ON GELMAN’S SUBGROUP COUNTING THEOREM

ERIC FREDEN AND MICHAEL GRADY

ABSTRACT. In a recent paper, E. Gelman gave an exact formula for
the number of subgroups of given index for the Baumslag-Solitar
groups BS(p,q) when p and g are coprime. We use Gelman'’s proof
as the basis of an algorithm to compute a maximal set of inequivalent
permutation representations of BS(p, g) having degree n. The com-
putational complexity for each representation is linear in both space
and time as a function of the index. We compare the performance
of this algorithm with the powerful Todd-Coxeter procedure, which
in general has no polynomial bound on the number of cosets used in
the enumeration process.

1. INTRODUCTION

The Baumslag-Solitar groups are a class of two-generator one-relator groups
that have played an important role in combinatorial group theory. They
are defined by the presentation: BS(p,q) = (t,b | tbPt~! = b9). A famil-
jar example is BS(1,1), the free abelian group on two generators, Z x Z.
Recent results by Gelman, Button and Dudkin provide a wealth of infor-
mation on the subgroups of BS(p, ¢), including the number of subgroups of
given index, the number of normal subgroups of given index and canonical
subgroup generators [1,3,7). We will show that these results readily yield
efficient algorithms for computing with these groups.

Gelman’s subgroup counting theorem is of particular interest in this inves-
tigation. It gives an exact formula for the number of subgroups of given
index for BS(p, q) when p and g are coprime [7].

Theorem 1 (Gelman). Let p and q be different from zero such that ged(p,q)

= 1, and let an(p,q) denote the number of subgroups of BS(p,q) having
index n. Then

JCMCC 90 (2014), pp. 21-37

an(pg)= Y, d

d|n
gcd(d,pg)=1

The proof involves an elegant counting argument for the number of permu-
tation representations of BS(p, g) having degree n. We use Gelman’s proof
as the basis of an algorithm to compute a maximal set of inequivalent per-
mutation representations of BS(p,) having degree n. The computational
complexity for each representation is linear in both space and time as a
function of the index. We compare the performance of this algorithm with
the powerful Todd-Coxeter procedure, which in general has no polynomial
bound on the number of cosets used in the enumeration process.

After describing a fundamental technique for counting the subgroups, we
illustrate its application using three different computational approaches: a
brute force algorithm, coset enumeration and an algorithm based on Gel-
man’s proof. GAP code for the algorithms given in this paper appears in
the Appendix.

2. PERMUTATION REPRESENTATIONS

A fundamental technique for counting the subgroups of a finitely generated
group involves first counting its transitive permutation representations. Let
G be a finitely generated group and H a subgroup of index n in G. Then
G permutes the cosets of H by right multiplication. Giving H the label
1 and labeling the remaining cosets 2 through n in any order, this group
action yields a transitive permutation representation

¢p:G— S,
where S, is the symmetric group on n symbols. Conversely, given any tran-
sitive permutation representation of G having degree n, there is a subgroup

H of index n in G. It is the inverse image of the stabilizer of 1 [9].
Putting |

trans,(G) = |{¢ : G = S, | #(G) is transitive}|

normq(G) = |{¢ : G — Sn | #(G) is transitive and Order(¢(G)) = n}|

we have

22

Proposition 2. The number of subgroups of indez n in G is

trans, (G)
(n-1)!

Proof. The labeling of cosets 2 through n described above was arbitrary.

There are (n — 1)! such labelings, all representing equivalent group actions.
a

Proposition 3. The number of normal subgroups of indez n in G is

normu(G)
(n—1)!

Proof. If ¢(G) is transitive of degree and order n, then the point stabilizer
is the identity and ¢(G) is a regular permutation group. Now H is the
inverse image of the stabilizer of 1, so H = Ker(¢). But Ker(¢) is the
largest normal subgroup of G contained in H (see [2], pages 8-12). O

In the remainder of this paper the symbols ‘¢’ and ‘b’ will denote the gen-
erators of BS(p, ¢), while ‘7’ and ‘8’ will denote their finite images in S,,.

3. BRUTE FORCE SEARCH

A simple example will be used to illustrate the wealth of information that

can be extracted from this fundamental technique. Consider the following

brute force algorithm for finding subgroups of BS(2,3) having index n:

- for every ordered pair of elements 7 and § in Sy, test if they satisfy the

~ relation 78%7! = B3 and that the group they generate is transitive on

- {L,2,---,n}. Here, (1, 8) denotes the subgroup of S, generated by 7 and
B, and the psuedocode resembles GAP syntax.

