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Abstract

Historically, a number of problems and puzzles have been intro-
duced that initially appeared to have no connection to graph
colorings but, upon further analysis, suggested graph colorings
problems. In this paper, we discuss two combinatorial problems
and several graph colorings problems that are inspired by these
two problems. We survey recent results and open questions in
this area of research as well as some relationships among these
coloring parameters and well-known colorings and labelings.
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1 Introduction

Graph coloring is one of the most popular research areas in graph theory.
Among the most studied colorings are proper vertex colorings and proper
edge colorings. A proper vertez coloring of a graph G is an assignment of
colors to the vertices of G such that adjacent vertices are assigned distinct
colors. The minimum number of colors required in a proper vertex coloring
of G is the chromatic number x(G) of G. A proper edge coloring of a graph
G is an assignment of colors to the edges of G such that adjacent edges are
assigned distinct colors and the minimum number of colors required in a
proper edge coloring of G is the chromatic index x'(G) of G. During the
past 50 years, a number of problems and puzzles have been introduced that
initially appeared to have no connection to graph colorings. However, upon
further analysis, all of these suggested graph colorings problems. In this
paper, we discuss two combinatorial problems and several graph colorings
problems that are inspired by these two problems. We survey recent results
and open questions in this area of research as well as relationships among
these coloring parameters and some well-known colorings and labelings from
the literature. We refer to [7] for graph theory notation and terminology
not described in this paper.
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1.1 A Checkerboard Problem

Suppose that the squares of an m xn checkerboard (m rows and n columns),
where 1 < m < n and n > 2, are alternately colored black and red. Fig-
ure 1(a) shows a 5 x 7 checkerboard where a shaded square represents a
black square. Two squares are said to be neighboring if they belong to the
same row or to the same column and there is no square between them.
Thus every two neighboring squares are of different colors. A combinato-
rial problem was introduced by Gary Chartrand in 2010 and the following
conjecture was stated [31].

The Checkerboard Conjecture It is possible to place coins on some
of the squares of an m x n checkerboard (at most one coin per square)
such that for every two squares of the same color the numbers of coins on
neighboring squares are of the same parity, while for every two squares of
different colors the numbers of coins on neighboring squares are of opposite
parity.

(2) (b)

Figure 1: A 5 x 7 checkerboard and a coin placement on the checkerboard

Figure 1(b) shows a placement of 6 coins on the 5 x 7 checkerboard such
that the number of coins on neighboring squares of every red square is even
and the number of coins on neighboring squares of every black square is
odd. Thus for every two squares of different colors, the numbers of coins on
neighboring squares are of opposite parity. Consequently, the Checkerboard
Conjecture is true for a 5 x 7 checkerboard. Observe that all 6 coins on
the 5 x 7 checkerboard of Figure 1(b) are placed only on red squares. Thus
the number of coins on neighboring squares of every red square is 0 and is
therefore even, while the number of coins on neighboring squares of each
black square is 1 and this is shown in Figure 1(b) as well.

In [31] it was shown that this problem could be placed in a graph the-
ory setting. For example, let G be the graph whose vertices are the squares
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of the checkerboard and where two vertices of G are adjacent if the cor-
responding squares are neighboring. Then G is the grid (bipartite graph)
Pn O P, (or Py x P,) which is the Cartesian product of the paths P,
and P,. This suggests a function (coloring) ¢ on G = P, O P,, where
¢: V(G) — Z; such that

c(v) = 0 if v corresponds to a square with no coin
“ | 1 if v corresponds to a square containing a coin.

This induces another coloring o : V(G) — Z; defined by
o)=Y c(u) inZ, (1)

u€N(v)

where N(v) is the neighborhood of a vertex v (the set of vertices adjacent
to v) and the addition is performed in Z,. If ¢ is a proper coloring, then
the checkerboard problem has a solution on the checkerboard represented
by G. With the aid of graph colorings described above, it was shown in (32
that the Checkerboard Conjecture is true for a checkerboard of any size.

The Checkerboard Theorem For every pair m,n of positive integers, it
is possible to place coins on some of the squares of an m xn checkerboard (at
most one coin per square) such that for every two squares of the same color
the numbers of coins on neighboring squares are of the same parity, while
for every two squares of different colors the numbers of coins on neighboring
squares are of opposite parity.

If Z, is replaced by Z; for an integer k > 2, then this checkerboard
problem gave rise to a new coloring in [31], which we will discuss in Sec-
tion 2.1.

