CONDITIONAL EXPECTATION ALGORITHMS FOR
COVERING ARRAYS

CHARLES J. COLBOURN

ABSTRACT. An efficient conditional expectation algorithm for gen-
erating covering arrays has established a number of the best known
upper bounds on covering array numbers. Despite its theoretical ef-
ficiency, the method requires a large amount of storage and time.
In order to extend the range of its application, we generalize the
method to find covering arrays that are invariant under the action of
a group, reducing the search to consider only orbit representatives of
interactions to be covered. At the same time, we extend the method
to construct a generalization of covering arrays called quilting ar-
rays. The extended conditional expectation algorithm, as expected,
provides a technique for generating covering and quilting arrays that
reduces the time and storage required. Remarkably, it also improves
on the best known bounds on covering array numbers in a variety of
parameter situations.

1. INTRODUCTION

Let N, k, t, and v be positive integers with k > ¢. Let C be an N x k
array with entries from an alphabet T of size v; we typically take & =
{0,...,v—1}. Choose a t-tuple (v1,...,v;) with v; € £ for 1 < i <t and
a tuple of ¢ columns (c1,...,¢) with ¢; € {1,...,k}, and ¢; # ¢;. Then
{(ei,vs) : 1 < i <t} is a t-way interaction. The array covers the t-way
interaction {(c;,#;) : 1 < i < t} if, in at least one row p of C, the entry
in row p and column ¢; is v; for 1 < i < t. Array C is a covering array
CA(N;t, k,v) of strength t if every t-way interaction is covered.

Covering arrays are employed in applications in which experimental fac-
tors interact (see [6,8,19,20]). When applied in testing, columns correspond
to experimental factors, and the symbols in the column form values or levels
for the factor. Each row specifies the values to which to set the factors for
an experimental run. We denote by CAN(Z, k, v) the minimum N for which
a CA(N;t, k,v) exists. Because CAN(1,k,v) = v and CAN(t, k,1) = 1,
we generally assume that £ > ¢ > 2 and v > 2. The determination of
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CAN(t, k, v) has been actively studied; see [5,8,11,20,21,26] for background.
For fixed ¢ and v, only CAN(2, k, 2) has been determined exactly (see [20]).

The standard definition of covering array asks for all t-way interactions
to be covered. In [17], that requirement is relaxed in a manner that we
describe next. The species of a t-way interaction § = {(¢;, 1) : 1 <i <t}
is the multiset {v; : 1 < ¢ < t}; hence a species in general encompasses
a number of specific t-way interactions. Often we are not concerned with
the specific symbols used in defining the species. Then the family of a
species is its orbit under the action of the symmetric group on v letters,
and hence a family consists of a set of species, and therefore also a set of
t-way interactions.

Let S be a set of species for £ and v. An N x k array with v symbols
is an S-quilting array if every interaction whose species is in S is covered.
The notation S-QA(N;t,k,v) is used for such an array when S contains
interactions of strength at most ¢, and S-QAN(t, k,v) is the smallest N
for which an S-QA(N;t, k,v) exists. An S-QA(N;t,k,v) is equivalent to a
CA(N;t,k,v) when S contains all possible species of ¢-way interactions.

2. CONDITIONAL EXPECTATION ALGORITHMS

Bryce and Colbourn [2, 3] develop an efficient algorithm for generat-
ing covering arrays when v and ¢ are fixed. Their method derandomizes
a one-row-at-a-time random algorithm using the “method of conditional
expectations”, as described in more detail in [12,13]. The method is a
specialization of the technique of Stein [34], Lovész [29], and Johnson [24]
to covering arrays; applied to covering arrays, it considers adding one row
at a time that maximizes the number of newly covered t-way interactions.
Naively this involves examining all possible next rows, but their number
is exponential in k. Cohen, Litsyn, and Zémor [7] develop a variant that
considers only rows from a suitably chosen larger orthogonal array.

The Stein-Lovész-Johnson method yields a bound: A CA(N;t,k,v) ex-

ists whenever N
k\ /vt-1
() (5) <

Hence when v and ¢ are fixed, CAN(¢, k, v) is upper bounded by a constant
multiple of log k. The crucial feature of the method in [2, 3], however, is
that it admits a polynomial time implementation (polynomial in k) when ¢
and v are fixed. The essential idea is to build the array one row at a time,
ensuring that each row covers at least the number of as-yet-uncovered t-way
interactions that is the expected number covered by a row chosen uniformly
at random. (This differs from earlier methods in that it does not insist that
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a row cover the maximum, just the average.) To select one row to add, it
starts with the ‘empty’ row (#,...,%) and fills in one entry at a time. In
doing this, it ensures that the expected number of newly covered t-way
interactions, among all ways to convert the remaining  entries to symbols
of 3, does not decrease. In this way, the row covers at least as many new
t-way interactions as the expectation for a row selected entirely at random.
The final step is to determine how to replace a single x with a symbol of .
To do this, the method selects a * entry, and for each o € ¥ it computes
the expected number of newly covered t-way interactions, conditioned on
replacing the * entry by 0. Then it chooses a symbol that gives the largest
conditional expectation.