23

BRUTE-FORCE-PERM-REPS(n)

Input: Positive integer n.
Output: Generators for every permutation representation of degree n
and the total number of subgroups of index » in BS(2, 3).
1 count =0
2 for every ordered pair (7,8) € Sp X Sn

3 I = (r,B)

4 if 782771872 = () and I is transitive on {1,2,...n}

5 count = count + 1

6 Print 7, 8

7 Print “The total number of subgroups of index n is: ” count/(n — 1)!

Running the corresponding GAP code for the case n = 5 produces 144
pairs satisfying the conditions, giving 144/4! = 6 distinct subgroups of
index 5 (see Appendix). Generator pairs for the corresponding inequivalent
permutation representations are given below:

r=(1,2)3,5) B=1(1,234,5)
r=(1,5)(2,4) B=1,234,5)
r=(1,3)(4,5) B=1(1,2,3,4,5)
r=(1,4)(2,3) B=(1,234,5)
r=(2,5)(3,4) B=1(1,23,4,5)
r=(1,2,3,4,5) 8=

For example, one of the pairs is 7 = (1,4)(2,3), 8 = (1,2,3,4,5), and
a Schreier coset graph for this pair is shown in Figure 3.1. The vertices
represent the cosets of a subgroup H < BS(2,3) where H is represented
by the label 1. The directed edges record the action of the generators of
BS(2,3) on the cosets of H. In this case, the solid edges correspond to
multiplication by b and the dashed edges show multiplication by t.

A Schreier coset graph is a finite state automata that can compute sub-
group membership. Any path that starts and ends on label 1 spells out
a word whose preimage lies in H. This can be detected computationally
as follows: w lies in H if ¢(w) lies in the stabilizer of 1 for (r,8). For
example, the words b°, tb? and 2 lie in H. From the Schreier graph, it is
clear that the labeling of cosets 2 through 5 is arbitrary, and that any per-
mutation of these labels would yield an automata accepting precisely the
same elements. To visualize what this subgroup looks like, we start with
a partial Cayley graph of BS(2,3), then mark those elements accepted by
the automata (Figure 3.2). The vertices indicate group elements. Upward
directed edges indicate multiplication by t, downward by t~1. Right di-
rected edges indicate multiplication by b, leftward by b~!. The picture that

24

. 5 . 2 Generators
t

b —

FIGURE 3.1. Schreier graph for the subgroup (b%, tb%) hav-
ing index 5 in BS(2, 3).

emerges is similar to a sublattice of the integral lattice Z x Z. Subgroups
of index 5 are similar to sublattices that, so to speak, use every fifth lattice
point. This figure shows only a small portion of the main sheet, the plane
containing the subgroups (t) and (b). The full Cayley graph would require
gluing an infinite number of planar sheets, as hinted at in Figure 3.3.

The Schreier graph encodes additional information, for example:

1. H cannot be a normal subgroup since the Schreier graph is not a Cayley
graph. In fact, (7) is the point stabilizer of 5. Since 7 has order 2, the order
of the permutation group (r,8) is 10, by the Orbit-Stabilizer Theorem.

2. H has five conjugates: we can get five inequivalent Schreier graphs by
rotating the labels, (and thus moving the point stabilizer). These corre-
spond to the first five generator pairs shown above. Their Cayley subgroup
graphs would look like Figure 3.2 with every other row shifted by from one
to four places.

The last generator pair listed above, namely r = (1,2,3,4,5), 8 = ()
obviously generate a permutation group of order 5, the same as the index.
The corresponding Schreier graph is the Cayley graph of the cyclic group
of order 5. The inverse image of the stabilizer of 1 in (7, 8) is the subgroup
H = (b, t®). Therefore H is normal in BS(2,3).

25

*t axis

=

FIGURE 3.2. Partial Cayley graph for a subgroup (b°, b2)
having index 5 in BS(2,3).

T8I

FIGURE 3.3. Partial Cayley 2-complex for BS(2, 3).

This naive approach, while illuminating, clearly does not scale since it has
complexity O(n!?). More effective techniques will be described in the next

two sections.

26

4. COUNTING COSETS

Todd-Coxeter coset enumeration is one of the most important procedures
in computational group theory. If group G is given by a finite presentation
and H is given by a set of generators lying in G, the procedure attempts to
verify that |G : H| is finite. If the index is not finite, the procedure will run
forever. Even when the index is finite and small, a computation can run
out of space since there is no polynomial bound on the number of cosets
used in the enumeration process. However, if the procedure terminates,
it will return the index along with a coset table, which is equivalent to a
transitive permutation representation of G on the cosets of H (see [8], page

149).

