On the Strong Metric Dimension of Permutation Graphs

Eunjeong Yi

Texas A&M University at Galveston, Galveston, TX 77553, USA yie@tamug.edu

Abstract

A vertex x in a graph G strongly resolves a pair of vertices v, w if there exists a shortest x-w path containing v or a shortest x-v path containing w in G. A set of vertices $S \subseteq V(G)$ is a strong resolving set of G if every pair of distinct vertices of G is strongly resolved by some vertex in S. The strong metric dimension sdim(G) of a graph G is the minimum cardinality over all strong resolving sets of G. Let G_1 and G_2 be disjoint copies of a graph G and let $\sigma: V(G_1) \to V(G_2)$ be a permutation. Then a permutation graph $G_{\sigma} = (V, E)$ has the vertex set $V = V(G_1) \cup V(G_2)$ and the edge set $E = E(G_1) \cup E(G_2) \cup \{uv \mid$ $v = \sigma(u)$. We show that $2 \leq sdim(G_{\sigma}) \leq 2n-2$, if G is a connected graph of order $n \geq 3$; we also give an example showing that there is no function f such that $f(sdim(G)) > sdim(G_{\sigma})$ for all pairs (G, σ) . We prove that $sdim(G_{\sigma_0}) \leq 2sdim(G)$ for σ_0 the identity. Further, we characterize permutation graphs G_{σ} satisfying $sdim(G_{\sigma})$ equals 2n-2 or 2n-3 when G is a complete k-partite graph, a cycle, or a path on n vertices.

1 Introduction

Let G = (V(G), E(G)) be a finite, simple, undirected, and connected graph of order $|V(G)| = n \ge 2$. The distance between two vertices $v, w \in V(G)$, denoted by $d_G(v, w)$, is the length of the shortest path between v and w in G; we omit G when ambiguity is not a concern. The diameter, diam(G), of a graph G is given by $\max\{d(u, v) \mid u, v \in V(G)\}$. For a vertex $v \in V(G)$, the open neighborhood of v is the set $N_G(v) = \{u \mid uv \in E(G)\}$ and the closed neighborhood of v is the set $N_G(v) = \{u \mid uv \in E(G)\}$ and the closed neighborhood of v is the set $N_G(v) = \{u \mid uv \in E(G)\}$ more generally, for $v \in V(G)$, let $N_G^k[v] = \{u \in V(G) \mid d_G(u, v) \le k\}$; notice that $N_G^1[v] = N_G[v]$. The degree of a vertex $v \in V(G)$ is the the number of edges incident to the vertex v; an end-vertex (or leaf) is a vertex of degree

one. We denote by K_n , C_n , and P_n the complete graph, the cycle, and the path, respectively, on n vertices. For other terminologies in graph theory, refer to [5].

A vertex $x \in V(G)$ resolves a pair of vertices $v, w \in V(G)$ if $d(v, x) \neq 0$ d(w,x). A set of vertices $S \subseteq V(G)$ resolves G if every pair of distinct vertices of G is resolved by some vertex in S; then S is called a resolving set of G. For an ordered set $S = \{u_1, u_2, \dots, u_k\} \subseteq V(G)$ of distinct vertices, the (metric) representation of $v \in V(G)$ with respect to S is the k-vector $r_G(v|S) = (d(v, u_1), d(v, u_2), \dots, d(v, u_k))$. The metric dimension of G, denoted by dim(G), is the minimum cardinality over all resolving sets of G. Slater [21, 22] introduced the concept of a resolving set for a connected graph under the term locating set. He referred to a minimum resolving set as a reference set, and the cardinality of a minimum resolving set as the location number of a graph. Independently, Harary and Melter [12] studied these concepts under the term metric dimension. Metric dimension as a graph parameter has numerous applications, among them are robot navigation [15], sonar [21], combinatorial optimization [20], and pharmaceutical chemistry [3]. In [10], it is noted that determining the metric dimension of a graph is an NP-hard problem. Metric dimension has been extensively studied; for surveys, see [1, 6]. For more articles on the metric dimension of graphs, see [2, 7, 8, 9, 11, 13, 14, 18, 19].