A few key observations underlie the efficiency of the method. First, the
number of t-way interactions to cover is v*(¥), which is polynomial in k
when v and ¢ are fixed. Secondly, there are O(log k) rows and k columns,
so entries are to be selected O(klogk) times. Thirdly, and most impor-
tantly, because the expectation of a sum equals the sum of expectations, to
determine the expected number of newly covered ¢-way interactions, it suf-
fices to determine for each as-yet-uncovered interaction the probability with
which it is covered. This in turn requires considering only the ¢ columns
that arise in the specific interaction, the remaining & — ¢ having no effect
on the probability of occurrence. There are (¥) ways to choose columns for
a t-way interaction. We compute the expected number of as-yet-uncovered
t-way interactions on these columns that are covered by a randomly com-
pleted row. In fact, because we use this only to select a symbol in a specific
column <y, the expectation for any set of columns not involving « is inde-
pendent of this choice, and hence we need only consider the '::11) t-sets of
columns that contain +.

AVERAGE_COVERING_ARRAY, shown in Figure 1, gives the conditional
expectation algorithm. When T ., is the set of all v*(¥) t-way interactions
on k columns and v symbols, AVERAGE_COVERING_ARRAY(7; x ) Wwith
orb(S) = {S} and orbrep(.A) = A produces a CA(N;t, k,v) or fewer rows
whenever

1
Toeol (

'Ut

N
" ) <1 or equivalently N > log,e(,e_1) (| Ttk ,0l) -

More generally, let S be a set of species for ¢t and v. When S = {T €
Ti,k,v : the species of T is in S}, AVERAGE_COVERING_ARRAY(S) produces
an S-quilting array.

Perhaps surprisingly, this conditional expectation method (under the
name of the Density Algorithm) has proved very successful in finding small-
est known covering arrays for a variety of choices of ¢, k, and v [2,3, 16,
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AVERAGE_COVERING_ARRAY(X)
// X is a set of t-way interactions to cover
Xo—X;p—0;, L0
while X, # 0 do
Y — SELECT-AVERAGE_ROW(X),)
L—LuU{y}
Xpr1— X, \{R= {(r1)ye- s (romn)} € Xp
{9 )s-- s (7s92) } € orb(R)}
p—p+l
return £
SELECT-AVERAGE_ROW(X)
£ o {x}*
for i from 1 to k do
Choose a coordinate v for which r.(.,'_ D=
mazcov «— 0
forceX
z —rl-1; 2, — 0y cov 0
for {y1,...,7} with 7; < %41 for 1 <i<t, and v € {m,..., %}
cov «— cov + EXPECTED_COMPLETIONS({71,...,7}, X, Z)
if cov > mazcov {mazcov — cov; b — z}
r(i) —b
return r(*)
EXPECTED_COMPLETIONS(C, X, x) // for the uniform distribution
Fe—{yeC:z,=%} F« C\F;count —0
A orbrep({(ay,- .- ax,) € B : ay, = 2,) for % € F}
foreachT e A
if 39 € X with T € orb(S) then count « count + 1
return count/|A|

Fi1GURE 1. Conditional Expectation Algorithm

17,27], particularly in conjunction with the post-optimization technique
in [31,32]; see [9] for current best known covering array numbers. Bryce
and Colbourn [2,3] examine two practical decisions, studied in more detail
in [4]. By randomizing the order in which SELECT_AVERAGE_ROW consid-
ers symbols for each new entry in the row, because different symbols may
yield the same value of mazcov, the choice of symbol is randomized to break
ties randomly. While every row that SELECT_AVERAGE_ROW can produce
provides at least the average number of newly covered t-way interactions, it
may produce many different candidate rows. Hence we can generate a fixed
number of candidates for each row, and choose a candidate to add that cov-
ers the most as-yet-uncovered t-way interactions. Once symbol selection is
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randomized, the row chosen may vary, which causes a change to the set of
t-way interactions remaining to be covered, in turn affecting the choice of
the remaining rows. Thus when AVERAGE_COVERING_ARRAY(7) is exe-
cuted again, a different covering array can result, which may have fewer
rows. Hence we could perform a fixed number of repetitions of AVER-
AGE_COVERING_ARRAY(7) and select a smallest array. While more can-
didates and more repetitions (within reason) do appear to yield smaller
covering arrays, naturally they impact execution time.

Although efficient, the method is limited in practice to values of k for
which the coverage status of all v*(¥) interactions can be maintained. While
these can be readily computed whenever needed to avoid substantial storage
requirements, the time required to examine each interaction repeatedly is
large. In this paper, we explore an approach to alleviate the growth of
the number of t-way interactions to an extent. Naturally, one wants to
reduce the size of the search space. A sensible way to do this appears
to be to assume some group action on the symbols, on the columns, or
both. Computational methods that assume group actions on the array
appear in [5, 10, 14, 28, 30], for example. Here we extend the conditional
expectation algorithm to incorporate group actions on the set of symbols.