1.2 A Lights Out Problem

Another recreational problem concerns the electronic game of “Lights Out”
consisting of a cube, each of whose six faces contains 9 squares in 3 rows
and 3 columns. Thus there are 54 squares in all. Figure 2(a) shows the
“front” of the cube as well as the faces on the top, bottom, left and right.
The back of the cube is not shown. A button is placed on each square of
a Lights Out cube containing a light which is either on or of. When a
button is pushed, the light on that square changes from on to off or from
off to on. Moreover, not only is the light on that square reversed when
its button is pushed but the lights on its four neighboring squares (top,
bottom, left, right) are reversed as well. The four neighboring squares of
the middle square of a face lie on the same face as the middle square.



Only three neighboring squares of a “side square” (top middle, bottom
middle, left middle, right middle) lie on the same face of such a square,
with the remaining neighboring square lying on an adjacent face as the
middle square. For example, if all 54 lights are on initially and the button
on the top middle square on the front face is pushed, then this light goes
off as well as the lights on its four neighboring squares (see Figure 2(b)).
Only two neighboring squares of a “corner” square lie on the same face as
that square; the other two neighboring squares lie on two other faces.

(o2 [e]Ke] o|o|0
0]O|O (o [oX [e]
0|0|0 Ole|O
olofo|o|o|o]|o]o]0O Ololoje|®|e]O|0]|0O
Olojo|ojOo]O|O|O|O olo|o|o|ejOo|O|O]|O
Ojo|0ojOo[0]O[|0O|O|O 0(0|0|0|0]|0|O|0|O
0|0|0 olo|O
o|O|0 0|0|0
O|0]|0 o|0|o
(a) (b)

Figure 2: Lights Out Game

One goal of the game “Lights Out” is to begin with such a cube where
all lights are on and to push a set of buttons so that, at the end, all lights
are out. Two observations are immediate: (1) No button need to be pushed
more than once. (2) The order in which the buttons are pushed is imma-
terial.

This game has a setting in graph theory. Let each square be a vertex and
join each vertex to the vertices corresponding to its neighboring squares.
This results in a 4-regular graph G of order 54. The goal is to find a
collection S of vertices of G, which correspond to the buttons to be pushed,
such that every vertex of G is in the closed neighborhood of an odd number
of vertices of S. This says that each vertex v, corresponding to a lit square,
will have its light reversed an odd number of times, resulting in the light
being turned out.

The Lights Out Game can in fact be played on any connected graph G
on which there is a light at each vertex of G. The game has a solution for
the graph G if all lights are on initially and if there exists a collection S of
vertices which, when the button on each vertex of S is pushed, all lights of
G will be out. This problem has another interpretation. A vertex v of a
graph G dominates a vertex u if u belong to the closed neighborhood N[v]
of v (consisting of v and the vertices in the (open) neighborhood N(v) of
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v). The Lights Out Game has a solution for a given graph G if and only
if G contains a set S of vertices such that every vertex of G is dominated
by an odd number of vertices of S. In [41) Sutner showed that every graph
has this property and so the Lights Out Game is solvable on every graph.

As discussed in [8], the Lights Out Game is also equivalent to beginning
with a connected graph G where every vertex of G is initially assigned the
color 1 in Z; (corresponding to its light being on) and finding a set S of
vertices of G and a coloring ¢ : V(G) — Z; such that

c(v)={1 ifveS

0 ifvegs.
A new coloring ¢’ : V(G) — Z; induced by c is defined by
ogw)y=1+ Z c(u) in Z,. 2
ueN|[v]

The goal of the Lights Out Game is therefore to have o'(v) =0 for all v €
V(G). The Lights Out Game suggests a new coloring problem introduced
in [8], which we will discuss in Section 2.2.

2 Neighbor-Distinguishing Vertex Colorings

A coloring that provides a method of distinguishing every two adjacent ver-
tices is said to be neighbor-distinguishing. Thus a proper vertex coloring
of a graph is neighbor-distinguishing. A number of neighbor-distinguishing
vertex colorings other than the standard proper colorings have been intro-
duced in the literature (see [9, 10, 11, 12, 13], for example). In this section,
we describe two recent neighbor-distinguishing vertex colorings, each of
which is induced by a given coloring (proper or nonproper) and defined on
sums of colors.