A vertex $x \in V(G)$ strongly resolves a pair of vertices $v, w \in V(G)$ if there exists a shortest x-w path containing v or a shortest x-v path containing w. A set of vertices $S \subseteq V(G)$ strongly resolves G if every pair of distinct vertices of G is strongly resolved by some vertex in S; then S is called a strong resolving set of G. The strong metric dimension of G, denoted by sdim(G), is the minimum cardinality over all strong resolving sets of G. Sebö and Tannier [20] introduced strong metric dimension; they observed that if G is a strong resolving set, then the vectors $\{r_G(v|S) \mid v \in V(G)\}$ uniquely determine the graph G, i.e., if G is a graph with G is such that a strong resolving set G of G such that a strong resolving set G of G is also noted that if G is a resolving set, then the vectors G is also noted that if G is a resolving set, then the vectors G in [20], it is also noted that if G is a resolving set, then the vectors G is also noted that if G is a resolving set, then the vectors G in [20], it is also noted that if G is a resolving set, then the vectors G is a resolving set, then the vectors G is a noted that if G is a resolving set, then the vectors G is also noted that if G is a resolving set, then the vectors G is also noted that if G is a resolving set, then the vectors G is also noted that if G is a resolving set, then the vectors G is also noted that if G is a resolving set, then the vectors G is also noted that if G is a resolving set, then the vectors G is also noted that if G is a resolving set, then the vectors G is also noted that if G is a resolving set, then the vectors G is also noted that if G is a resolving set of G is also noted that if G is a resolving set of G is also noted that if G is a resolving set of G is also noted that if G is a resolving set of G is a resolving set of G is a negative set of G is a resolving set of G is a negative set of G is a resolving s

Chartrand and Harary [4] introduced a "permutation graph", which is also called a "generalized prism".

Definition 1.1. [4] Let G_1 and G_2 be disjoint copies of a graph G, and let $\sigma: V(G_1) \to V(G_2)$ be a permutation. A permutation graph $G_{\sigma} = (V, E)$ consists of the vertex set $V = V(G_1) \cup V(G_2)$ and the edge set $E = E(G_1) \cup E(G_2) \cup \{uv \mid v = \sigma(u)\}.$

In this paper, we study the strong metric dimension of permutation graphs. We show that $2 \leq sdim(G_{\sigma}) \leq 2n-2$, if G is a connected graph of order $n \geq 3$; we also give an example showing that there is no function f such that $f(sdim(G)) > sdim(G_{\sigma})$ for all pairs (G,σ) . We prove that $sdim(G_{\sigma_0}) \leq 2sdim(G)$ for σ_0 the identity. Further, we characterize permutation graphs G_{σ} satisfying $sdim(G_{\sigma})$ equals 2n-2 or 2n-3 when G is a complete k-partite graph, a cycle, or a path on n vertices.

2 Preliminaries on the strong metric dimension of graphs

We first recall the following observations.

Observation 2.1. (a) [20] For any graph G, $dim(G) \leq sdim(G)$.

- (b) [20] If T is a tree, then sdim(T) = L(T) 1, where L(T) denotes the number of leaves of T.
- (c) [17] If C_n is the cycle of order $n \geq 3$, then $sdim(C_n) = \lceil \frac{n}{2} \rceil$.
- (d) [17] If K_n is the complete graph of order $n \geq 2$, then $sdim(K_n) = n-1$.

We say that $u \in V(G)$ is maximally distant from $v \in V(G)$ if for every $w \in N_G(u)$, $d_G(w,v) \leq d_G(u,v)$. If u is maximally distant from v and v is maximally distant from u, then we say that u and v are mutually maximally distant. It was shown in [17] that if two vertices x and y are mutually maximally distant in G, then any strong resolving set of G must contain either x or y.

Theorem 2.2. [23] If G is a connected graph of order $n \geq 2$ and diameter d, then

$$f(n,d) \le sdim(G) \le n-d,$$

where f(n,d) is the least positive integer k for which $k+d^k \geq n$.

Next, we recall another upper bound of sdim(G) that is obtained in [16]. Two vertices $u, v \in V(G)$ are called *true twins* if $N_G[u] = N_G[v]$. We say that $X \subseteq G$ is a *twin-free clique* in G if X is a clique containing no true twins. The *twin-free clique number* of G, denoted by $\overline{\omega}(G)$, is the maximum cardinality among all twin-free cliques in G.