Suppose that 7 is a set of t-way interactions to be covered. Suppose
that I' is a (permutation) group acting on the symbols in £. Under the
action of T, every t-way interaction T' forms an orbit orb(7"). We require
that T € 7 if and only if orb(T) C 7. Under the action of T, if T €
orb(T’) then orb(T”) = orb(T), so any member of orb(T) serves as an
orbit representative for orb(T). When & is a set of t-way interactions that
is closed under the action of I, orbrep(S) denotes a minimal set of orbit
representatives for S.

In the same way, I" acts on the set of possible rows, partitioning them into
orbits. We extend the basic method by first specifying the functions orby(-)
and orbrep(-) as dictated by I, and then setting S C 7T} , to be a set of or-
bit representatives of t-way interactions. AVERAGE_COVERING_ARRAY(S)
then produces a set S of rows. The rows in the orbit of S form an array
that covers all t-way interactions in all orbits of interactions in S; of course,
the number of rows in the latter array may be as much as |T| times the size
of the array produced by AVERAGE_COVERING_ARRAY(S), because each
orbit representative of a row may yield an orbit of size up to |T).

Correctness follows the same argument as for the basic method. How-
ever, the guarantee on the number of rows is problematic. Because orbits
of t-way interactions can in general have different size, and orbits of rows
can also have different size, the expectation that a specific orbit of t-way
interactions has a representative covered by a row selected at random is
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therefore not a constant, but depends on the size of the orbit of t-way in-
teractions. When ¢-way interactions partition into orbits of different sizes,
an analysis of the number of rows needed could account for the different
probabilities with which each orbit of t-way interactions has a representa-
tive covered by a randomly selected row.

Instead we choose I" and the set of t-way interactions to be covered so
that the orbits of t-way interactions all have full length |I'|. Then the anal-
ysis for the number of rows required proceeds as in the basic method. Let
us consider a specific case, taking I' to be the cyclic group of order v. Then
all orbits of t-way interactions are full. The resources required by AVER-
AGE_COVERING_ARRAY are substantially reduced. The number of rows to
be found is reduced by a factor of that is expected to be approximately v,
and the number of t-way interactions whose status must be known is also
reduced by a factor of v. The price to be paid is that, in selecting a new
row, we must check that a t-way interaction has an orbit representative in a
completion of the partial row under construction, rather than checking that
the interaction itself appears in it. This is easily done. The real questions
are: What impact does this have on the practicality of the method? Does
it continue to produce covering arrays of competitive sizes? We address
these in Section 3.

Maintaining information about the coverage of orbit representatives of
t-way interactions enables us to reduce space requirements, and appears
to reduce the time required for the method as well. The savings depend
on the order of I'; larger groups ought to lead to faster generation using
less space. Therefore, in addition to employing cyclic groups, we employ
Frobenius groups. When v is a prime power, take the elements to be [y,
and T to be the permutations {z — az +b : a,b € Fy,a # 0}. Orbits
of t-way interactions under I’ then have length v(v — 1) or v; not all have
full length. However, when the orbit of {(c1,21),...,(ct, )} has length
v, it must happen that »; = ... = »;. Consider the set S of all t-way
interactions whose species is not of this form. Then I' partitions S into
full length orbits, and we can compute AVERAGE_-COVERING_ARRAY(S)
to cover all other interactions. Applying the action of I' and then adding
v constant rows yields a covering array. Determining whether a row covers
an orbit representative of a t-way interaction under the Frobenius group is
straightforward, so to further assess the method we also consider forming
covering arrays that are invariant under the actions of Frobenius groups.

Naturally many other groups could be considered as well. Here we fo-
cus on the trivial, cyclic, and Frobenius groups in order to explore the
consequences of incorporating a group action.
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3. COMPUTATIONAL RESULTS

In the tables reported at [9], the original density algorithm of [2,3] has
yielded best known results when 4 < £ < 6 and v is ‘small’. Therefore
we undertook an extensive set of computations using the variants of the
method using cyclic and Frobenius groups for various choices of (¢, v).

k  Den SA CD FD *FD| k Den SA CD FD *FD
5 81 9 87 81| 6 111 132 123 117
7 123 159 135 135 8 135 168 135 135
g 135 195 177 173 (10 159 164 207 201 195
11 183 222 219 209 )12 201 237 231 222
13 219 252 243 238 |14 237 249 270 261 253

15 237 277 279 273 264 ({16 237 277 288 285 277
17 297 287 300 291 28518 297 300 312 303 296
19 311 313 321 315 31020 315 321 333 321 317
21 315 338 342 333 329 |22 315 347 348 339 337
23 315 359 360 351 346 |24 389 370 369 363 355
25 384 370 375 369 363|126 393 377 381 369 366
27 393 383 387 381 378128 393 391 396 387 383
20 393 406 402 393 392 |30 393 401 411 405 400
31 446 424 420 405 401 | 32 454 431 423 411 409
33 461 438 429 417 416 | 34 468 440 435 423 422

TABLE 1. CA(N;4,k,3)

In Tables 1 and 2 we report upper bounds for CAN(4, k,3) with 5 < k <
100. In the column labelled ‘Den’, known bounds are reported for a variety
of methods. When in plain font, the result is from the original density
algorithm (3,27]. When in slanted font, the result is from [22] when & = 5,
(15] when k € {6,7,11,12,13}, [1] when k € {8,9}, [33] when k € {10, 16},
and [37] when 20 < k& < 23 and 26 < k < 30. When k € {19,25}, the
array is constructed as in (37|, after which the array is improved by a
post-optimization technique. The post-optimization technique is described
in [31,32]; we use it to attempt to eliminate rows from solutions found,
often with great success.