2.1 Modular Colorings

In 2010, a neighbor-distinguishing vertex coloring was introduced in [31] for
the purpose of finding solutions to the checkboard problem as described in
Section 1.1. For a nontrivial connected graph G, let ¢ : V(G) — Zi (k > 2)
be a vertex coloring of G where adjacent vertices may be colored the same.
The color sum o(v) of a vertex v of G is defined as

o(v)= > c(u) inZ (3)
uEN(v)

where the addition is performed in Z;. Thus the vertex coloring ¢ induces
another vertex coloring o : V(G) — Zi of G. If o(z) # o(y) in Z for
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every two adjacent vertices  and y of G, then the coloring c is called a
modular k-coloring of G. The minimum k for which G has a modular k-
coloring is called the modular chromatic number of G and is denoted by
mc(G). Modular coloring in graphs have been studied in [17, 31, 32, 33].
To illustrate the concepts introduced above, Figure 3 shows a modular 3-
coloring of a bipartite graph G (where the color of a vertex is placed within
the vertex) together with the color sum o(v) for each vertex v of G (where
the color sum of a vertex is placed next to the vertex). In fact, me(G) =3
for this graph G.

Figure 3: A bipartite graph G with mc(G) = 3

The Checkerboard Theorem can consequently be stated in terms of
graphs and modular colorings as follows.

Theorem 2.1 For every two positive integers m and n with mn > 2,
me(P, O P,) =2.

Modular colorings are closely related to another neighbor-distinguishing
vertex colorings of a graph, called sigma colorings, which were introduced
and studied in [12]. In the case of sigma colorings, a given coloring c is
a function ¢ : V(G) — N and the color sum o(v) of a vertex v has the
same formula as defined in (3) except that the addition is performed in N.
Among the results on modular colorings obtained in [31] are the following.

Theorem 2.2 For every graph G, mc(G) = x(G).

Theorem 2.3 If G is a k-chromatic graph (k > 2) with mazimum de-

gree A, then
me(G) < A(A+1)¥ 241,

In particular, G is a bipartite graph, then mc(G) < A(G) + 1.

Theorem 2.4 IfT is a nontrivial tree, then me(T) =2 or me(T) = 3.
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A nontrivial tree T is of type one if me(T) = 2 and is of type two if
mc(T') = 3. It is shown in [33] that all nontrivial trees of diameter at most
6 are of type one. A caterpillar is a tree of order 3 or more, the removal of
whose end-vertices produces a path. A characterization of caterpillars that
are of type two was established in [33]. An efficient algorithm has been
established to compute the modular chromatic number of a given tree in
(17]). Furthermore, modular chromatic numbers are determined for several
classes of graphs in [31].

e If G is a complete multipartite graph, then mc(G) = x(G).

e For each integer n > 3, mc(C,) = 2ifn =0 (mod 4) and me(C,,) = 3
otherwise.

e If G is a bipartite graph such that either (i) G contains a vertex that
is adjacent to all vertices in a partite set or (ii) one of its partite sets
consists only of odd vertices, then mc(G) = 2.

¢ If G is a bipartite graph the degrees of whose vertices are of the same
parity, then me(G O K3) = 2. In particular, me(Q,) = 2 for each
positive integer n.

e For every positive integer r, it follows that » < me(K, O K3) <r+1
and mc(K; O K3) = r if and only if » = 2 (mod 4). Thus for every
integer 7 > 3 and r # 2 (mod 4), there exists an r-chromatic graph
G with me(G) =7+ 1.

e For each integer n > 3, me(W,) = 4 where W, = C,, V K (the join of
Cn and K)) is the wheel of order n + 1. Also, for each integer n > 2,
mc(P, V K3) = 4. Thus there are infinitely many maximal planar
graphs G with mc(G) = x(G).

There are many interesting questions in this topic (see [31]).

Problem 2.5 Does there ezist a planar graph whose modular chromatic
number is 52

If the answer to this question is no (and we can verify this), then there
is a new Four Color Theorem for which the classic Four Color Theorem is
a corollary.

Problem 2.6 Is there a constant C such that mc(G) < C for every bi-
partite graph G ¢

Problem 2.7 Is there a graph G such that w(G) < x(G) < mc(G)?

Problem 2.8 Is there a graph G such that mc(G) > x(G) + 27 Is there
an upper bound for mc(G) in terms of x(G)?
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2.2 Closed Modular Colorings

Modular colorings and the Lights Out Game have suggested other coloring
problems. For a positive integer k and a connected graph G, let ¢ : V(G) —
Z;. be a vertex coloring where adjacent vertices may be assigned the same
color. The closed color sum &(v) of v as

o(v) = Z c(u) in Zg 4)

u€N[v]

where the addition is performed in Zg. Thus c induces another vertex
coloring @ : V(G) — Zi of G. If u and v are adjacent vertices of a graph
G such that N[u] = N[v], then &(u) = &(v) for every vertex coloring ¢ of
G. Therefore, the coloring & cannot be neighbor-distinguishing in general.
For this reason, additional restrictions are needed.