The Todd-Coxeter procedure is in many instances a powerful and effective
approach, but requires a set of subgroup generators. Dudkin has given a
set of canonical generators for BS(p, q) [3].

Proposition 4 (Dudkin). For every divisor d satisfying the Gelman con-
ditions dln and ged(d, pq) = 1, the subgroups of BS(p,q) with indez n are
generated as: (b%,t™/9b*) for 0 < i < d.

There are several GAP commands that perform coset enumeration. Among
the most useful are Index, FactorCosetOperation and CosetTable. The In-
dex(G,H) command returns the index of subgroup H in G. FactorCoset-
Operation(G,H) returns the action of G on the cosets of H, while Coset-
Table(G,H) returns a coset table consisting of a generator list for each
generator and its inverse. The following GAP code illustrates the use of
the first two commands to verify that the subgroup generated by b® and £b2
found above does indeed have index 5 in BS(2,3) and to display a suitable
permutation representation. It begins by defining BS(2,3) as the quotient
of the free group on two generators by the normal closure of the defining
relator.

GAP code for computing index and permutation representations:

f := FreeGroup(2);

x :=f.1;

y:= f.2;

rels := [x*y"2*x"(-1)*y"(-3) ;
G := {/rels;

t:=G.1;

b:=G.2;

27

Index n | Cosets Required
18 > 256,000

19 > 512,000

20 > 1 million

21 > 2 million

22 > 4 million

23 > 8 million

24 > 16 million

TABLE 1. Space complexity of coset enumeration for sub-
groups {b,t") in BS(2,3).

H := Subgroup(G, [b"5, t*b"2]);
Print(Index(G,H));
Print(FactorCosetOperation(G,H));

Even simple programs like this will quickly encounter problem cases for the
default coset enumeration procedure. The normal subgroups with genera-
tors [b,t"] are especially conspicuous. Table 1 shows how many cosets are
required to handle the cases 18 <n < 24:

When n = 17, the computation requires less than 256,000 cosets and is
reasonably fast. The space required then doubles each time n is incremented
by 1 until it quickly consumes whatever memory resources are available.
It is common to encounter difficulties of this kind when using the Todd-
Coxeter procedure over a wide range of indices [6]. By throwing out these
problem cases, GAP can find the remaining permutation representions up
to index 60 in several minutes on a typical workstation before encountering
similar difficulties. The excellent ACE package for GAP [4] can speed up
the computation by a factor of 50 or more, but then encounters additional
problem cases at higher indices. In contrast, the algorithm described in
the next section has no problem cases and can compute all permutation
representations up to n = 100 in less than 1 second.

5. LINEAR TIME ALGORITHEM

The Todd-Coxeter procedure is both powerful and general. However, as we
have seen, it is common to encounter presentations which require excessive
memory to process. It is therefore not surprising that more efficient com-
putations can be made in limited domains given a deeper understanding of

the peculiarities of the special case. Gelman provided this deeper under-
standing by showing that the generators 7, 3 must have the form given in
Theorem 5. We use this result as the basis of an algorithm for computing a
maximal set of inequivalent permutation representations of BS(p, q) having
degree n. The computational complexity for each representation is linear in
both space and time as a function of the index. This means that questions
such as index, subgroup membership and normality can also be answered
in linear space and time,

The original proof of Theorem 1 was based on demonstrating that the
generators 7,53 for all transitive permutation representations of BS(p,q)
possess certain properties, then counting how many elements of S, have
these properties. In Theorem 5, we have stated these results explicitly and
refer the reader to the Gelman paper for the proof.

Theorem 5 (Gelman). Let djn with ged(d, pq) = 1. Let T and 8 generate
transitive permutation representation of BS(p,q) on n symbols, i.e. (1,0)
is a transitive subgroup of S, such that TPT~! = 9. Then

1. B must be regular, consisting of k cycles of length d, where k = n/d.
2. 7 has the effect of cyclically permuting the d-cycles of 8.

Using this result, the following algorithm describes how to compute a max-
imal set of d inequivalent permutation representations of BS(p, q) having
degree n where d|n and gcd(p, q) = ged(d, pg) = 1. All such representations
share the same 8. The computation for a given 7 is done by the inner loop
and clearly has linear space and time complexity as a function of the index.