In the column labelled ‘SA’, we report the bounds produced by a so-
phisticated simulated annealing algorithm [1, 35,36]. Within the range
reported, this method produced the best known upper bounds prior to the
results reported here. In the column labelled ‘CD’, we report on the re-
sults from an implementation of AVERAGE_COVERING_ARRAY using the
action of the cyclic group. In the column labelled ‘FD’, we report on the
results from an implementation of AVERAGE_COVERING.ARRAY using the
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k Den SA CD FD| k Den SA CD FD| k Den SA CD FD
35 440 441 429|36 456 447 435 37 460 453 441
38 465 459 44739 468 465 453| 40 504 472 468 453
41 510 484 474 465142 513 488 477 471§ 43 522 494 483 471
44 526 497 486 47745 530 497 492 483| 46 534 506 495 483
47 538 510 501 48948 546 516 504 495| 49 520 510 495
50 520 516 50151 531 519 507 52 562 534 519 507
53 567 537 525 50754 572 537 528 519| 55 575 537 531 519
56 581 548 537 525(57 584 553 540 531| 58 588 558 540 531
59 592 558 546 53760 558 549 537| 61 601 567 552 543
62 606 570 561 543{63 607 574 558 549 64 574 561 549
65 574 564 555|66 620 585 567 555( 67 587 576 561
68 590 576 56169 590 579 567 70 629 580 582 573
71 601 588 57372 601 588 579 73 607 591 579
74 607 591 585]75 607 597 585| 76 613 603 585
77 615 603 591|78 618 609 591 79 620 609 597
80 620 609 59781 628 612 597| 82 631 612 603
83 631 618 609 |84 632 621 609 85 632 621 609
86 639 624 61587 643 630 615 88 643 630 615
89 648 630 62790 649 639 627 91 650 639 627
92 650 639 62793 650 645 633| 94 650 645 633
95 650 645 63996 661 645 639| 97 662 657 639
98 663 657 645)99 663 657 645|100 663 657 645

TABLE 2. CA(N;4,k,3)

action of the Frobenius group. The final column, labelled ‘*FD’, reports
some improvements on the results from the Frobenius group by applying
post-optimization.

As expected, increasing the size of the group reduces both the storage
and the time requirements. The reduced time requirement enables one to
consider more repetitions and more candidates, but in order to keep the
comparison ‘fair’, for each k, we attempt to use the same numbers of rep-
etitions and candidates for AVERAGE_COVERING_ARRAY with the trivial,
cyclic, and Frobenius groups. Despite the acceleration of the method, these
computations are large. When k = 100, there are 3,921,225 ways to choose
4 columns. Thus there are 317,619,225 4-way interactions to cover for the
trivial group, 105,873,075 orbits of interactions to cover for the cyclic group,
and 50,975,925 for the Frobenius group. Because the method breaks ties
randomly, the result reported need not be the one produced if the method
is run again. Computations for the trivial group are limited, because the
time and space required for the method render it impractical.
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In the range of k for which density with trivial group has been applied,
it is never competitive with the simulated annealing results. However,
when we turn to results for the cyclic group, the contrast is striking. The
method now produces results that are substantially better than those for
the trivial group, typically reducing the number of rows generated by 10%.
The improvement is perhaps most surprising when one considers that it
comes with smaller requirements in space and time as well!

One might have expected that limiting the search to covering arrays
that are invariant under the cyclic group would result in failing to consider
some of the smallest covering arrays. That may still be the case. Except
when k is very small, heuristic methods are unlikely to produce optimal
covering arrays. Therefore, while it is possible that the restriction on the
covering array imposed by the group action may indeed cause us to exclude
certain arrays (including perhaps the optimal ones), the set of covering
arrays invariant under the group action remains sufficiently rich to find
best known solutions. Indeed the improvement obtained using the cyclic
group is such that the method now improves upon all of the simulated
annealing results as well!

Another surprise is in store. Using instead the action of the Frobenius
group, a consistent improvement over the cyclic results is observed: Typi-
cally, a 1-2% reduction in the number of rows is obtained. Again we have
better accuracy with less time and less space.

What accounts for the consistency of the improvement of the Frobenius
and cyclic solutions over the basic ones? The reasons are not immediately
obvious. The number of rows produced by AVERAGE_COVERING_ARRAY
has an upper bound that is logarithmic in the number of orbits of t-way
interactions to be covered. When the group is nontrivial, each row produced
then yields an orbit of rows. Compare the bound for the method with the
trivial group and with the cyclic group:

k k
N> lOgvz/(ug_l) ('Ut (t)) and N > vlogvt-x',(v‘_._l) (’Ut_l (t)) .