Two vertices u and v in a connected graph G are twins if u and v have the
same neighbors in V(G)—{u,v}. If u and v are adjacent, they are referred to
as true twins; while if » and v are nonadjacent, they are false twins. If u and
v are adjacent vertices of a graph G such that N{u] = N{v], that is, if u and
v are true twins, then &(u) = &(v) for every vertex coloring ¢ of G. Define
a coloring ¢ : V(G) — Zi to be a closed modular k-coloring if 7(u) # o(v)
in Zy for all pairs u,v of adjacent vertices for which N{u] # N[v] in G (or
u and v are not true twins in G). A vertex coloring c is a closed modular
coloring of G if ¢ is a closed modular k-coloring of G for some positive
integer k. That is, in a closed modular coloring ¢ of a graph, o(u) = o(v) if
u and v are true twins, 7(u) # &(v) if u and v are adjacent vertices that are
not true twins and no condition is placed on #(u) and 7(v) otherwise. The
minimum k for which G has a closed modular k-coloring is called the closed
modular chromatic number of G and is denoted by Wc(G). To illustrate
these concepts, Figure 4 shows a closed modular 3-coloring of a bipartite
graph G (where the color of a vertex is placed within the vertex) together
with the color sum & (v) for each vertex v of G (where the color sum of a
vertex is placed next to the vertex). In fact, mc(G) = 3 for this graph G.

Figure 4: A bipartite graph G with m¢(G) = 3
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These concepts were introduced and studied in [8] and studied further
in (36, 37, 38, 39]. It was observed in (8] that the nontrivial complete graphs
are the only nontrivial connected graphs G for which mc(G) = 1. Next, we
present some main results obtained in this topic.

Proposition 2.9 If G is a nontrivial connected graph, then Mc(G) exists.
Furthermore, if G contains no true twins, then Tc(G) > x(G).

By Proposition 2.9, if G is a nontrivial connected graph that contains
no true twins, then Mc(G) > x(G). On the other hand, if G contains true
twins, then it is possible that Mc(G) < x(G). In fact, more can be said.

Theorem 2.10 For each pair a,b of positive integers with a < b and
b > 2, there is a connected graph G such that me(G) = a and x(G) = b.

For an edge uv of a graph G, the graph G/uv obtained from G by
contracting the edge uv has the vertex set V(G) in which v and v are
identified. If we denote the vertex v = v in G/uv by w, then V(G/uv) =
(V(G) U {w}) — {u, v} and the edge set of G/uv is

E(G/uw) = {zy: zy € E(G), z,y € V(G) — {u,v}}U
{wz : ux € E(G) or vz € E(G),z € V(G) — {u,v}}.

The graph G/uv is referred to as an elementary contraction of G.

Theorem 2.11 Let u and v be true twins of a nontrivial connected graph
G. Then G has a closed modular k-coloring if and only if G/uv has a closed
modular k-coloring.

For a nontrivial connected graph G, define the true twins closure TC(G)
of G as the graph obtained from G by a sequence of elementary contractions
of pairs of true twins in G until no such pair remains. In particular, if G
contains no true twins, then TC(G) = G. Thus T'C(G) is a minor of G.The
following then is a consequence of Theorem 2.11.

Corollary 2.12 For a nontrivial connected graph G, me(G) = me(TC(G)).

By Corollary 2.12, it suffices to consider nontrivial connected graphs
containing no true twins. Closed modular chromatic numbers are deter-
mined for several classes of regular graphs. In particular, the following
result on regular complete k-partite graphs has been established in [8].

Theorem 2.13 For integers r,k > 2, let G = Ki(ry be the regular com-
plete k-partite graph, each partite set of which has r vertices.

(a) Then Mc(G) =k if and only if 1 — r and k are relatively prime.
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(0) If r 2 2k + 1, then WMc(G) < 2k — 1. Furthermore, if k > 3 and
r=(2k — 3)! + 1, then mc(G) =2k — 1.

(¢) If r is even, then Tc(G) < 2k — 2.
(@) Ifr and k > 4 are both even, then Mc(G) < 2k — 4.

Exact values of m¢(G) are determined when G is a regular complete
k-partite graph G for 2 < k < 5. For example, for each integer r > 2,

4 ifriseven
me(Kyry) = 5 ifr=3,5"7,9 (mod10)
7 ifr=1 (mod 10).
5 ifr$1,6,11,16,21,26 (mod 30)
6 ifr=6,26 (mod 30)
mc(Ksr) = 7 ifr=1,11,16,21 (mod 30) and r#1 (mod 7).
8 ifr=16 (mod30)andr=1 (mod?7).
9 ifr=1,11,21 (mod 30)andr=1 (mod 7).

