v+3n,3) = Hy(5n +1,3) = Ha(5(8z + 3) + 1,3) = H(8(5z +2),3),
i.e., an Hy(8¢,3) exists for t = 2(mod 5). O

Let us call the procedure used in the proof of Theorem 7 FACTOR(T, A, n’)
where v = 2n + 1, T is the collection of n 2-factors, A is the set of n’ = 3n new
points.

3 Summary

In this paper, we discussed various procedures that can be used for Ho(8t, 3)
decompositions. It is interesting to see that so many well-known combinatorial
designs such as STS, difference sets and 2-factorization can be utilized for the
problem under consideration. We hope that the procedures developed in this note
will be used to give a more unified proof for the existence of Ha(v, ) in general
and the existence of Hy(8¢, 3) in particular.
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