The bound for the cyclic group is better! (This can be verified by some
algebraic manipulation.) The surprise is therefore not that assuming the
action of a group can be better in theory, rather that it appears to be better
in practice as well.

The results produced by AVERAGE_COVERING.ARRAY are typically not
best possible, even when they are the best known. To explore this, we
applied post-optimization to the results in Table 1 from the Frobenius
group (which are the best produced here). In each case, post-optimization
succeeds in removing rows, certifying that the results obtained are not the
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best possible. At this time, it is impossible to assess how close the results
are to the best possible, because there is no useful lower bound with which
to compare.

Next we perform a more detailed set of computations for v = 3 and
t = 5. Here we examine both covering arrays and quilting arrays for various
families of species. Because of their application in the recursive methods
of [17], we examine three families of species: Sg = {{a,qa,b,b,c}}, Sz =Sgu
{{a,a,a,b,c}}, and Sg = S;U{{a, a, a, b, b}}. By restricting the interactions
to be covered to those whose species family is in S;, we produce quilting
arrays for this family. When a cyclic or Frobenius group acts, it does
not change the family of the species, and hence it partitions the set of all
interactions to cover into (full-length) orbits. For quilting arrays other than
covering arrays, there are no published results with which to compare. To
effect a comparison, we adapted the post-optimization technique to start
with a covering array and eliminate rows to form a quilting array.

We report results in Table 3. The first band of bounds is for covering
array numbers CAN(5, k, 3); the second is for Sg-QAN(5, k, 3), the third for
S7-QAN(5, k, 3), and the fourth for Sg-QAN(5, k,3). For covering arrays,
we report results from various direct constructions: [22] for & = 6, [15]
for k = 7, [38) for k = 8, and [37] for k € {10,13,16,19}. We report
results for simulated annealing [1,35,36]. Then we report results for Av-
ERAGE_COVERING_ARRAY with the trivial, cyclic, and Frobenius groups in
the rows labelled Dens, CD, and FD. Finally, we applied postoptimization
to each and report results in rows labelled *Dens, *CD, and *FD. The best
results are shown in boldface.

For quilting arrays for S,, s € {6,7,8}, the row labelled ‘Postop’ gives
the result obtained using post-optimization for quilting arrays applied to
all of the covering arrays with the same number of columns. Then rows
labelled ‘CDs’ and ‘FDs’ report results from AVERAGE_COVERING_ARRAY
applied to cover the interactions whose species family is in S,, and rows
labelled ‘*CDs’ and ‘*FDs’ report results after post-optimization.

When direct constructions are known, neither simulated annealing nor
the methods here outperform them. Simulated annealing yields the best
results when k is small, but as k increases, AVERAGE_COVERING_ARRAY
is the winner. Again, for covering arrays results for the Frobenius group
generally beat those for cyclic groups, which always beat those for the
trivial group.

AVERAGE_COVERING_ARRAY provides an effective method for the con-
struction of quilting arrays. In these cases, however, the relative perfor-
mance using the cyclic and Frobenius groups is not as predictable. This
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6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25

Direct
SA
Dens
CD
FD
*Dens
*CD
*FD

243 351 405 483 723
304 435 522 595 683 751 823 898 919
268 397 486 564 644 725 792 872 901

261 384 480 571 648 734 809 876 932
243 390 478 405 639 718 795 852 916

963 1197

405 405 405 550 600 880890 9441025 1117 11651190 1257 1310 1319 1382 1417 1440

9721072 1115 1162 1213 1256 1297 1345 1384 1422 1461

318 432 525 609 684 768 831 897 95410081071 1113 1167 1215 1257 1299 1338 1380 1416 145203
261 429 513 563 669 753 825 879 95110051065 1101 1155 1203 1251 1287 1317 1365 1401 1437 I

9601055 1107 1157 1206 1245 1290 1336 1378 1410 1454 »
9951055 1097 1157 1208 1245 1291 1334 1373 1410 14485
9811043 10831143 1191 123912761311 1360 13941435 !

Postop,
CDé
¥D6

*CD6
*FD6

225 345402402403 537 590 720 873
279 393 489 564 639 714 789 852 918
252 390 492 576 648 720 780 846 906

240 344 438 518 596 682 750 821 881

937 958 1068 1120 1169 1229 1286 1313 1358 1403 1437;
9661008 1071 1116 1158 1203 1245 1284 1323 1362 1395 E’
9721020 1068 1116 1158 1206 1248 1290 1332 1362 1404 3

242342 438 515 591 676 760 834 905 929 994 10501097 1147 1197 12401277 1313 13561390 o

94110001049 110311471196 1242 1280 13241355 1398 g

Postop|
CD7
FD7

*CD7
*FD7

180 288 348 361 365 491 539 714 772
180 321 420 492 564 630 684 741 795
180 318 402 492 558 624 684 744 798
180 290 367 451 525 585 658 706 765