By Theorem 2.13, if each partite set of G has at least 2k + 1 vertices, then
me(G) < 2x(G)—1 and this bound is sharp. Therefore, there is no positive
integer constant ¢ for which Me(G) < x(G) + ¢ for every graph G. In the
case of trees, however, it was conjectured in [37] that mc(T) < x(T') 41 for
every tree T of order at least 3.

Conjecture 2.14 For every tree T of order at least 3, me(T) < 3.

It was shown in [37] that mc(T") < 4 for every tree T of order at least 3.
In fact, more can be said. A closed modular k-coloring ¢ : V(G) — Z of a
connected graph G of order 3 or more is a nowhere-zero coloring if c(z) # 0
for each vertex z of G. The following result has been established in [37].

Theorem 2.15 FEvery tree of order at least 3 has a nowhere-zero closed
modular 4-coloring.

There is an infinite class of trees that do not have a nowhere-zero closed
modular 3-coloring and so Theorem 2.15 cannot be improved. Conjec-
ture 2.14 has been verified in [37, 38] for several classes of trees. For ex-
ample, if T is a tree of order at least 4 each of whose vertices is odd, then
me(T) = 3 and if T is a caterpillar of order at least 3, then ec(7) < 3.
A rooted tree T of order at least 3 is even if every vertex of T has an even
number of children; while T is odd if every vertex of T has an odd number
of children. Among the results for rooted trees obtained in [38] are the

following.
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Theorem 2.18 Let T be a rooted tree of order at least 3.
(a) IfT is an even rooted tree, then me(T) = 2.

(b) IfT is an odd rooted tree having no vertex with ezactly one child, then
me(T) < 3.

For each integer p € {0,1,2,3,4,5}, an odd rooted tree T of order at
least 3 having root v is said to be of type p if d(v,u) = p (mod 6) for every
leaf w in T".

Theorem 2.17 For each integerp € {0,1,2,3,4,5}, let T be an odd rooted
tree of order at least 3 that is of type p. Then Mc(T) = 2 if and only if

p#L

For a nonempty subset S C {0,2,3,4,5}, an odd rooted tree T having
root v is said to be of type S if for every leaf v in T, d(v,u) = p (mod 6)
for some p € S and for each p € S, there is at least one leaf u in T such
that d(v,u) = p (mod 6). In particular, if S = {p} where p € {0,2, 3,4, 5},
then T is of type p.

Theorem 2.18 Let S be a nonempty subset of {0,2,3,4,5} such that S
contains at most one of 2 and 5 and at most one of 0 and 3. If T is an odd
rooted tree of order at least 3 that is of type S, then mc(T) = 2.

For a nontrivial connected graph G, recall that G O K, denotes the
Cartesian product of G and K;. The exact values of c(G O K3) where
G € {Kn, P,,C,} have been determined in [39]. For each integer n > 3,

MK, OKy) = n

B _ [ 2 ifn=0,2,4,6,7 (mod 8)
mc(Pr, O Kp) = { 3 ifn=1,3,5 (modS8).
o _ 2 ifn=0 (mod 8)

me(C, O K,) = { 3 otherwise

For every connected graph G without true twins that we have encountered
thus far, mc(G) < 2x(G)—1. Thus, the following is the main open question
on this topic.

Problem 2.19 Let G be a connected graph G of order at least 3. Is it
true that
me(G) < 2x(G) - 1?
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3 Neighbor-Distinguishing Edge Colorings

Edge colorings (proper or nonproper) have also been introduced to dis-
tinguish every pair of adjacent vertices in a graph (see [1, 5, 22, 43] or
(14, p. 385-391], for example). In this case, an edge coloring of a graph
G induces a proper vertex coloring of G. Such an edge coloring is called
a neighbor-distinguishing edge coloring. In this section, we describe two
neighbor-distinguishing edge colorings, which are defined in terms of sums
of colors and are closely related to modular vertex colorings discussed in
Section 2.

3.1 Modular Chromatic Index

In [24] a neighbor-distinguishing edge coloring that is closely related to
the modular vertex colorings was introduced. For a connected graph G of
order at least 3, let ¢ : E(G) — Zi (k > 2) be an edge coloring of G where
adjacent edges may be colored the same. The color sum s(v) of a vertex v
of G is defined as the sum in Z; of the colors of the edges incident with v,

that is,
s(v) = Z c(e) in Zy, (5)
ecE,

where E, denote the set of edges of G incident with a vertex v. An edge
coloring c is a modular k-edge coloring of G if s(z) # s(y) in Zy for all
pairs z,y of adjacent vertices of G. An edge coloring c is a modular edge
coloring if ¢ is a modular k-edge coloring for some integer k¥ > 2. The
modular chromatic indezx x.,(G) of G is the minimum & for which G has
a modular k-edge coloring. Modular edge colorings have been studied in
[23, 25, 26, 27). To illustrate theses concepts, Figure 5 shows a modular
3-edge coloring of a tree T, where each edge is colored with an element in
Z3 = {0,1,2} and each vertex is labeled with its color sum. Since there is
no modular 2-edge coloring of T', x/,(T) = 3 for the tree T in Figure 5.

