A Memory Efficient Algorithm for
Combinatorial-based Test Suite
Prioritization

Michael Burton
Computer Science, Utah State University,
Logan, UT 84322, USA
michael.burton@aggiemail.usu.edu

Tara Noble
Cognitive, Linguistic & Psychological Sciences, Brown University,

Providence, RI 02912, USA

Chelynn Day
Computer Science, Utah State University,
Logan, UT 84322, USA

Quentin Mayo
Computer Science, University of North Texas,
Denton, TX 76203, USA

March 12, 2014

Abstract

In testing web applications, details of user visits may be recorded
in a web log and converted to test cases. This is called user-session-
based testing and studies have shown that such tests may be effective
at revealing faults. However, for popular web applications with a
larger user base, many user-sessions may build up and test suite
management techniques are needed. In this paper, we focus on the
problem of test suite prioritization. That is, given a large test suite,
reorder the test cases according to a criterion that is hypothesized

JCMCC 90 (2014), pp. 123-137



to increase the rate of fault detection. Previous work shows that
2-way combinatorial-based prioritization is an effective prioritization
criterion. We develop a greedy algorithm where we consider memory
usage and the time that it takes to prioritize test suites. We represent
software tests in a graph by storing unique parameters as vertices and
n-way sets as edges or series of edges. Our experiments demonstrate
the efficiency of this approach.

1 Introduction

Test suite prioritization is useful for regression testing when an existing
piece of software or web application accumulates a large number of use
cases. As changes are made to the system, new tests may be added and
increase the overall size and time to execute a test suite. Running all of
these tests may take weeks in some cases [4]. One approach to managing
such large test suites is to prioritize the suite so that the “best” tests are run
first to detect faults as quickly as possible. Previous work has shown that
combinatorial-based criteria have provided a good rate of fault detection in
several studies [2]. In this work, we focus on an algorithm to provide such
prioritization.

The usage of t-way combinatorial testing may vary given the specifics
of the software or the requirements of the test, as discussed below, but in
general it describes any set of n parameters with their associated values.
One example of a single parameter and value (referred to throughout this
paper as a t-tuple) in a web application would be the name of a text box and
the value entered; a 2-way pair might include this tuple and the name and
value of a radio button checked on the next URL. Since existing research has
determined that many faults arise due to interaction between parameters,
[3) one way to prioritize a test suite is to first include test cases that cover
a significant number of n-way sets, or eliminate those tests which do not

include any additional sets.

Previous research has used greedy algorithms for combinatorial-based
testing with an existing test suite [2]. In a large test suite, implement-
ing these algorithms is non-trivial - particularly for n-way sets of size 3 or
greater. Because the number of sets grows exponentially with the number
of t-tuples represented in the test suite, and existing test suites may be
very large, the memory footprint and runtime of any program to imple-
ment these algorithms can present a problematic bottleneck. One intuitive
implementation would be to store all n-way sets as objects in hash tables,
in order to associate them with the covering test cases. When testing this
implementation with a 1,257 KB test suite file with 96 test cases using a

124



computer with a 2.5GHz dual core processor and 8GB of RAM we found
it could quickly prioritize by 2-way pairs. However, this same test also
resulted in the computer running out of memory when trying to prioritize
by 3-way sets. While some optimizations help alleviate this problem, none
provide the efficiency necessary to prioritize larger test suites without the
help of large amounts of extra RAM. Instead, the information must be
stored in a fundamentally different way, without redundancy. A sacrifice
in runtime might be unavoidable to make such changes, but is justified by
reduction in memory use. Storing all the information from the test suite
in a graph may allow efficient traversal within tight space constraints. The
graph represents n-way sets as connections between parameters, and as-
sociates these connections with the test cases that cover them. Although
this implementation does not have the benefit of constant time access and
there is a time and space demand to initially store the graph, it ultimately
provides greater utility by allowing the user to run much larger test suites.