826 893 940 994 1052 1123 1172 1217 1264 1316 13713
852 897 954 993 1038 1083 1125 1164 1200 1242 1269 —

846 894 948 996 1032 1080 1116 1158 1194 1230 1260‘;
824 883 939 979 1029 1077 1117 1155 1193 1235 1264 =

180 291 370 445 515 577 655 703 768 820 878 931 9831022107211081151 11851225 12552

Postop
CD8
¥D8
*CD8
*FD8

90162 243 298 363 430 491 551 610
90 195 267 309 402 468 516 582 642

669 728 781 833 887 964 1009 1051 1099 1151 1189
690 738 795 834 888 930 975 1014 1053 1089 1125

90 186 246 318 390 462 516 576 636 690 738 792 840 882 930 972 1008 1056 1092 1128
90162168 168 363 431489 555 611 662 721 778 823 880 920 962 1006 104510821118

90162168 289357 428 489550607 667 716 772 826 870 921 9621001 1048 1085 1121
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k Den SA CD FD| k Den SA CD FD|k Den SA CD FD
26 1504 1488 1491 1479|27 1534 1527 1527 151528 1569 1552 1545 1545
29 1606 1585 1578 1575)30 1635 1601 1611 1605|131 1673 1642 1638 1635
32 1691 1666 1662 1659(33 1733 1697 1698 1695(34 1756 1719 1719 1707
35 1780 1748 1746 174336 1813 1775 1776 1767(37 1845 1799 1797 1785
38 1872 1829 1827 182139 1895 1851 1846 1839(40 1920 1866 1863
41 1944 1890 1887142 1966 1923 1899(43 2001 1940 1935

44 2009 2089 194145 2044 2111 46 2066 2129

47 2083 2149 2007{48 2106 2168 2025(49 2129 2189

50 2149 2211 51 2085(52 2187 2103
53 211554 2133(55 2246 2157
56 2169(57 2187|58 2205
59 2211(60 2334 2229

TABLE 4. CA(N;5,k,3) for 26 < k < 60

serves as a warning, perhaps, that simply making the group larger does not
ensure a better (or even equal) result.

Table 4 reports further results for CA(N;; 5, k, 3).

Now we proceed to higher strength, bounds on CAN(6, k, 3). In Table 5
we report results for direct constructions: [22] for k = 7, [15] for k = 8, [37]
for k € {11,12,14}, and [37] with post-optimization for k = 9. We report
results for a variant of the In-Parameter-Order algorithm IPO (18], which
has until this time produced the most extensive set of computational results
for a variety of parameters. We report results from simulated annealing
(‘SA’) [1,35,36]. Finally we report results for AVERAGE_.COVERING_ARRAY
with the trivial and Frobenius groups, and the sizes that result after post-
optimization. Once again, when available the direct constructions provide
the best known results. In the remaining cases, while IPO is typically much
faster to compute, it is not competitive in terms of accuracy. The simu-
lated annealing results typically beat AVERAGE_COVERING_ARRAY with
the trivial group, but AVERAGE_.COVERING_ARRAY with the Frobenius
group beats simulated annealing when k > 16. With post-optimization,
the results from the Frobenius group are useful improvements on the pre-
viously best known bounds. Regarding the remarkably good results for
“*Dens’ when 15 < k < 19, a much larger number of covering arrays was
produced by AVERAGE_COVERING_ARRAY in these cases, and the best
post-optimized. To make the comparison of the different group assump-
tions fair, however, we report the sizes prior to post-optimization when the
numbers of repetitions and candidates used are similar.

In Table 6, we again examine quilting arrays with strength five, but
with four symbols. Here there are additional families of species: Sy =
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k Dir IPO SA Dens *Dens FD *FD

7 729 990 927 729
8 1152 1490 1391 1259 1395 1259
9 1431 1847 1452 1774 1713 1585
10 1449 2190 1849 2103 2031 1921
11 1449 2512 2136 2361 2211
12 2181 2815 2206 2670 2625 2516
13 3106 2721 3019 2865 2781
14 2907 3358 2920 3255 3117 3050
15 3623 3338 3504 3223 3351 3289
16 3863 3647 3598 3435 3585 3553
17 4095 3873 3884 3654 3777 3755
18 4310 4098 4096 3846 3993 3974
19 4509 4299 4308 4051 4179 4162
20 4701 4373 4508 4486 4371 4363
21 4890 4571 4698 4678 4545 4535
22 5073 4732 4874 4853 4707 4700
23 5239 4941 4857 4855
24 5409 5100 5199 5193 5037 5035
25 5564 5238 5181 5180
26 5709 5380 5355

27 5853 5667 5481

28 6003 5827 5631

29 6150 5969 5757

30 6281 6103 5883

TABLE 5. CA(N;6,k,3)

{{a,a,b,¢c,d}}, Ss = Sg U {{a,a,b,b,c}}, and S; = Sg U {{a,q,qa,b,c}},
and S¢ = 87 U {{a,a,a,b,b}}. The results reported are as for Table 3,
except that in this case only some of the relevant computations have been
undertaken. The direct constructions are from [22] when k = 6, [23] when
k=1, [38] when k = 8, [37] when k € {11,15}, [32] when & = 16, and [37]
with post-optimization when k = 9. The results for the trivial group are
reported only after post-optimization, and only when no suitable direct
construction is available. Again, for covering arrays the Frobenius group is
consistently better, but for quilting arrays the pattern is not clear.