Theorem 2.3. [16] Let G be a connected graph of order $n \geq 2$. Then $sdim(G) \leq n - \overline{\omega}(G)$, where the equality holds when diam(G) = 2.

Next, we recall characterizations of graphs (of order $n \geq 2$) with strong metric dimension 1, n-1, or n-2.

Theorem 2.4. [23] Let G be a connected graph of order $n \geq 2$. Then

- (a) sdim(G) = 1 if and only if $G = P_n$,
- (b) sdim(G) = n 1 if and only if $G = K_n$,
- (c) for $n \geq 4$, sdim(G) = n-2 if and only if diam(G) = 2 and $\overline{\omega}(G) = 2$.

3 sdim(G) versus $sdim(G_{\sigma})$

In this section, we show that $2 \leq sdim(G_{\sigma}) \leq 2n-2$, if G is a connected graph of order $n \geq 3$; we also give an example showing that there is no function f such that $f(sdim(G)) > sdim(G_{\sigma})$ for all pairs (G, σ) . We prove that $sdim(G_{\sigma_0}) \leq 2sdim(G)$ for σ_0 the identity.

First, we obtain general bounds for the strong metric dimension of permutation graphs. If G is a connected graph of order 2, then $G \cong P_2$ and $sdim(G_{\sigma}) = 2$ for any permutation σ . So, we consider a connected graph G of order $n \geq 3$ for the rest of the paper.

Proposition 3.1. Let G be a connected graph of order $n \geq 3$, and let $\sigma: V(G_1) \to V(G_2)$ be a permutation. Then $2 \leq sdim(G_{\sigma}) \leq 2n - 2$.

Proof. Since G_{σ} contains a cycle, the lower bound follows from Theorem 2.4(a); for the sharpness of the lower bound, take $G = P_n$ and $\sigma = id$, the identity (see Lemma 6.1). Since $G_{\sigma} \not\cong K_{2n}$, the upper bound follows from Theorem 2.4(b); for an example of G_{σ} achieving the upper bound, take $G = C_5$ and $G_{\sigma} \cong \mathcal{P}$, the Petersen graph (see Theorem 5.1).

Next, we give an example showing that there is no function f such that $f(sdim(G)) > sdim(G_{\sigma})$ for all pairs (G, σ) .

Remark 3.2. There's no function f such that $f(sdim(G)) > sdim(G_{\sigma})$ for all pairs (G,σ) . Let $G = P_{2k}$, $V(G_1) = \{u_i \mid 1 \leq i \leq 2k\}$, and $V(G_2) = \{v_i \mid 1 \leq i \leq 2k\}$, where $k \geq 2$. Let $\sigma : V(G_1) \rightarrow V(G_2)$ be defined by $\sigma(u_{2i-1}) = v_{2i}$ and $\sigma(u_{2i}) = v_{2i-1}$, where $1 \leq i \leq k$ (see Figure 1). Then sdim(G) = 1 by Theorem 2.4(a), and $sdim(G_{\sigma}) \geq 2k-2$ since, for each j $(1 \leq j \leq k-1)$, u_{2j} and v_{2j+1} are mutually maximally distant and v_{2j} and v_{2j+1} are mutually maximally distant in G_{σ} .

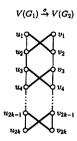


Figure 1: An example showing that there's no function f such that $f(sdim(G)) > sdim(G_{\sigma})$ for all pairs (G, σ)

Question. Is there an example showing that there's no function g such that $sdim(G) < g(sdim(G_{\sigma}))$ for all pairs (G, σ) ?

Next, we prove the following theorem, where $G \square K_2$ can be viewed as the permutation graph G_{σ_0} with $\sigma_0 = id$, the identity, on a connected graph G.

Theorem 3.3. For a connected graph G, $sdim(G \square K_2) \leq 2sdim(G)$, where $A \square B$ denotes the Cartesian product of two graphs A and B.

Proof. Let G_1 and G_2 be the two copies of G in $G \square K_2$. Let S be a minimum strong resolving set for G, and let $S_1 = \{w_1, w_2, \ldots, w_k\}$ and $S_2 = \{w_1', w_2', \ldots, w_k'\}$ be the minimum strong resolving set of G_1 and G_2 , respectively, corresponding to S. We will show that $S_1 \cup S_2$ is a strong resolving set for $G \square K_2$. Let $x, y \in V(G \square K_2) - (S_1 \cup S_2)$. We consider two cases.