2 Previous Research

S. Manchester (2012) provides an overview of the importance and challenges
of n-way combinatorial testing and regression testing with user sessions in
general. For an application seeded with faults, he found that both 2-way
and 3-way prioritization provide fault detection rates within 1% of each
other, and reducing by 2-way pair coverage detects up to 90% of the faults
present in the entire test suite [3]. Because 3-way prioritization generally
yields only slightly better fault coverage, and the time and memory require-
ments are much higher than for 2-way, combinatorial testing software will
often only be used to generate 2-way coverage. Therefore, such software
might justifiably be designed primarily for 2-way coverage use. By studying
known causes of medical device failures, Wallace and Kuhn[6] found that
most failures were caused by 2 or fewer parameters interacting. By testing
all pairs of parameters, 98% of problems could have been detected. In an-
other study however, Kuhn et al. [3] found that for a given web application,
2-way coverage revealed only 76% of all faults, while the remaining faults
could have been detected by covering larger sets of parameters. Thus, the
appropriate set size to cover will depend on the software and its internal
dependencies. For this reason, we wanted to maintain as much scalability
as possible within our algorithms to allow for coverage of larger sets.

Manchester also provides an overview of the open-source software Combinatoris
based Prioritization for User-session-based Testing (CPUT), which he uses
to implement the algorithms for 2- and 3-way coverage. The CPUT soft-
ware allows the user to take test cases, converted to XML format from an

125



Apache server log, and prioritize them using a number of different criteria.
It includes functionality to prioritize by 2- and 3- way sets, length, and a
number of frequency criteria. Many of the algorithms it implements take
only milliseconds to run on our 1,257 KB test suite. To run the 3-way
prioritization on the same suite required a computer with 16 GB RAM and
121.9 seconds.

To respond to this need for efficiency, we chose to fundamentally change
the underlying structure of the test suite data. Our goal then became two
fold: (1) use graph theory and any optimizations possible to improve mem-
ory use, both theoretically and experimentally, and (2) maintain enough
flexibility to quickly implement variations on the existing algorithms. Ulti-
mately we added functionality to prioritize using sequential, intra-window,
and consecutive 2-way set coverage as well as sequential 3-way set coverage.

3 Graph Implementation

We store three kinds of information in our graph. Vertices represent the
unique parameters in the test suite; in the case of a web application, a
parameter is defined by a unique URL, name, and value. Edges represent
all pairs of parameters present in the test suite. Finally, edges are associated
with the specific test cases which cover them. The test cases are represented
as objects in the program to allow for sorting, scoring, and display, but they
are not associated with any tuples or pairs, and so increase memory use by
only a small linear amount. On load, the graph is built as the XML file is
read, and remains unchanged throughout use of the program.

Because none of the prioritization algorithms implemented require infor-
mation about parameter names or values, t-tuples are stored only as unique
integers. On load, a separate encoding class maps each string representa-
tion of a t-tuple to an integer. This offers additional memory benefits and
reduces runtime during parameter comparison. This encoding class is used
by 3-way algorithms to compare URLs, but otherwise all parameters can be
handled as integers. This decision allowed us to build the entire graph as a
single array list, where each index corresponds to a vertex. An additional
optimization described below required that all parameters be encoded as
integers in the order in which they appear in the test suite.

126



Each index in the graph holds a list of edge objects, and each edge
object stores its connected vertex as an integer. That edge represents a
connection between the two vertices which is present in the test suite. In
addition to the connected vertex, the edge class contains three lists of test
cases. The lists are used with corresponding prioritizations and are ignored
if not applicable to the current prioritization criteria:

1. Forward test cases: all test cases which cover that pair of param-
eters in sequential order (the first parameter appears in the test case
before the second).

2. Backward test cases: all test cases which contain the current pair
in the opposite order. Backward test cases are added after the entire
forward graph is built; every forward test case for which the integer
value of the first parameter is greater than the integer value of the
second parameter are also stored as a backward test case. This adds
some redundancy to the system, but provides runtime benefits which
will be explained later. (A test case will not be added to the backward
test cases list if it is already in that edge’s forward test cases list.)

3. Consecutive test cases: all test cases which contain the pair in
sequential order and on consecutive URLs. In a test case, if a user
enters a value on one page and another value on the page that imme-
diately follows, that test case covers those two parameter values as a
consecutive pair and is added to that edge’s list of consecutive test
cases. This list is a subset of the list of forward test cases.

Each test case is stored in a single object, and lists point directly
to these objects. As mentioned above, there is some redundancy built into
these test case lists to allow for flexibility in scoring, but once the graph is
built it remains a constant size.