29

GELMAN-PERM-REPS(p, q,n,d)

Input: Positive integers p, g, n and d such that d|n,
gcd(p,q) = ged(d,pg) = 1.

Output: Generators for d inequivalent permutation
representations of degree n for BS(p, q).

1 k=n/d
2 e¢=(1,2,..,n)
3 B=d"
4 gqorbits = orbits of 1...n under the action of (3%)
5 bg = concatenation of the lists in qorbits
6 porbits = cyclic permutation of the orbits of 1...n
7 under the action of (8P)
8 forifromOtod—1
9 porbits = cyclic permutation of the elements in
10 the first orbit of porbits
11 bp = concatenation of the lists of porbits
12 for j from 1ton
13 7[bg(7]] = bpls]
14 Print 8, 7, d and i

Lines 2 and 3 give a permutation consisting of & cycles, each of length d.
Lines 4 through 11 find the permutations 7 which conjugate S? to give 9.
Each of these permutation representions corresponds to the action of the
generators of BS(p,q) on the cosets of one of the subgroups (b%,t*b‘) for
0 < i <d—1. GAP implementation of this algorithm for BS(2, 3) is given
in the Appendix.

Theorem 6. The algorithm GELMAN-PERM-REPS yields a mazimal set
of d inequivalent permutation representations of BS(p,q) having degree n
where n = kd and ged(p, q) = ged(d, pg) = 1.

Proof. The algorithm clearly yields d permutation representations, so we
must show they are inequivalent. We do this by matching each representa-
tion with a corresponding subgroup H € {(b%,t*b%)| 0 < i < d} of BS(p,q).
Since 3 consists of k d-cycles, its order is d. Therefore B4 is in the Stabi-
lizer of 1 of {r,), so that b is in H. Let A = [z;,%z2,...,z4] denote the
first orbit of 3, the orbit containing 1. This will also be the first orbit of
B9. Now 7F moves z; to an element z; in A by Theorem 5§ and the order
of 7 is a multiple of k. Suppose that 7 has order k. Then 7% is in the
Stabilizer of 1, implying t* € H, and H = (b%,t*) using Proposition 4.
Suppose now that 7 has order greater than k. Let 7; denote the permu-
tation generated in the i" iteration of the algorithm. Suppose k(1) =

30

1'}’(1) with i # j. Then 7F71(1) = 'r;"l(l), since each 7 is a permuta-
tion. By induction, 7;(1) = 7;(1), giving ¢ = j, a contradiction. We can
use this fact to determine the corresponding subgroup H of BS(p,q). In
the Schreier graph for (r,), the orbits of 8 can be represented by nested
d-sided polygons, where action by 7 cyclically permutes the polygons. Let
the outer d-gon contain the orbit of 1. This d-cycle shows that 8¢ is in the
Stabilizer of 1, as indicated above. The fact that 7F(1) = z; shows that,
7k is in the Stabilizer of A, so that a path starting at vertex 1 will end in
the outer d-gon after applying 7 k times. This means that 758" is also in
the Stabilizer of 1 for some i in the range [0,d — 1]. This corresponds to the
subgroup H = (b%,t*b%) of BS(p,q). By the above remarks, all d distinct
representations are found by the algorithm. a

By way of illustration, consider the case n = 10,d = 5 for BS(2,3). Here,
k =n/d = 2. So B consists of two 5-cycles. Leta = (1,2,3,4,5,6,7,8,9, 10),
giving 8 = a* = (1,3,5,7,9)(2,4,6,8,10), 8% = (1,5,9,3,7)(2,6,10,4,8)
and 8% = (1,7,3,9,5)(2,8,4,10,6). We must find the 7 which conjugates
B? to give B3. For transitivity, it must cyclically permute the blocks of S.
Rewrite 3% by swapping the blocks and follow this with the well known al-
gorithm for finding conjugates where one writes 5% above 32 and considers
each element in the second row to be the image of the element above it.
Thus 8% = (1,7,3,9,5)(2,8,4,10,6)

82 = (2,6,10,4,8)(1,5,9,3,7)

gives 7 = (1,2)(3,10)(4, 9)(5, 8)(6, 7).

The Schreier graph for this representation is shown in Figure 5.1. It corre-
sponds to the normal subgroup < b%,t2 >, so the quotient of BS(2,3) by
< 5,12 > is isomorphic to the dihderal group Djo.

