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Abstract

* For a nontrivial connected graph G of order n and a cyclic order-
ing s:v1,v2,...,9n,Un41 = 1 of V(G), let d(s) = 37, d(vs, vit1),
where d(vi,vi+1) is the distance between v; and vy for 1 < ¢ <
n. The Hamiltonian number h(G) and upper Hamiltonian num-
ber h*(G) of G are defined as h(G) = min{d(s)} and h*(G) =
max{d(s)}, respectively, where the minimum and maximum are taken
over all cyclic orderings s of V(G). All connected graphs G with
h*(G) = h(G) and h*(G) = h(G) + 1 have been characterized in
6, 13]. In this note, we first present a new and much improved proof
of the characterization of all graphs whose Hamiltonian and upper
Hamiltonian numbers differ by 1 and then determine all pairs of inte-
gers that can be realized as the order and upper Hamiltonian number
of some tree.
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1 Introduction
For a nontrivial connected graph G of order n and a cyclic ordering s :

V1,V2,...4Un,Vn41 = vy of V(G), the number d(s) is defined in [6] as
d(s) = 37, d(vi,vig1), where d(v;,v;41) is the distance between v; and
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vi+1. Therefore, d(s) > n for each cyclic ordering s of V(G). The Hamilto-
nian number h(G) of G is defined in (6] by h(G) = min {d(s)}, where the
minimum is taken over all cyclic orderings s of V(G). Therefore, h(G) =n
if and only if G is Hamiltonian. In [7, 8] Goodman and Hedetniemi intro-
duced the concept of a Hamiltonian walk in a connected graph G, defined
as a closed spanning walk of minimum length in G. During the 10-year pe-
riod 1973-1983, this concept received considerable attention. For example,
Hamiltonian walks were also studied by Asano, Nishizeki, and Watanabe
[1, 2], Bermond (3], Nebesky [14], and Vacek [17]. It was shown in [6] that
the Hamiltonian number of a connected graph G is, in fact, the length of
a Hamiltonian walk in G. This concept was studied further by many (see
5, 11, 18], for example).

For a connected graph G, the upper Hamiltonian number h*(G) of G
is defined in [6] as h*(G) = max{d(s)}, where the maximum is taken
over all cyclic orderings s of V(G). Obviously, h*(G) > h(G) for every
connected graph G. Upper Hamiltonian numbers of graphs were studied
in [6, 9, 10, 11, 12, 15). Not surprisingly, h*(G) can be considerably larger
than h(G). In contrast, there are only two types of graphs G for which
h*(G) = h(G). Also, there are only four types of graphs G for which
h+(G) = h(G) + 1. These two facts were established in [6, 13].

Theorem 1.1 [6] Let G be a nontrivial connected graph. Then h(G) =
h*(G) if and only if G is a complete graph or a star.

The complement of a graph G is denoted by G. The join and union of
two graphs G and H are denoted by GV H and G + H, respectively.

Theorem 1.2 [13] Let G be a nontrivial connected graph of order n. Then
h*(@) —h(G) =1 if and only if n > 4 and G = K1V H, where H €
{Kia,..1,2: K1, 1,2 Kin-2, K1,n-2}.

The upper Hamiltonian numbers of trees have been studied in [6, 10, 11,
12, 15]. In particular, upper and lower bounds were established for h*(T)
of a tree T in terms of its order, as stated next.

Theorem 1.3 [6] Let T be a nontrivial tree of order n. Then 2(n—1) =
R(T) < h*(T) < |n?/2] . Furthermore, (i) h*(T) = 2(n — 1) if and only if
T is a star and (ii) A (T') = |n?/2] if and only if T is a path.

The proof of Theorem 1.2 presented in (6] was an extensive case-by-case
analysis and was very lengthy. In Section 2, we present a new and much
improved proof for Theorem 1.2. In Section 3, we determine all pairs of



integers that can be realized as the order and upper Hamiltonian number of
some tree. All graphs under consideration are nontrivial connected graphs.
We refer to the book [4] for graph-theoretical notation and terminology not
described in this paper.

2 A New Proof of a Charaterization

As mentioned earlier, we present a new proof for Theorem 1.2 in this section.
In order to do this, the following lemma will be useful.