We originally treated pairs as identical, regardless of the order they
occurred in. However, we quickly added in support for additional types
of n-way pairs, including: sequential, consecutive, and intra-window. Se-
quential pairs are considered unique if they contain the same parameters
in a different order. Consecutive pairs are pairs of parameters between
consecutive URLs. Intra-window pairs are those between parameters on
the same URL. Because the edges created from intra-window pairs have no
intersection with any other edges in the graph, we store them in a separate
graph with the same internal structure. This improves efficiency when we
prioritize by these pairs, as we do not have to iterate through any non-intra-
window edges. Using the graph structure also allows existing prioritization
algorithms such as the Ant Colony Optimization described by Singh|[5], that

127



are based on graph theory, to be easily implemented since the prioritization
and data storage would require little to no change.

Algorithm 1: Create Graph

1 begin

2 textbfgraph be a list to store all the test suite’s unique parameters

8 textbfsessionList be a list of all the sessions in the test suite file
4 gsessionNumber = —1

5 foreach Session session in sessionList do

6 session Number + +

7 textbfcurrentCase be a test case object storing session’s data
8 textbfurlList be a list of all the URLs in session

9 foreach URL wurl in urlList do
10 foreach Parameter parem in url do
11 vertex = encode(url.name, param.name, param.value)
12 if vertex is not in graph then
13 add vertez to graph

end
end
end

14 foreach URL url; in the urlList do

18 foreach Parameter par; in url) do

16 foreach URL urly in urlList that is after urly do
17 if urly and urly refer to the same url then
18 skip to next urls

end

19 foreach Parameter parz in urly do
20 if par1 and parz make a new edge then
21 create a new edge and add it to the graph

end

22 if par; & pars make an existing edge then

238 add currentCase to the edge’s test case list
end
end
end
end
end
end
end

128



4 Prioritization Algorithm

The prioritization algorithm remains approximately the same for each n-
way pair option, with slight modifications. In essence, the list of test cases
of length n is sorted in place by iterating through the graph n times, each
time finding the next test case with the greatest number of unique, uncov-
ered pairs. More specifically, each test case contains a score for the given
prioritization selection; these scores are initially set to zero. We iterate
through each vertex in the graph, and each edge associated with that ver-
tex. We then iterate through the test cases covering that edge. If any of
those test cases has already been sorted, then the edge is considered cov-
ered and marked as such to increase speed on the next iteration. If the
edge is still uncovered, then the score of each test case which covers it is
incremented. During this process, we maintain a pointer to the test case
with the highest score, and when the graph has been completely traversed,
swap this test case with the first unsorted one in the list. The scores of
the unsorted tests are all reset to zero, and the next iteration begins. Dur-
ing sequential and consecutive prioritization, only the corresponding lists
of test cases are considered in the algorithm. During non-sequential pri-
oritization, both the backward and forward test case lists are considered,
but only on edges which go from a smaller vertex to a larger. In this way,
we are able to guarantee, without the need of checking for an edge in the
opposite direction, that no edges are counted twice.

Three-way sets pose an additional problem, as they are represented by
two edges as opposed to one. The three-way algorithm takes an extra step
by following each edge to its connected vertex, iterating through the edges
from this vertex, and taking the intersection of each edges test list with
the original. This generates a list of common test cases, whose scores we
then increment. This increases the runtime by a linear factor of the number
of test cases, and the only change in memory usage is storing the list of
common test cases. The same technique could be used to prioritize by
n-way sets of any size, with an additional increase in run time.

129



Algorithm 2: Pairwise Prioritization

1 begin
2 foreach Edge edge in Graph graph do
3 edge.Covered = false
end
4 for index = 0 to testList.Size —1 do
5 foreach unordered Test Case testCase in testList do
8 testCase.Score=0
end
7 highestScore = ~1
8 indexO f Highest = 1
9 foreach Vertex v; in Graph g do
10 foreach Edge e in v; do
11 if e.isCovered = true then
12 skip to the next e
end
18 va = e.getConnected Vertex()
14 if v1 > vz then
15 skip to the next vl
end
16 textbfallCases be a list of all the test cases in e
17 foreach ordered Test Case tCordered in testList do
18 foreach Test Case tCaliCases in e do
19 if tCordered & tCatiCases are equal then
20 e.isCovered = true
21 skip to the next e
end
end
22 foreach Test Case tc in allCases do
23 if te.currentIndex < testList.Size &
tc.currentIndex >= indez then
24 tc.Score++
end
25 if tc.Score > highestScore then
26 highestScore = tc.Score
27 indexO f Highest = tc.getCurrentIndex()
end
end
end
end
end
28 swap the test cases at indezOfHighest and index
end
end