The remaining four representations are obtained by cyclically permuting
the elements in the first block of 82. Every shift corresponds to a different
subgroup. That the corresponding representations are inequivalent is easy
to see from the Schreier graphs. For example, here we shift the first cycle
of A2 three places:

8% =(1,7,3,9,5)(2,8,4,10,6)

B2 = (4,8,2,6,10)(1,5,9, 3, 7)

giving 7 = (1,4,9,6,7,8,5,10, 3, 2).

The Schreier graph for this representation is shown in Figure 5.2.

31

Generators

FIGURE 5.1. Schreier graph for the subgroup (b°,¢2) hav-
ing index 10 in BS(2,3).

Generators
t

b —

FIGURE 5.2. Schreier graph for the subgroup (6°,t2b) hav-
ing index 10 in BS(2, 3).

6. APPLICATIONS

Fast algorithms are useful in the hunt for patterns and for testing conjec-
tures. The following result was hypothesized in this way, then subsequently
proved.

Theorem 7. Let gcd(p, q) = 1, n = kd, with gcd(d, pg) = 1. If H is a finite
index subgroup of BS(p,q) with canonical generators (b4,tkbY) , i< 0 < d,
then H is isomorphic to BS(p*,q*).

32

Before giving the proof, a few remarks on the geometry of Baumslag-Solitar
groups is in order. For the general group BS(p, q), we call (b) the horocyclic
subgroup and the defining relator tbPt~1b~9 is referred to as a “horobrick”.
The Cayley graph consists of “sheets” each of which is endowed with a
coarse euclidean geometry (when p = ¢) or coarse hyperbolic geometry
(when p < q) glued along (b)-cosets referred to as “horocycles”. (The
underlying black grid in Figure 3.2 comprises such a sheet.) This geometry
is quasi-isometric with the upper half space model of the hyperbolic plane
(and thus satisfies the thin triangles criterion, making each sheet a Gromov
hyperbolic space). The quasi-isometry induces a natural orientation to each
sheet. Paths with labels t",n > 0 go “up”, labels b*™ are “horizontal”,
while paths labelled ¢t~" go “down”.

Since the defining relator must be maintained in each sheet, each (b)-coset
of BS(p,q) gives rise to q upper half-sheets and p lower half-sheets (see
Figure 3.3). The Cayley 2-complex of a presentation is obtained from the
Cayley graph by filling in each basic relator and its conjugates with a topo-
logical disk. For BS(p,q) the Cayley 2-complex is homeomorphic to the
product of the real line with a simplicial tree. We frequently adopt monoid
notation and denote b=! and ¢t~! by B and T, respectively. This is useful
for representing strings in computer code as well as for annotating graphics.

Proof. First we show that the given presentation for H satisfies the neces-
sary Baumslag-Solitar relation. Indeed,

(tkbi)(bd)p"(tkbi)-—l = tkbdp"t—k = tk—l(tbdp"t-l)tl—k =
= tk—lbdp"“qtl—k = tk—2bdp""q2t2—k _ = bdq" = (bd)q". (*)
Thus H is isomorphic to a quotient of BS(p*,g*). We subsequently show
that there are no additional independent relators.

Observe that any (cyclically reduced) relator R in H forms a relator in
BS(p,q) composed of horobricks glued together. The assumption that d
is relatively prime to pg implies that horizontal edge paths formed by con-
catenating b? don’t sychronize with either the tops or bottoms of horizontal
rows of the basic horobrick of BS(p,q) unless we use at least p-many such
horobricks.

If it were true that t € H, we could create a relator t(b%)?t=1(b¢)~9. How-
ever, it is easy to see that t* is the smallest power of t that occurs in any
word in the generators of H. Thus if we want to wrap around a relator
of BS(p,q) using the generators of H, such a relator must be at least k
horobricks high in the vertical direction. We have shown that our relation

33

in equation (*) above defines a minimal relator in H (minimal in the sense
that there is no proper cyclically reduced relator inside it).

Starting at the identity vertex, tesselate the Cayley 2-complex of BS(p,q)
using generators of H as edge paths along with the minimal relator (*) and
its conjugates, thus creating a copy of the Cayley graph of BS(p*,q*) as a
subgraph of BS(p,q). We claim this subgraph is that of H.

