Binary codes from some 2-(64, 28, 12) designs
and their orbit matrices.

L. Chikamai * and B. G. Rodrigues
School of Mathematical Sciences
University of KwaZulu-Natal
Durban 4041, South Africa

Jamshid Moori *
School of Mathematical Sciences
North-West University (Mafikeng)
Mmabatho 2735, South Africa

Abstract

It is known that there are at least 8784 non-isomorphic designs
with parameters 2-(64, 28, 12) whose derived 2-(28, 12, 11) designs are
quasi-symmetric. In this paper we examine the binary codes related
to a class of non-isomorphic designs with these parameters and in-
variant under the Frobenius group of order 21 for which the derived
2-(28,12,11) designs are not quasi-symmetric. We show that up to
equivalence there are 30 non-isomorphic binary codes obtained from
them. Moreover, we classify the self-orthogonal doubly-even codes of
length 13 obtained from the non-fixed parts of orbit matrices of these
2-(64,28,12) designs under an action of an automorphism group of
order four having 12 fixed points. The subcodes of codimension 1
and minimum weight 8 in these codes are all optimal single weight
codes.
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1 Introduction

According to [10] (see also [17, Table II.1, p. 38]) there are at least 8784
designs with parameters 2-(64, 28,12) whose derived 2-(28,12,11) designs
are quasi-symmetric. An undertaking to classify the codes of such designs
is made unfeasible by this overwhelming number. However, it was proved
by Jungnickel and Tonchev in [15] that there exist four non-isomorphic
symmetric 2-(64, 28, 12) designs characterized by the symmetric difference
property and minimality of their 2-ranks. Moreover, these designs have
large full automorphism groups, and also large 2-subgroups. In particular,
the orders of the full automorphism groups are divisible by 2%, and their
derived 2-(28, 12, 11) quasi-symmetric designs give rise to four inequivalent
[28,7,12); codes. More recently Crnkovié and Pavéevié in (7], constructed
a class of 46 non-isomorphic 2-(64,28,12) designs for which 2° is not a
divisor of the order of their full automorphism groups and have in addition
shown that none of the derived designs (with parameters 2-(28,12,11)) is
quasi-symmetric, thus proving that the said designs are non-isomorphic to
those with the same parameters constructed in [10, 15, 19]. In an earlier
paper (3] (see also [4]) using modular representation theoretic methods we
examined the structure of a (28, 7,12]2 code invariant under the symplectic
group Sg(2). The supports of the codewords of minimum weight 12 in that
code give rise to a 2-(28,12,11) quasi-symmetric design which is a derived
design of the unique point-primitive and flag-transitive 2-(64, 28, 12) design
with automorphism group isomorphic to 28:Ss(2)(this is one of the four
non-isomorphic designs with these parameters constructed in (10, 15, 19]).
That study led us to announce the investigation of the binary codes of the
class of 46 non-isomorphic 2-(64, 28, 12) designs described above. Hence, in
this paper we examine codes defined by the binary row span of the incidence
matrices of the 46 non-isomorphic 2-(64, 28, 12)-designs obtained in [7] and
deduce through computations with Magma (1], the following main result:

Theorem 1 Let D be any of the 2-(64,28,12) designs given in [7], and C
the binary code spanned by the row of the incidence matriz of ©. Then

(i) C is a self-orthogonal, self-complementary and doubly-even code;

(ii) the 2-rank of D is either 26 or 27;

(iii) +f the 2-rank of D is 26, then the minimum weight of C is 12 or 16,
and the minimum weight of C+ is 8;

(iv) if the 2-rank of D is 27, then the minimum weight of C is 8, and the
manimum weight of Ct is 4, 6 or 8;

(v) the automorphism group of C is isomorphic to Frobs;, Frobg; x2, Froba; x
Ds, H0b42 X 2, (Fl'0b42 X 2):2 or (F\'obzl X .Ds):?.
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An active area of research in coding theory is the classification of self-
orthogonal codes of small length or dimension, see for example [13, 21, 20).
Several methods and techniques are used for this purpose, among which
the method of orbit matrices (see Section 4 for a brief discussion on this
method). In the present paper, using the method of orbit matrices as
presented in [9] we completely enumerate and classify the self-orthogonal
codes of length 13 (Theorem 7) defined by the action of an automorphism
of order 4 on the non-fixed parts of the orbit matrices obtained from the
2-(64,28,12) designs in discussion. We establish some properties of the
codes and the nature of some classes of codewords and observe that the
subcodes of codimension 1 are all single weight optimal codes. The proof
of Theorem 1 follows from a series of lemmas and propositions given in
Section 3.