Figure 5: A modular 3-edge coloring of a graph
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The classic theorem in the connection with the edge chromatic index of
a graph due to Vizing [42], which states that A(G) < x'(G) < A(G) +1
for every graph G. A graph G is said to be of Class 1 if x'(G) = A(G)
and of Class 2 if x'(G) = A(G) + 1. Determining which graphs belong to
which class is a major problem of study in this area. In the case of modular
edge coloring, there is a theorem [25] that has a similar style as Vizing’s
theorem.

Theorem 3.1 If G is a connected graph of order at least 3, then
X(G) £ xm(G) £ x(G) +1.

A characterization has been established for all connected graphs G of
order at least 3 such that x,,(G) = x(G) + 1 in [25].

Theorem 3.2 Let G be a connected graph of order at least 3. Then
Xm(G) = x(G) + 1 if and only if x(G) = 2 (mod 4) and every proper
X(G)-coloring of G results in color classes of odd size.

For a positive integer k, a graph G is k-colorable if there is a proper
coloring of G using k colors. Similarly, for an integer k > 2, a graph G is
modular k-edge colorable if there is a modular k-edge coloring of G. It is
clear that if G is a k-chromatic graph of order n, then a proper k-coloring of
G can induce a proper k'-coloring of G for each integer k' with k < k' <n
by introducing a new color to a vertex of G. Therefore, it is easy to see every
graph G of order n is k-colorable for all k with x(G) < k < n. In the case of
modular edge colorings, the situation is quite different; that is, for positive
integers k and k' where k' > k, a modular k-edge coloring of a graph G
may not induce a modular k’-edge coloring of G by introducing a new color
to the edge of G. Hence it is much more challenging to determine whether
a connected graph G is modular k-edge colorable for an integer k& > x/.(G)
(see [27]).

Theorem 3.3 If G is a connected graph of order at least 3, then G is
modular k-edge colorable for each k > x..(G).

3.2 Sum Distinguishing Index

In 2004 a neighbor-distinguishing edge coloring ¢ : E(G) — {1,2,...,k}
of a graph G was introduced (see [14, p.385]) in which an induced vertex
coloring s : V(G) — N is defined by

s()=)_ cle) inN (6)

eckE,
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for each v € V(G). If s(z) # s(y) for every pair z,y of adjacent vertices
of G, then c is called a sum k-coloring. The minimum k for which a graph
G has a sum k-coloring is the sum distinguishing inder and is denoted by
sd(G) of G. A sum sd(G)-coloring of G is a minimum sum coloring of G.
For example, Figure 6 shows three graphs Gy, Ga, and G3, where sd(G) = ¢
for 1 <i < 3. A minimum sum coloring is given in each case.

Figure 6: Minimum sum colorings of graphs

Karonski, Luczak, and Thomason [35] proved the following.
Theorem 3.4 IfG is a 3-colorable graph of order 3 or more, then sd(G) < 3.

Karoniski, Luczak, and Thomason conjectured that the requirement that
G be 3-colorable is not necessary. This conjecture has developed a catchy
name.

The 1-2-3 Conjecture If G is a connected graph of order 3 or more,
then sd(G) < 3.

Consequently, if the 1-2-3 Conjecture is true, then for every connected
graph G of order 3 or more, it is possible to assign each edge of G one of
the colors 1, 2, 3 in such a way that if u and v are adjacent vertices of G,
then the sums of the colors of the incident edges of u and v are different.
Kalkowski, Karonski, and Pfender [34] proved that the sum distinguishing
index cannot be too large.

Theorem 3.5 IfG is a connected graph of order 3 or more, then sd(G) < 5.
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4 Vertex- or Edge-Distinguishing Colorings

A vertex coloring (or labeling) of a graph G is vertex-distinguishing if dis-
tinct vertices of G are assigned distinct colors (or labels). There are nu-
merous occasions when an edge coloring of a graph (not necessarily even
proper) gives rise to a vertex-distinguishing coloring (see [14, 370-385] for
example). An edge coloring (or labeling) of a graph G is edge-distinguishing
if distinct edges of G are assigned distinct colors (or labels). There are occa-
sions when a vertex coloring of a graph gives rise to an edge-distinguishing
labeling (see {19, 40] or [14, p.359-370], for example).