Indeed, any cyclically reduced relator R that is not a consequence of equa-
tion (*) will also comprise a relator in BS(p, q), necessarily consisting of a
union of elementary horobricks. Now we exploit the fact that Baumslag-
Solitar groups are essentially 2-dimensional: the intersection of R and the
Cayley 2-subcomplex corresponding to BS(p*, ¢*) will contain a 2-cell prop-
erly contained within a copy of the minimal relator defined by equation
() (else R is a consequence of this minimal relator after all). But the
boundary of this supposed 2-cell defines a proper relator inside (x) which
is impossible. We conclude that R fails to exist and thus H is isomorphic
to BS(p*, ¢¥). a

References

(1] J. O. Button, A formula for the normal subgroup growth of Baumslag-
Solitar groups, J. Group Theory 11 (2008) 879-884.

[2] P. Cameron, Permutation Groups, Cambridge University Press,
Cambridge, 1999.

(3] F. A. Dudkin, Subgroups of finite index in Baumslag-Solitar groups,
Algebra and Logic 49 (2010) 221-232.

[4] Gamble, Hulpke, Havas, Ramsey, Advanced Coset Enumerator,
Version 5.1, 2012 (http://www.gap-system.org).

[5] The GAP group, GAP - Groups, Algorithms and Programming,
Version 4.5.4, 2012 (http://www.gap-system.org).

[6] G. Havas, C. Ramsey, Experiments in Coset Enumeration, Groups
and Computation III (2001) 183-187.

[7] E. Gelman, Subgroup growth of Baumslag-Solitar groups, J. Group
Theory 8 (2005) 801-806.

[8] Holt, Eick, O'Brien, Handbook of Computational Group Theory,
CRC Press, 2005.

[9] A. Lubotsky, D. Segal, Subgroup Growth, Birkhauser, Basel, 2003.

34

Appendix

Here we give GAP implementations for the two algorithms described in
this paper: BRUTE-FORCE-PERM-REPS from section 3 and GELMAN-
PERM-REPS from section 5.

GAP code for BRUTE-FORCE-PERM-REPS:

Usage: BRUTE_FORCE_PERM_REPS(n)

Returns generators for all permutation representations of BS(2,3)
having index n, and a count of the total number of subgroups with
that index.

Warning: Complexity is O(m!#*n!).

BRUTE_FORCE_PERM_REPS := function(n)
local sym,count,t,b;
sym := SymmetricGroup(m);
count := 0;
for t in sym do
for b in sym do
if (txb"2*t~(~1)*b~(-3) = ()) and
(IsTransitive(Group(t,b),[1..n])) then

Print("t = n, t, " u, "y = u’ b, tl\nn);
count := count + 1;
fi;
od;
od;
Print("Total number of perm reps = ", count, "\n");

Print("Total number of subgroups of index ", n, " is: ",
count/Factorial(n-1), "\n");

return;

end;

Example:
BRUTE_FORCE_PERM_REPS(5) ;

GAP code for GELMAN-PERM-REPS:
Usage: GELMAN_PERM_REPS(p,q,n,d)

Input: Positive integers p, q, n and d such that din and (p,q) =
(d,pg)=1.

35

Output: Generators for all d permutation representations of deg:
in BS(p,q).

GELMAN_PERM_REPS := function(p,q,n,d)
local k,lst,ncycle,b,qorbits,porbits,i,bq,bp,kcycle,a,a2,t;

if (n mod d) = 0 then

if Ged(d,6) = 1 then

k := n/d;

1st := [2..n];

Append(1st, [1]);

ncycle := PermList(lst);

b := ncycle’k;

qorbits := OrbitsPerms([b~ql,[1..n]);
bq := Concatenation(qorbits);

porbits := OrbitsPerms([b~pl,[1..n]);
We need to cyclically permute the orbits of bp
kecycle := ();

if k > 1 then

1st := [2..Kk];

Append(lst, [1]);

kcycle := PermList(lst);

fi;

porbits := Permuted(porbits, kcycle);

for i in [0..d-1] do

Cyclically permute the elements in the first
block of porbits

a := porbits[1];

a2 := a{[2..d]};

a2[d] := al[1];

porbits[1] := a2;
bp := Concatenation{porbits);

t := MappingPermListList(bq,bp);
Print("Perm rep ", i, " : t =", t, " b=",b,
ll\nll);
od;
fi;
fi;

return;
end;

Example:

36

GELMAN_PERM_REPS(2,3,10,5);

DEPARTMENT OF MATHEMATICS, SOUTHERN UTAH UNIVERsITY, CEDAR CiTy UT

DEPARTMENT COMPUTER SCIENCE & INFORMATIONS SYSTEMS, SOUTHERN UTAH UNIVER-
sITY, CEDAR CiTY UT

E-mail address: freden@suu.edu

E-mail address: gradym@suu.edu

37