130



5 Results

In the worst case, every parameter is linked to every other parameter in
every test. In this case, the program has a memory footprint of O(p?t),
where p is the total number of parameters in the entire test suite, and ¢ is
the number of test cases. There is a relatively low constant on this equation,
as very little information is stored in objects and almost none of it is stored
in multiple places. This usage remains nearly constant throughout use of
the program.

There is a small sacrifice in our theoretical runtime with this imple-
mentation. Because the graph is of size p?t, and we iterate through it ¢
times, the worst case runtime is at least pt2. However, since we must also
iterate through the each test case list to determine if the edge is covered by
a previous test case, the worst case is bounded by an additional factor of
t. With the added optimization of marking edges as covered, however, this
worst case is simplified enormously. Because the graph can only grow to
such a size if every test case contains every parameter, then finding any test
case will cover all the edges. This will be detected on the second iteration,
and decrease the runtime by a factor of ¢. Another potential "worst case”
for run time is that in which the parameters are evenly divided between
test cases (i.e., each test case contains ? parameters with no overlap). In
this case, the runtime will be (p?t? % 2), or p*t for 2-way prioritization.

Because the runtime and memory analysis of the graph implementation
depend on multiple factors and the constant is not immediately known, it
is worthwhile to analyze the program experimentally, particularly in com-
parison to a previous implementation.

Fig | - Time On Load Fig 2 - Memory On Load

a3

Seconds

@ Original Implementation | Original lmplcmcnl_nlion
M Graph Implementation B Graph [mplementation

Figures 1 and 2 display the time and memory usage of the program to

131



load in our sample test suite of 96 tests. This is where we see the biggest
drawback of our method - load time increases by roughly 5 times, and extra
memory is used.

Fig 3 - 2-Way Prioritization Time

2-Way 2-Way Seq
B Original Implementation 8 Graph Implementation

Fig4 - 2-Way Prioritization Memory

In figures 3 through 6, however, we easily see the benefit in both time
and memory use to this implementation. Where the original implementa-
tion must create and store an exponentially increasing number of additional
object representations for the n-way sets, the graph already represents this
information. This saves massive amounts of memory during 3-way priori-
tization and ultimately reduces runtime, as we see in figures 5 and 6.

132



Fig § - 3-Way Priositization Time

Scconds

3-Way 3-Way Seq
M Original Implementation M Geaph Implementation

Fig 6 - 3-Way Prioritization Mcmory
4000

3500
1000
2500
Z 2000
1500
1000

500 4—

3.Way 3-Way &q
M Original Implementation M Graph Implementation

The scalability of an algorithm is also an important factor in combina-
torial testing since test suites are continually growing. To determine the
algorithm’s scalability we did tests based on input file size growth as well as
internal data growth. Figures 7 and 8 show the memory usage and runtime
of both the old and new implementations as the file size of the test suite
increases. File size is not an ideal predictor of complexity, as it tells us very
little about the distribution of parameters within the test suite. Nonethe-
less, with a larger file, there will generally be more sets, which increases
memory use. The graphs show that due to the higher memory complex-
ity of the previous implementation, the memory requirements increase very
quickly, especially when compared to the new implementation.

133



Fig 7 - Memory Usage by File Size, 3-Way Prioritization

101 499 1326 1888
File Size (KB)

—s— Original Implementation —@— Graph Implementation

Fig 8 - Run Time by File Size, 3-Way Prioritization

Seconds

489 1326 1888

File Size (KB)
—&— Original Implementation ——Graph Implementation

101

134



Fig 9 - 4.5Ghz Run Time

Seconds

Fig 10 - Total Edges (n-way sets)

Edges (Billions)