4.1 Irregular Weighted Graphs

In 1986, one of best-known examples of vertex-distinguishing colorings
was introduced by Chartrand et al. in [6]. At the 250th Anniversary
of Graph Theory Conference held at Indiana University-Purdue University
Fort Wayne, a weighting of a connected graph G was introduced for the
purpose of producing a weighted graph whose degrees (obtained by adding
the weights of the incident edges of each vertex) were distinct. Such a
weighted graph was called irregular. This concept could be looked at in
another manner, however. In particular, let N denote the set of positive
integers and let E, denote the set of edges of G incident with a vertex
v. An edge coloring ¢ : E(G) — N, where adjacent edges may be colored
the same, is said to be vertez-distinguishing if the coloring s : V(G) = N
induced by ¢ and defined by

s(v)=Y_cle) inN (7

eckE,

has the property that s(z) # s(y) for every two distinct vertices = and y of
G. Note that the definition of the color sum s(v) in (7) is the same formula
as the one defined in (6). The main emphasis of this research however
dealt with minimizing the largest color assigned to the edges of the graph
to produce an irregular graph and such largest color is referred to as the
irregular strength of the graph. Many research has been done in this area
of research (see [2, 15, 16], for example). Furthermore, irregular Eulerian
walks in graphs have been introduced and studied in [3, 4].

4.2 Graceful Graphs

The best known example of edge-distinguishing labeling is graceful label-
ing. In 1968, Rosa [40] introduced a vertex labeling that induces an edge-
distinguishing labeling defined by subtracting labels. In particular, for a
graph G of size m, a vertex labeling (an injective function) f : V(G) —
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{0,1,...,m} was called a S-valuation by Rosa if the induced edge labeling
f': E(G) - {1,2,...,m} defined by f'(uv) = |f(x) — f(v)| is bijective.
In 1972 Golomb [21] called a B-valuation a graceful labeling and a graph
possessing a graceful labeling a graceful graph. It is this terminology that
became standard. Over the past few decades the subject of graph labelings
has been growing in popularity. Gallian [18] has compiled a periodically
updated survey of many kinds of labelings and numerous results, obtained
from well over a thousand referenced research articles. A popular conjecture
in graph theory, due to Anton Kotzig and Gerhard Ringel, is the following.

The Graceful Tree Conjecture Every nontrivial tree is graceful.

For a graph G of order n and size m, there is a smallest integer k > m
such that there exists a graceful labeling f : V(G) — {0,1,2,...,k}. This
number k is called the gracefulness of G and is denoted by grac(G). Thus
grac(G) = m if and only if G is graceful. Therefore, the gracefulness of a
graph G is a measure of how close G is to being graceful. If G is a graph
of order n and size m without isolated vertices, then m < grac(G) < 2"~

4.3 Edge-Graceful Graphs

In 1985 Lo [30)] introduced a dual type of graceful labeling — this one an
edge labeling. Let G be a connected graph of order n > 2 and size m.
For a vertex v of G, let N(v) denote the neighborhood of v. An edge-
graceful labeling of G is a bijective function f : E(G) — {1,2,...,m} that
gives rise to a bijective function f' : V(G) — {0,1,2,...,n — 1} given by
f'(v) = e N@) f(uv), where the sum is computed in Z,. A graph that
admits an edge-graceful labeling is called an edge-graceful graph. Figure 7
shows two edge-graceful graphs Cs and K 4 together with an edge-graceful
labeling for each of them. It is well known that C, is graceful if and only
ifn=0,3 (mod 4) and so Cs is not graceful.

Figure 7: Two edge-graceful graphs

In the definition of an edge-graceful labeling of a connected graph G of
order n > 2 and size m, the edge labeling f is required to be one-to-one.
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Since, however, the induced vertex labels f/(v) are obtained by addition in
Z,, the function f is actually a function from E(G) to Z, and is in general
not one-to-one. Dividing m by n, we obtain m = nqg+r, where g =|m/n]
and 0 <7 < n - 1. Hence in an edge-graceful labeling of G, g + 1 edges
are labeled i for each ¢ with 1 < ¢ < r and q edges are labeled i for each
twithr+1<i<n(in Z,). Thus this edge labeling f : E(G) = Z, is a
one-to-one function only when m = n—1 or m = n. This observation gives
rise to another concept.