Further results for CAN(5, k, 4) are given in Table 7, comparing the re-
sults for the trivial and the Frobenius groups. In Table 8, results for the
Frobenius group for CAN(6, k, 4) are compared with those from IPO.

We also report results when v = 5. In Table 9, we report results from
direct constructions from [22] when k = 6, (23] when k& = 7, and (3]

109



6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23

Dir

*Dens

CD
FD
*CD
*FD

1024 1536 1792 2032 2044 2044 3064 3064 3064 3064 4548
4672 5081 5298 5501 5698 5883 5992
1380 1856 2252 2620 2952 3280 3576 3848 4124 4372 4604 4836 5056 5264 5452 5656 5832 6008

1288 1804 2236 2584 2932 3220 3556 3808 4096 4360 4576 4804 5032 5224 5416 5632 5788 5968
1159 1686 2100 2464 2851 3184

1024 1675 2064 2451 2824 3138 4546 4784 5015 5210 5402 5626 5779 5959 «

P-o
CDé6
FD6
*CD6
*FD6

1020 1535 1791 2028 2040 2040 3049 3060 3060 3060 4544 4668 5070 5290 5497 5694 5879 5988 "
1288 1772 2168 2532 2860 3172 3472 3772 4024 4284 4516 4740 4944 5172 5356 5552 5728 5908
1248 1776 2172 2532 2880 3192 3480 3780 4020 4284 4536 4752 4992 5172 5376 5556 5736 5904")

1110 1613 2000 2368 2726 4494 4932 5157 5344 5541 5719 5901 +
1029 1597 2022 2378 2737 5898 &

P-o
CD7
FD7
*CD7
*FD7

840 15351791 2016 2034 2034 2990 3048 3060 3060 4512 4648 5014 5255 5455 5661 5858 5970 & g

1056 1620

864

848 1475

1481

1128 1644 2024 2396 2736 3048 3332 3632 3884 4132 4356 4592 4808 5000 5200 5392 5556 5732<1
2016 2388 2736 3060 3336 3636 3900 4152 4392 4596 4788 5016 5196 5400 5556 5736

1863 2240 2594 4334 4576 4786 4986 5192 5380 5546 5727 =
1882 2237 2598 4780 5186

P-o

CD8
FD8
*CD8
*FD8

600
752
636

600

600

1028
1148
1068
912
912

6. Quilti

1358 1757 2026 2034 2695 3003 3048 3048 3807 4081 4339 4596 4853 5123 5295 5562
1388 1812 2124 2420 2676 2964 3216 3456 3672 3900 4120 4312 4500 4692 4868 5032 9
1164 1752 2064 2376 2640 2916 3180 3420 3672 3912 4128 4320 4500 4704 4896 5064 3

912 1658 2008 2331 2591 2891 3648 3875 4100 4295 4486 4680 4861 5024ﬁ
912 1646 1991 2288 2556 2855 3156 3635 4486

P-o
CD9
FDg
*CD9
*FD9

360
420
420
362
384

610
676
672
613
608

805 1036 1296 1555 1800 2069 2290 2519 2761 2979 3204 3438 3695 3902 4107 4305
860 1128 1384 1604 1816 2056 2292 2492 2683 2908 3108 3292 3448 3640 3812 3972
732 1104 1368 1632 1824 2064 2292 2496 2688 2904 3084 3276 3444 3624 3804 3948
689 1024 1273 1509 1745 1994 2230 2449 2649 2874 3080 3272 3435 3632 3804 3961
6241011 1286 1531 1746 1995 2240 2452 2649 2872 3066 3255 3428 3610 3795 3945
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k Dens FD| k Dens FD| k Dens FD| k Dens FD| k& Dens FD
24 6249 6148(25 6427 6316/26 6578 6472|27 6862 6628(28 6948 6760
29 7040 6892(30 7156 702431 7324 7156|32 7446 7276|33 7571 7396
34 7698 7516(35 7820 7648|36 7732)37 7864)38 7972
39 8068|40 8364 8188|41 8260|42 8368(43 8476
44 856045 8632