The paper is organized as follows: after a brief description of our termi-
nology and some background, in Sections 3 and 4 we outline the construc-
tion of the codes and present our results.

2 Terminology and notation

We assume that the reader is familiar with some basic notions and ele-
mentary facts from strongly regular graphs, design and coding theory. Our
notation for designs and codes are standard. For the structure of groups
we follow the Atlas [6] notation. The groups G- H, G:H, and G' H denote a
general extension, a split extension and a non-split extension respectively.
An incidence structure D = (P, B, I), with point set P, block set B and inci-
dence Z is a t-(v, k, A) design, if |P| = v, every block B € B is incident with
precisely k points, and every ¢ distinct points are together incident with
precisely A blocks. The complement of D is the structure D = (P, B, I),
where Z = P x B — I. The dual structure of D is D* = (B, P, I%), where
(B,P) € I* if and only if (P,B) € Z. Thus the transpose of an incidence
matrix for D is an incidence matrix for D*. The design is symmetric if
it has the same number of points and blocks. In a 2-(v,k, ) design every

Alv-1)

point is incident with exactly r = Py}

cation number of a design. The number n = r — ) is called the order
of a 2-(v,k, A) design. Given a symmetric 2-(v, k, \) design D, a residual
design of D is the design obtained by deleting a block of D and retaining
those points not incident with the block. A residual design at any block
of D is a 2-(v — k,k — A, A) design. A derived design of D with respect
to a block is the design obtained by deleting a block and retaining those
points incident with the block. A derived design of D with respect to a

blocks, and 7 is called the repli-
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block is a 2-(k,A\, A — 1) design. The numbers that occur as the size of
the intersection of two distinct blocks are the intersection numbers of
the design. A ¢-(v, k, A) design is called self-orthogonal if the intersection
numbers have the same parity as the block size. An automorphism of a
design D is a permutation on P which sends blocks to blocks. The set of all
automorphisms of D forms its full automorphism group denoted by AutD.

The code Cr of the design D over the finite field F' is the space
spanned by the incidence vectors of the blocks over F'. If the point set of D
is denoted by P and the block set by B, and if Q is any subset of P, then
we will denote the incidence vector of Q by v©. Thus Cr = (vB|B € B),
and is a subspace of FP, the full vector space of functions from P to F.
All our codes will be linear codes, i.e. subspaces of the ambient vector
space. If a code C over a field of order q is of length n, dimension k, and
minimum weight d, then we write [n,k,d]; to show this information. A
code has minimum distance d if and only if every d — 1 columns in a parity
check matrix are linearly independent. The support, Supp(v), of a vector
v is the set of coordinate positions where the entry in v is non-zero. So
|Supp(v)| = wt(v), where wt(v) is the weight of v. An [n, k] linear code C
is said to be a best known linear [n, k] code if C has the highest minimum
weight among all known [n, k] linear codes. An [n, k] linear code C is said
to be an optimal linear [n, k] code if the minimum weight of C' achieves
the theoretical upper bound on the minimum weight of [n, k] linear codes.
The weight enumerator of C is defined as Wg(x) = Y i Aiz®, where A;
denotes the number of codewords of weight i in C. The dual code C*
is the orthogonal complement under the standard inner product (-,-), i.e.
C* = {v € F"|(v,¢) =0 for all ¢ € C}. The all-one vector will be denoted
by 1, and is the constant vector of weight the length of the code and has
all entries equal to 1. A code C is self-orthogonal if C C C* and it is
self-complementary if it contains the all-one vector. A binary code C is
doubly-even if all codewords of C have weight divisible by four. A binary
code is even if all its codewords have even weight. An automorphism of
a code is any permutation of the coordinate positions that maps codewords
to codewords and will be denoted Aut(C).