Lemma 2.1 For a graph G, let G = K; VG and Go = K1 VG. Then
B*(G1) — h(G1) = h*(Ga) — h(Gy).

Proof. For a graph G of order n — 1 (> 1), construct each of G; and
G2 by adding a new vertex v and joining it to every vertex of G and
G, respectively. Let V = V(G,) = V(Gz). Since Gy = G2 = K if
n = 2, assume that n > 3. For every two distinct vertices u,v € V(G),
we have dg, (u,v) + dg,(u,v) = 3. Therefore, dg,(s) + dg,(s) = 3n —
2 for every cyclic ordering s of V. Let s; and s; be cyclic orderings of
V(G1) = V(Gq) such that dg,(s1) = h(G1) and dg,(s2) = h*(G3). Then
In—-2=dg,(s1)+dg,(s51) < h(Gl)+h+(G2) <dg, (32)+d02 (s2) =3n-2,
implying that h(G1) + h*(G2) = 3n — 2. We can similarly show that
h(G2) + h*(G1) = 3n — 2. Thus, ht(Gy) - h(Gy) = h+(G2) —h(G3). =

Theorem 2.2 Let G be a nontrivial connected graph of order n. Then
h*(G) -~ h(G) = 1 if and only if n > 4 and G = K, V H, where H €
{K11,..0,2,K11,..1,2 Ki,;n—2, K102}

Proof. Formn >4,let Hy = Ky,...12, Ho = Ky,,—3, H3 = K1 n—2, and
Hy = Ki,....1,2- Then it is straightforward to verify that h(Ky Vv Hy) =
n=ht(KiVH)-1, h(KiVH) =n+1=ht(K\VH;)—1, (K, VH;) =
2n—4= h+(K1 VH3) —1, and h(Kl VH4) =2n—-3= h+(K1 V.H4) -1.

For the converse, suppose that G is a connected graph of order n and
h*(G) — h(G) = 1. By Theorem 1.1, G is neither complete nor a star; thus
we may assume that n > 4.

We first show that G cannot contain a 4-path (vy,vs,vs,v4) Where
v1v3,v2vq ¢ E(G). If there is such a path, then let s; : vy, vo,va,vq,v1
and sz : v1,V3,V2,v4, V1. If n = 4, then both s; and s, are cyclic orderings
of V(G) and h(G) < d(s1) = d(v1,v4)+3 and h*(G) > d(sp) = d(vy,vs)+5.
Therefore, h*(G) — h(G) > 2. Similarly, if n > 5, then let s be a linear
ordering of V(G) — {v1,v2,vs,v4}. For i = 1,2, let s, be the cyclic order-
ing of V(G) obtained by inserting s between v4 and v; in s;. Then again



h*(G) — h(G) = d(sh) — d(s}) = 2. If h*(G) — h(G) = 1, therefore, then
G contains neither P; nor C; as an induced subgraph, which also implies
that diam(G) = 2 and A(G) = n — 1. Thus, G = K, V H for some graph
H of order n — 1. By Theorem 1.1, note that H is neither complete nor
empty. For n = 4, therefore, H € {K1,2, K1,2}-

Now assume that n > 5. We next show that none of 2K5, P4, and C;
is an induced subgraph in H. We have already seen that neither P4 nor
C; can be an induced subgraph in G, that is, neither is contained in H
as an induced subgraph. Also, 2K; = C4 cannot be an induced subgraph
in H by Lemma 2.1. For n = 5, therefore, H € {K1,1,2, K1,1,2, K1,3, K1,3}
or H € {Ho,Ho}, where Hy = K; + Ps. One can quickly verify that
h(Kl +Ho) =6= h+(K1 + Ho) — 2 and so h+(K1 -|-H0) — k(K1 + Hp) =
ht(K; + Ho) — h(K1 + Hp) = 2 by Lemma 2.1.