4.4 Modular Edge-Graceful Graphs

Let G be a connected graph of order n > 3 and let f : E(G) — Z,,
where f need not be one-to-one. Let f’': V(G) — Z, such that f'(v) =
D oue N(v) f (vv), where the sum is computed in Z,. If f’ is one-to-one, then
f is called a modular edge-graceful labeling and G is a modular edge-graceful
graph. Consequently, every edge-graceful graph is a modular edge-graceful
graph. It turns out that this concept was introduced in 1991 by Jothi [20]
under the terminology of line-graceful graphs (also see [18]). The graphs
G, = C4 and G; in Figure 8 are both modular edge-graceful. Modular
edge-graceful labelings are shown in Figure 8 as well. In fact, the graph G,
is not graceful while G2 is not edge-graceful.

Gl=C4I 3 0 Gy 9 3

3 0
Figure 8: Two modular edge-graceful graphs

It was known that if G is a connected graph of order n > 3 for which
n =2 (mod 4), then G is not modular edge-graceful. Furthermore, it was
conjectured that if T" is a tree of order n > 3 for which n # 2 (mod 4), then
T is modular edge-graceful (see [18]). This conjecture was verified and, in
fact, the conjecture is not only true for trees but for all connected graphs
(see [28]).

Theorem 4.1 A connected graph of order n > 3 is modular edge-graceful
if and only if n £ 2 (mod 4).

For every connected graph G of order n, there is a smallest integer
k 2> n for which there exists an edge labeling f : E(G) — Z; such that the
induced vertex labeling f’ : V(G) — Z defined by f'(v) = 3", Ny F(wv),
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where the sum is computed in Zj, is one-to-one. The number % is defined
in [28] as the modular edge-gracefulness meg(G) of G. Thus meg(G) > n
and meg(G) = n if and only if G is a modular edge-graceful graph of order
n and if G is not modular edge-graceful, then meg(G) > n+ 1. As with
the gracefulness of a graph, the modular edge-gracefulness of a graph G is
a measure of how close G is to being modular edge-graceful. The number
meg(G) is determined for every connected graph G in [28].

Theorem 4.2 If G is a nontrivial connected graph of order n > 6 that is
not moduler edge-graceful, then meg(G) =n+ 1.

If G is a modular edge-graceful spanning subgraph of a graph H, where
G and H are connected, then a modular edge-graceful labeling of G can be
extended to a modular edge-graceful labeling of H by assigning 0 to each
edge of H that does not belong to G. Thus modular edge-graceful labelings
of a graph that assign 0 to some edges of the graph play an important role in
establishing Theorems 4.1 and 4.2. For this reason, we now investigate those
modular edge-graceful labelings in which 0 is not permitted. This gives
rise to a new concept along with additional challenging problems. More
formally, for a connected graph G of order n > 3 let f : E(G) — Z, — {0},
where f need not be one-to-one and let f/ : V(G) — Z, be defined by
f'(v) = Yuen(w) f(uwv), where the sum is computed in Z,. If f' is one-
to-one, then f is called a nowhere-zero modular edge-graceful labeling and
G is a nowhere-zero modular edge-graceful graph. A characterization of
connected nowhere-zero modular edge-graceful graphs has been established

[29].

Theorem 4.3 A connected graph G of order n > 3 is nowhere-zero mod-
ular edge-graceful if and only if (i) n # 2 (mod 4), (i) G # K3 and (44i)
G is not a star of even order.

For every connected graph G of order n, there is a smallest integer k > n
for which there exists an edge labeling f : E(G) — Zi — {0} such that the
induced vertex labeling f': V(G) — Zi defined by f'(v) = 3, cn(y) £(uv),
where the sum is computed in Zg, is one-to-one. This number k is referred
to as the nowhere-zero modular edge-gracefulness of G and is denoted by
nzg(G). Thus nzg(G) = n if and only if G is nowhere-zero modular edge-
graceful and so nzg(G) > n + 1 if G is not nowhere-zero modular edge-
graceful. For a connected graph G of order n > 3 with n # 2 (mod 4) that
is not nowhere-zero modular edge-graceful, the exact value of nzg(G) has
been determined (see {29)).

Theorem 4.4 If G is a connected graph of order n > 3 with n # 2
(mod 4) that is not nowhere-zero modular edge-graceful, then nzg(G) €



{n + 1,n + 2}. Furthermore, nzg(G) = n + 1 if and only if G = K3 and
nzg(G) = n + 2 if and only if G is a star of even order.

By Theorem 4.1, if G is a connected graph of order n > 6 where n = 2
(mod 4), then G is not modular edge-graceful. Consequently, G is not
nowhere-zero modular edge-graceful and so nzg(G) > n + 1. For connected
graphsof order n > 3 with n = 2 (mod 4), the following result is established
in [29].

Theorem 4.5 If G is a connected graph of order n > 6 such that n = 2
(mod 4), then nzg(G) € {n+1,n+ 2} and nzg(G) = n+2 if and only if G
is a star.
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