Crnkovié and Pavéevié [7] proved the following:
Result 1 (Crnkovié¢ & Pavéevié¢) There are 46 non-isomorphic sym-

metric 2-(64,28,12) designs with the Frobenius group of order 21 as an
automorphism group; these are given in [7].
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3 The binary codes from 2-(64, 28, 12) designs

If A is an incidence matrix of a 2-(v, k, A) design and rank,(A) < v -1,
then it is well known that this code is interesting only when p divides r — A,
the order of the design (see [20, Theorem 1.86]) and p is a prime. Now, let
D denote a 2-(64, 28, 12) design, since the order of each design is 16, only
the binary codes will be of interest for characterization purposes. In the
following lemma we collect a number of properties of the code C of a design
D that will be of use in the sequel.

Lemma 2 Let C be the binary code of a symmetric 2-(64,28,12) design
D. Then

(i) C is self-orthogonal and doubly-even;

(ii) C is self-complementary;

(iii) C* is an even and self-complementary code with minimum weight at
least 4; '

(iv) unless D is o design with the symmetric difference property, the derived
designs are not quasi-symmetric.

Proof: For i # j consider B; and B; two distinct blocks in each D. Since
|Bi N Bj} =12 =0 (mod 2) and k = 28 =0 (mod 2), we have that D is a
self-orthogonal design. Hence the block-point incidence matrix of ® spans
a self-orthogonal code of length 64, and since the spanning vectors have
weight divisible by four it follows that C is doubly-even. Since the blocks
of ® are of even size, we have that 1 meets evenly every vector of C,
so 1 € CL. Hence C* is self-complementary. Moreover, since D satisfies
r = A (mod 4) we have from [5, Theorem 3(i)] that 1 € C, and consequently
C is self-complementary, and all weights in C* are even. Set d*+ = d(C*+)
to be the minimum weight of CL. From C* singly-even we obtain that
d* =0 (mod 2). Moreover, since C # 0 and for © we have r # 2), we
deduce from [18, Lemma 5] that d* > 4. B

It is known that there are at least 8784 designs with parameters 2-
(64,28,12) whose derived 2-(28,12,11) designs are quasi-symmetric, [17,
Table II.1, p. 38]. A definite listing of the codes, their properties and
automorphism groups obtained from the designs with these parameters
would be a hopeless task. Thus, in view of its association with [3], and
the novelty of the class of 46 designs with this parameter set obtained in
[7] in what follows we examine the properties of the codes defined by the
binary row span of the adjacency matrices of this class of designs. For
that let D; where 1 < i < 46 denote any of the 46 symmetric 2-(64, 28,12)
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designs given in Result 1 (see also [7]). For each D; using Magma [1, 2]
we constructed the corresponding codes (dual codes included). It has been
established (7, Theorem 2, Theorem 6] that the 2-rank of a design ®; is
either 26 or 27 , see also Table 1. In Propositions 3 and 4, we examine
the codes according to their dimensions and make some observations about
their basic properties, in particular the minimum weight, the nature of the
minimum words, and the structure of the automorphism groups.

Proposition 3 If the 2-rank of D; is 26, then the minimum weight of C
is 12, except for i = 6 when the minimum weight is 16. Furthermore, the
minimum weight of CL is 8, in all cases.

Proof: With the notation as in Lemma 2, we first show d+ = 8. Notice
from Lemma 2(iii) that we need to show that d* is neither 4 nor 6. Suppose
dt € {4, 6}, then by [12, Theorem 8.4] any 3 (resp. 5 ) columns of a parity
check matrix H of C+ are linearly independent, but some 4 (resp. 6)
columns are linearly dependent. In each case we verified that this is not
possible. Hence d*+ > 8. Moreover, direct calculations for each code show
that the weights of the rows of a generator matrix equals 8; thus dl <8,
and the result follows. Now, we examine the minimum weight d of C.
By Lemma 2(i) we have that C is doubly-even, so all codewords of C have
weight divisible by four, so that d > 4. But C C C* excludes the possibility
of weight 4 codewords in C and we have that d > 8. However, and once
again the earlier argument of the parity check matrix shows that there are
no codewords of weight 8 in C. Thus d(C) = 12. For the exceptional case
when i = 6 we used Magma to ascertain the result. l

Proposition 4 If the 2-rank of D; is 27, then the minimum weight of C
is 8, and the total number of codewords of minimum weight in C equals
1, unless i = 23, when there are 29 codewords of minimum weight. The
minimum weight of C+ is 8, unless i = 8,9, in which cases the minimum
weight is 4, or i = 7,10, 11, for which the minimum weight is 6.