TABLE 7. CA(N;5,k,4) for 24 <k < 45
k IPO FD| k IPO FD| k IPO FD
16 22608 20848 | 17 23947 22096 | 18 25212 23236
19 26392 24364 | 20 27534 25420
TABLE 8. CA(N;6,k,4) for 16 < k < 20
k Dir IPO MIPOG *MIPOG *Dens FD *FD
6 3125 4195 4205 3660
7 4375 5942 5744 5625 5100
8 5000 7349 6911 6865 6374
9 8629 6996 6634 7647 7965 7642
10 9796 8169 7666 8700 9045 8783
11 10862 9067 8554 9975 10025 9858
12 11889 9475 10925 10790
13 12851 11004 10598 12014 11785 11715
14 13748 11924 11592 12825 12605 12550
15 14578 12704 12534 13405 13365
16 15379 13469 13282 14348 14205 14180
17 16128 15797 14845 14824
18 16843 16479 15545 15526
19 17516 16937 16185 16170
20 18171 16958 16845 16836
21 18779 17596 17385 17376
22 19387 17925 17923
23 19941 18793 18485
24 20482 19045
25 21004 19840 19525
26 21518 20025
27 21999 20485
28 22488 20945
29 22929 21385
30 23369 21785
31 23789 22205
32 24205 22585

TABLE 9. CA(N;5,k,5)
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k  Dir IPO Dens FD *FD

7 15625 22100 22485 19339
8 25000 32822 31005 27776
9 41210 40963 38365 35696
10 49111 48347 45445 43461
11 56615 53314 52045 50872
12 63620 58465 57872
13 70190 64485 64152
14 72681 76390 70205 69944
15 82139 75605 75526
16 87559 80545 80537

TaBLE 10. CA(N;6,k,5)

when k = 8. We report results from IPO [18], and from a massively
parallel implementation of the IPO strategy, MIPOG [39]; for the latter
we also report results after post-optimization. Then we report results for
AVERAGE_COVERING_ARRAY with the trivial group and with the Frobe-
nius group, and also post-optimization results for the latter. While AVER-
ACE_COVERING_ARRAY with the trivial group always beats IPO, the sub-
stantial computational effort of MIPOG yields much better results. Nev-
ertheless, AVERAGE_COVERING_ARRAY with the Frobenius group yields a
clear improvement. While this still does not match the results from MI-
POG, it extends the range for which results can be obtained in a reasonable
time. Again we emphasize that none of these methods produce arrays that
are best possible; even the better results obtained by MIPOG admit sub-
stantial improvement via post-optimization.

Results for CAN(6, k, 5) are given in Table 10. The direct results are from
[22] when k = 7, [38] when k = 8, and a randomized method called Paintball
[25] when k = 14. While AVERAGE_COVERING_ARRAY with the Frobenius
group yields useful improvements here, the scale of the computation still
effectively restricts the application to relatively small values of k.

Finally we report results for v = 6. In these cases, the largest group
employed is the cyclic group, and comparisons are made with IPO. Table
11 gives results for CAN(4, k, 6), and Table 12 gives results for CAN(S5, k, 6).

We have only one useful result when v > 7, a CA(87661;5,19,7) using
the Frobenius group, at this time.

4. CONCLUDING REMARKS

AVERAGE_COVERING_ARRAY provides a general method for finding cov-
ering arrays and quilting arrays that is efficient when ¢ and v are fixed, and
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k IPO CD| k TIPO CDy} k IPO CD| & IPO CD
9 3374 316810 3713 3492(11 4011 375012 4295 4020
13 4553 4254(14 4800 4458|115 5024 4674[16 5248 4884
17 5449 5052|18 5650 5250|19 5841 543020 6015 5604
21 6186 5748]22 5352 590423 6508 6066)24 6662 6180
25 6809 633026 6953 6456]27 7087 660628 7226 6714
29 7348 6852|30 7473 696631 7598 709232 7711 7200
33 7825 7320(34 7931 7410|35 8044 750636 8154 7614
37 8255 7716|38 8357 781239 8455 790240 8550 7992
41 8646 8094|42 8740 8184|43 8823 8256)|44 8907 8352
45 8994 843646 9079 8508 (47 9161 858648 9240 8670
49 9323 8760|50 9393 8826|51 9466 891052 9550 8982
53 9623 905454 9696 9120|55 9762 9186

TABLE 11. CA(N;4,k,6)

k IPO CD|k IPO CD| k& IPO CD
17 40334 3720618 42102 39996 |19 43833 40548
20 45425 42048)21 46970 43536|22 49479 45018

TABLE 12. CA(N;5,k,6)

that always yields an array whose size is bounded by a constant multi-
ple of logk (the constant multiple being determined by the fixed values
of ¢t and v). Thus we can realize the promise of the Stein-Lovész-Johnson
paradigm when the parameters ¢, v, and k permit us to store and record
coverage information for all ¢-way interactions. More importantly, the same
can be achieved when a group acts on the symbols of the array. Not only
is there a concomitant reduction in the time and space required, there is
also an improvement on the bounds obtained both in theory and in prac-
tice. The implementation of the approach provides many improvements in
best known covering array numbers, typically yielding much better bounds
than the method would achieve if it indeed only obtained the average new
coverage in each row selected.

The surprising conclusion that imposing the action of a larger group
leads to a better bound, at the same time reducing time and storage, has
a lot of promise for developing methods in which covering arrays with
substantial symmetries are present. We expect this to yield covering array
generation algorithms that are both more practical and more accurate,
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