Finally, assume that n > 6. We next show that degyv € {0,1,n —
3,n — 2} for every v € V(H). Assume, to the contrary, that v, is a vertex
in H with 2 < degy v1 < n—4. Then let v, v3,v4,vs be vertices in H such
that vo and vs are adjacent to v; while v4 and vs are not. Let vp be the
vertex in G that is adjacent to every vertex in H. Then by considering two
orderings s : va, V1, 3, U4, Vo, Vs, V2 and Sg : vg, Vo, vs, Vs, V1, Vs, v2 (and by
inserting some fixed linear ordering of V(G) — {vo,v1,...,vs} between vs
and vs in each of s; and s; in case n > 7), we see that h*(G) — h(G) > 2.
This verifies the claim. Furthermore, A(H) € {1,n — 3,n — 2} since H
is nonempty. If A(H) = 1, then H = Kj3,....1,2 since 2Kz cannot be an
induced subgraph in H. Thus, we now consider the following two cases.
Let V(H) = {v1,v2,...,Un-1} and degy vy = A(H).

Case 1. A(H) = n—3. Then suppose that vivs ¢ E(H). Ifdegy v 2> 1,
say vovs € E(H), then we may assume that vavs ¢ E(H) since degg vz <
n— 3. However, this implies that the subgraph induced by {v;,v2,v3,v4} is
either Cy or Py, which cannot occur. Hence, degyve = 0. If H # K n_o,
then H = K1 +K) n—3 since degy v € {0,1,n—3,n—2} for every v € V(H).
To see that this cannot occur, observe that H is traceable and K; V H is
Hamiltonian while dj ,z(s) 2 n+2 for any cyclic ordering of V(K; V H)
whose first three terms are vs,v1,v4. Thus, h*(K; VH) — h(K; V H) =
h* (K, VH)-h(K; VF) > 2 by Lemma 2.1. Therefore, H = K} n_2 is the
only possibility in this case.

Case 2. A(H) =n—2. Then §(H) € {1,n—3} since H is not complete.
If there are two or more vertices having degree n—2 in H, then §(H) = n—3.
Furthermore, H = Kj,1,...,1,2 since Cy4 cannot occur as an induced subgraph
in H. On the other hand, if v; is the only vertex whose degree in H equals
n—2, then the number of end-vertices in H is either 1 or n—2. If the former




occurs, then # = K; + K. 1,n-3. However, this is impossible by Case 1 and
Lemma 2.1. Therefore, H = K} 3. =

3 A New Result on Upper Hamiltonian Num-
bers of Trees

For each edge e of a tree T', the component number cn(e) of e is defined in
[6] as the minimum order of a component of T — e. In 2008 a formula for
the upper Hamiltonian number of a tree T' was established in [12] in terms
of component numbers of the edges of T

Theorem'3.1 [12] IfT is a nonirivial tree, then h*(T) = 23, p(r) cn(e).

The upper Hamiltonian number of a nontrivial tree was studied further
in [10], where this number was expressed in terms of a distance parameter.
In order to present this result, we introduce some additional definitions.
For a connected graph G, the Hamiltonian spectrum H(G) of G is defined
in [9] as H(G) = {d(s) : s is a cyclic ordering of V(G)}. For a vertex v in
a connected graph G, the total distance td(v) of v is the sum of distances
from v to all other vertices. The minimum total distance over all vertices
of G is the median number of G and is denoted by med(G).

Theorem 3.2 [10] For a nontrivial tree T of order n, H(T) = {2k : k =
n—1,nn+1,...,med(T)}.

The following is a consequence of Theorem 3.2.
Corollary 3.3 For every nontrivial tree T, h*(T) = 2med(T).

According to Theorems 1.3, 3.1 and Corollary 3.3, the upper Hamil-
tonian number of a nontrivial tree of order n is an even integer between
2(n — 1) and |n?/2]. In fact, for each integer n > 2, every even integer
between 2(n—1) and |n2/2] is the upper Hamiltonian number of some tree
of order n. In order to show this, we first present some preliminary results.
A vertex of a connected graph G whose total distance equals med(G) is a
median vertez of G. The subgraph of G induced by its median vertices of G
is the median of G. The following two lemmas will be useful to us, the first
of which is an easy observation and the second of which was established by
Truszcezyriski [16].

Lemma 3.4 No end-vertez of a tree T of order at least 3 is @ median vertez
of T.



Lemma 3.5 The median of every connected graph G lies in a single block
of G.

It therefore follows by Lemma 3.5 that the median of a tree is isomorphic
to either K; or K. We are prepared to present the main result of this
section.