Proof: We start by showing that d is as stated. Suppose first that i €
{8,9}. From Lemma 2(iii), observe that d* > 4. Now, direct calculations
for each case show that the weights of the rows of the generator matrix
equals 4; thus d+ < 4, and so the result. Next consider ¢ € {7,10,11}.
Recall that d- > 4. Now, suppose that d* = 4 and argue as follows to
get a contradiction. Let p be a fixed point in the support S of a non-zero
codeword w € Ct of weight s = d*+ and p; be the number of blocks of
the design ® passing through p and meeting S in [ points. A counting
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argument gives
k k
Sm=r Y (-Dp=(s—-1A (1)
=1 =2

From Equation (1) we obtain

k
S t-2p=(s-1r-r, (2)

=3

and Equations (1) and (2) imply that p; = 'r—zf__,s n2 r—2f=3(l—2)pz =
r—[(s —1)A — 7] = 2r — (s — 1)A. Hence we have py > 56 — 36 = 20 for
any point of S. Now, consider the entries of w. Let $ = {q|1 < | < 4}.
Notice that every block meeting S in two points and passing through ¢,
must pass through another point, say g4, but there are only three points
remaining once q; is chosen; thus not all 20 blocks which meet S in two
points can pass through g¢4; thus we have a contradiction. So that d > 6.
Since the weights of the rows of the generator matrix for C+ equals 6, we
obtain d+ < 6, and so the assertion follows. Finally, for ¢ {7,8,9,10,11}
we have from the earlier cases that d* > 6, and since C' is single-even we
obtain that d* > 8. A judicious examination of the weights of the rows of
the generator matrix in each case givesd = 8. B

Lemma 5 The automorphism group of C is isomorphic to either Frob,y,
Fl‘0b21 X 2, Fl‘Obgl X Dg, H0b42 X 2, (Fl‘0b42 X 2):2 or (F&'Obgl X D8)12.

Proof: It follows from [7, Theorem 3, Theorem 5] that if D is any of
the 46 non-isomorphic 2-(64,28,12) designs whose codes are presented in
Table 1, then Aut(®) is Frobs;,Frobs; x 2, Frobss x 2 or Frobs; x Ds.
Furthermore, since the rows of each © span the code it is evident that
Aut(®) C Aut(C). In addition, computations with Magma (see Table 1
below) give [Aut(D)| = |Aut(C)| in all cases, except for i € {41, 45,46}.
So we have that Aut(®D) = Aut(C). Now, consider i € {41,45,46}. Notice
first that in all cases [Aut(C) : Aut(D)] = 2 so that Aut(C) = Aut(D)-2.
In each case we use Magma to ascertain the claims of the lemma. For
1 = 41, computations with Magma show that Aut(C) contains two normal
subgroups, say N and H of orders 21 and 2 respectively, such that N 2
Frobg; and H = Z,. Since NNH = {1auc)} and |Aut(C)| = |[N - H| = 42
we deduce that Aut(C) 2 Frobg; x 2 and the result follows. Finally, for
i = 45 we have that Aut(C) = (Frobss x 2):2, and for i = 46 we obtain
Aut(C) = (Frobg; x Dg):2. B

Since the all-one vector is always in the code (as the sum of the rows of
the incidence matrix), the number of codewords of any weight w equals the
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Since 1 € C, it follows that C is also the code of the complementary
2-(64, 36,20) design. Moreover, since the codes with the same weight dis-
tribution were in all instances equivalent, we can thus state the following

Proposition 6 The binary codes of the 46 non-isomorphic (64,28,12) de-
signs obtained in [7] can be distinguished by their automorphism groups or
by the weight distributions. Up to equivalence there are 80 non-isomorphic
binary self-orthogonal codes of length 64 obtained from these designs.

Remark 1 The binary codes of the residual and derived designs are in
all cases the even weight codes with parameters [36,25,2]; and [28, 25, 2],
respectively.