For testing the scalability with respect to internal data growth we im-
plemented the standard and sequential prioritization methods for 4-way
and 5-way sets. The 4-way and 5-way set methods were only implemented
in the graph-based algorithm due to the fact that the previous algorithm’s
inability to handle them. These tests were run on a system with a 4.5Ghz
8-core processor and 16GB RAM. Figures 9 and 10 show the run time
growth and internal data growth. While the run time increases drastically
with the 5-way sets, it does so proportionally to the internal data and with-

135



out software or hardware failures. Future research will hopefully help to
at least reduce the amount of time required to run these prioritizations,
especially with CPUT being aimed at having a quick turn-around to give
web developers the time to correct any detected faults. During these tests
the algorithm’s memory usage had a maximum increase of 130MB, which
occurred when running the 5-way methods. This shows that with respect
to memory, despite the rapid growth of internal data and run time, the
algorithm has the capability of handling test suites that are much larger
and likely with even higher n-way set prioritizations. The low memory
usage may also provide insights for applications within restricted memory
environments such as those discussed by Bhadraf[l].

We believe that the basis of this methodology is highly flexible. As the
CPUT software demonstrates, using a graph to store information allows us
to define 2-way pairs combinatorially, sequentially, consecutively, or within
a URL. As discussed above, the implementation best supports 2-way cover-
age; other optimizations might be possible to improve the runtime on 3-way
sets or larger. When n is greater than 2, n-way consecutive sets become
more difficult to store and operate on, as edges do not hold information
about when they occur in each test case. If further research demonstrates
the need for larger consecutive set coverage, this functionality could be
added without the need of restructuring the graph by keeping a parameter
chronology within the test cases.

We use a separate graph to store intra-window pairs, but this is an op-
tional design choice. It adds a small amount of complexity while reducing
the size of each graph and therefore traversal time during prioritization.
Further research must be done into the relative effectiveness of the various
n-way set types in prioritization, as well as their distribution in the average
test suite; this knowledge would allow greater improvements and optimiza-
tions in the design of a graph to store such combinatorial information.

6 Conclusion

This work presents an algorithm for test suite prioritization by combinatorial-
based coverage. A major challenge in test suite prioritization by combinatorial-
based coverage occurs when test suites grow large and require significant
processing in terms of memory and time. Our graph-based approach pro-
vides a means to prioritize such test suites. Let us first acknowledge that
storing combinatorial testing information in a graph requires some sacri-
fices. There are additional time and memory demands made to build such

a graph as well as. These sacrifices were made in order to avoid two major

136



memory pitfalls associated with time efficiency, redundancy and exponen-
tial growth. We removed the redundancy of associating test cases with
pairs, and chose to store all information in lists rather than hash tables. In
both cases, this meant sacrificing constant time access, but we found that
the graph had very little use for these particular accesses and provided for
further memory reduction. Experimental results suggest that this change
offered worthwhile benefits to memory use. On an experimental dataset of
only 1,257 KB, our results show that the memory reduction will eventu-
ally offer a runtime advantage as well. Since this software is most useful
when applied to large test suites, which benefit greatly from prioritization,
memory efficiency is crucial.

References

[1] S. Bhadra, A. Conrad, C. Hurkes, B. Kirklin, G.M. Kapfhammer, An
experimental study of methods for ezecuting test suites in memory con-
strained environments. Automation of Software Test (2009),27-35.

[2] R.C. Bryce, S. Sampath, A.M. Memon, Developing a Single Model and
Test Prioritization Strategies for Event-Driven Software. IEEE Trans-
actions on Software Engineering 37(2011), 48-64.

(3] D.R. Kuhn, D.R. Wallace, A.M. Gallo Jr., Software fault interactions
and implications for software testing. IEEE Transactions on Software
Engineering 30(2004), 418-421

[4] G. Rothermel, R.H. Untch, Chengyun Chu, M.J. Harrold, Prioritizing
test cases for regression testing. IEEE Transactions on Software Engi-
neering 27(2001), 929-948.

[5) Yogesh Singh, Arvinder Kaur, and Bharti Suri, Test case prioritization
using ant colony optimization. SIGSOFT Softw. Eng. Notes 35(2010),
1-7.

[6] D.R. Wallace, D.R. Kuhn, Failure Modes in Medical Device Software:
An Analysis of 15 Years of Recall Data. Int. J. Rel. Qual. Saf. Eng.
8(2001), 351.

137