Theorem 3.6 For each pair n,k of integers satisfying 1l < n—-1<k <
|n2/4], there ezists a tree T of order n such that h*(T) = 2k.

Proof. By Theorem 1.3, the result holds when k € {n—1, |n%/4]}. Thus,
let n > 5 be a fixed integer and suppose that k is an integer such that
n+1 <k < [n?/4] and there exists a tree Tj of order n with h*(T}) = 2k.
We show that there exists a tree T of order n with A*(T) = 2(k — 1).

Let £ be a median vertex of Tk and select a vertex y furthest from
z. Thus, y is an end-vertex in T) while z is not by Lemma 3.4. Also,
tdr, (z) = med(Tk) = k by Corollary 3.3. Now consider the y — z geodesic
P = (y =v0,v1,V2,...,Ve(s) = T), Where e(z) is the eccentricity of z. Note
that e(z) > 2 since T} is not a star. Let T' be the tree obtained from T} by
deleting the edge vov; and adding the edge vovz. Then y is an end-vertex
in T while v; may or may not. We claim that med(T") = k — 1. For each
vertex v € V(T') — {y}, observe that

[ tdp () +1 ifve V(T
tdr(v) = { tdr, (v) —1 otherwise,

where T is the component of T — vyvp containing vy. Since tdr(y) >
med(T’) again by Lemma 3.4, it follows that med(T) = tdr(z) = k—1 and
so h*(T) = 2(k — 1) by Corollary 3.3. n

References

(1) T. Asano, T. Nishizeki, and T. Watanabe, An upper bound on the
length of a Hamiltonian walk of & maximal planar graph. J. Graph
Theory 4 (1980) 315-336.

[2] T. Asano, T. Nishizeki, and T. Watanabe, An approximation algorithm
for the Hamiltonian walk problems on maximal planar graphs. Discrete
Appl. Math. 5 (1983) 211-222.

[3] J.C. Bermond, On Hamiltonian walks. Congr. Numer. 15 (1976) 41-
51.



[4] G. Chartrand, L. Lesniak, and P. Zhang, Graphs & Digraphs: 5th
Edition, Chapman & Hall/CRC, Boca Raton, FL (2010).

[5] G. Chartrand, T. Thomas, V. Saenpholphat, and P. Zhang, On the
Hamiltonian number of a graph. Congr. Numer. 165 (2003) 51-64.

[6] G.Chartrand, T. Thomas, V. Saenpholphat, and P. Zhang, A new look
at Hamiltonian walks. Bull. Inst. Combin. Appl. 42 (2004) 37-52.

[7] S.E. Goodman and S.T. Hedetniemi, On Hamiltonian walks in graphs.
Congr. Numer. (1973) 335-342.

(8] S.E. Goodman and S.T. Hedetniemi, On Hamiltonian walks in graphs.
SIAM J. Comput. 3 (1974) 214-221.

[9] D. Krél, L.D. Tong and X. Zhu, Upper Hamiltonian numbers and
Hamiltonian spectra of graphs. Australas. J. Combin. 35 (2006) 329-

340.

{10] D. Liu, Hamiltonian Spectrum for Trees. Ars Combin. 99 (2011) 415-
419.

(11] F. Okamoto, V. Saenpholphat, and P. Zhang, Measures of traceability
in graphs. Math. Bohem. 131 (2006) 63-83.

[12] F. Okamoto, V. Saenpholphat, and P. Zhang, The upper traceable
number of a graph. Czech. Math. J. 58 (2008) 271-287.

(13] F. Okamoto and P. Zhang, A characterization of graphs whose Hamil-
tonian and upper Hamiltonian numbers differ by 1. Congr. Numer.
180 (2006) 120-144.

(14] L. Nebesky, A generalization of Hamiltonian cycles for trees. Czech.
Math. J. 26 (1976) 596-603.

(15] V. Saenpholphat and P. Zhang, Graphs with prescribed order and
Hamiltonian number. Congr. Numer. 175 (2005) 161-173.

(16] M. Truszczyniski, Centers and centroids of unicyclic graphs. Math. Slo-
vaca 35 (1985) 223-228.

(17] P. Vacek, On open Hamiltonian walks in graphs. Arch Math. (Brno)
27A (1991) 105-111.