4 Binary codes from orbit matrices of the 2-
(64, 28,12) designs

Let D = (P,B,I) be a 2-(v, k, A) design and G < Aut(D). We denote the
G-orbits of points by Py, ..., Pn, G-orbits of blocks by By, ..., B, and put
|Pj] = wy, |Bi] =%, 1 < j <n,1<1i< m. Further, we denote by v;; the
number of points of P; incident with a representative of the block orbit B;.
For those numbers the following equalities hold (see [8]):

D =k ®)
j=1
m
Q;
Z o, i = Awg + 85 - (1 = A). (4)
2

i=1

Definition 1 A (m x n)-matric M = (7i;) with entries satisfying condi-
tions (3) and (4) is called an orbit matriz for the parameters (v, k,)) and
orbit lengths distributions (wy,...,wn), (R,...,0m).

Orbit matrices are often used in the construction of designs with a pre-
sumed automorphism group. Construction of designs admitting an action
of a presumed automorphism group consists of the two basic steps that
follow (see [14]):

1. Construction of orbit matrices for the given automorphism group,

2. Construction of block designs for the orbit matrices obtained in this
way. This step is often called an indexing of orbit matrices.
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Remark 2 Note that given an orbit matrix M the rows and columns that
correspond to non-fixed blocks and non-fixed points form a submatrix called
the non-fixed part of the orbit matrix M.

The following theorem quoted from [9] which is a generalization of a
result of Harada and Tonchev [11] gives a construction of self-orthogonal
codes from the non-fixed parts of orbit matrices of symmetric 2-designs.

Result 2 [9, Theorem 4] Let G be an automorphism group of a symmetric
(v, k, A) design D. If G is a cyclic group of prime order p and p|(r—X), then
the rows of the non-fized part of the orbit matrix generate a self-orthogonal
code of length ”—_p-t over [F,, where f is the number of fized points.

Note that in Result 2 the matrix M does not have to be an orbit matrix
induced by an automorphism group, it suffices that M is an orbit matrix
satisfying Definition 1. In what follows we determine self-orthogonal codes
obtained from the non-fixed parts of the orbit matrices of 2-(64,28,12)
designs that satisfy Equations (3) and (4). This is regardless of whether or
not these matrices are obtained from an action of a group on a design.

5 An automorphism of order 4 acting with
12 fixed points on 2-(64,28,12) designs

The following result gives bounds for the number of fixed points of an
automorphism of a symmetric design (see [16]).

Result 3 Suppose that a nonidentity automorphism a of a nontrivial sym-
metric (v,k,\) design fizes f(a) points. Then f(a) < v —2n and f(a) <
;%”7:. Moreover, if equality holds in either inequality, a must be an invo-
lution and every non-fixed block contains exactly \ fized points.

In the sequel, we apply Result 2 to classify self-orthogonal codes con-
structed from orbit matrices of the 2-(64,28,12) designs in discussion and
admitting Z4 as an automorphism. Solving Equations (3) and (4) we get
up to isomorphism 368 orbit matrices for Z4 acting on a symmetric 2-
(64,28,12) design with twelve fixed points and thirteen orbits of order 4.
Below we give a representative matrix as used in our computations to con-
struct the codes. The block matrix in the bottom right part of this matrix
constitutes the non-fixed part of the orbit matrix. The reader would have
noticed that this forms a 13 x 13 matrix, hence the length of the codes
examined in Theorem 7 below.
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The non-fixed parts of the orbit matrices span up to equivalence a unique
class of binary self-orthogonal doubly-even codes of length 13. A represen-
tative of this class is given by a code with parameters [13, 3, 4], and weight
enumerator A(z) = 1 + 3z* + 328 4 z1%2. The automorphism group of this
code has order 82944 and is of shape [(Dg x Ds):2] x Dg:(33:3).

We thus have the following

Theorem 7 Let M be any of the 868 orbit matrices for the symmetric
2-(64,28,12) designs under an action of an automorphism of order { with
twelve fized points. The non-fized parts of M span up to equivalence a
single class of binary self-orthogonal doubly-even [13,3,4]2 codes of length
13. Moreover, the subcodes of codimension 1 spanned by codewords of weight
8 are optimal doubly-even (13,2, 8], codes with weight enumerator A(zx) =
1+ 328,
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