Case 1: Either $\{x,y\} \subseteq V(G_1)$ or $\{x,y\} \subseteq V(G_2)$, say the former. Notice that $d_{G \square K_2}(x,w_i) = d_{G_1}(x,w_i)$ and $d_{G \square K_2}(y,w_i) = d_{G_1}(y,w_i)$ for $1 \leq i \leq k$. So, x and y are strongly resolved by a vertex in $S_1 \subseteq S_1 \cup S_2$.

Case 2: Either $x \in V(G_1)$ and $y \in V(G_2)$, or $x \in V(G_2)$ and $y \in V(G_1)$, say the former. Notice that $d_{G \square K_2}(x, w'_j) = d_{G \square K_2}(x, w_j) + 1 = d_{G_1}(x, w_j) + 1$ and $d_{G \square K_2}(y, w_j) = d_{G \square K_2}(y, w'_j) + 1 = d_{G_2}(y, w'_j) + 1$ for $1 \leq j \leq k$. If $d_{G_1}(x, w_j) \leq d_{G_2}(y, w'_j)$, then there exists a shortest $y - w_j$ path containing x in $G \square K_2$; if $d_{G_1}(x, w_j) > d_{G_2}(y, w'_j)$, then there exists a shortest $x - w'_j$ path containing y in $G \square K_2$. So, x and y are strongly resolved by a vertex in $S_1 \cup S_2$.

For the sharpness of the bound, take $G = C_{2m}$, an even cycle. By Observation 2.1(c), sdim(G) = m. We will show that $sdim(G \square K_2) = 2m$. Let $V(G_1) = \{u_i \mid 0 \le i \le 2m-1\}$ and $E(G_1) = \{u_i u_{i+1} \mid 0 \le i \le 2m-1\}$

 $2m-1 \pmod{2m}$; similarly, let $V(G_2) = \{v_i \mid 0 \le i \le 2m-1\}$ and $E(G_2) = \{v_i v_{i+1} \mid 0 \le i \le 2m-1 \pmod{2m}\}$. Notice that, for each $i \in \{0,1,\ldots,2m-1\}$, u_i and $v_{i+m} \pmod{2m}$ are mutually maximally distant in $G \square K_2$; thus $sdim(G \square K_2) \ge 2m$. Since $V(G_1)$ forms a strong resolving set for $G \square K_2$, $sdim(G \square K_2) \le 2m$. Thus, $sdim(G \square K_2) = 2m$. \square

4 The strong metric dimension of permutation graphs on complete k-partite graphs

In this section, we characterize permutation graphs G_{σ} such that $sdim(G_{\sigma})$ equals $|V(G_{\sigma})|-2$ or $|V(G_{\sigma})|-3$ when G is a complete k-partite graph. For $k \geq 2$, let $G=K_{a_1,a_2,\ldots,a_k}$ be a complete k-partite graph of order $n=\sum_{i=1}^k a_i \geq 3$. Throughout this section, let $V(G_1)$ be partitioned into k-partite sets V_1, V_2, \ldots, V_k , and let $V(G_2)$ be partitioned into k-partite sets V_1, V_2, \ldots, V_k , where $|V_i|=|V_i'|=a_i$ $(1 \leq i \leq k)$; further, for each i $(1 \leq i \leq k)$, let $V_i=\{u_{i,1},u_{i,2},\ldots,u_{i,a_i}\}$ and let $V_i'=\{u_{i,1}',u_{i,2}',\ldots,u_{i,a_i}'\}$.

Proposition 4.1. Let $G = K_n$ be the complete graph of order $n \geq 3$, and let $\sigma: V(G_1) \to V(G_2)$ be a permutation. Then $sdim(G_{\sigma}) = n$.

Proof. Since $diam(G_{\sigma})=2$ and $\overline{\omega}(G_{\sigma})=n$, $sdim(G_{\sigma})=n$ by Theorem 2.3.

Proposition 4.2. For $k \geq 2$, let $G = K_{a_1,a_2,...,a_k}$ be a complete k-partite graph of order $n = \sum_{i=1}^k a_i \geq 3$. Let s be the number of partite sets of G consisting of one element; if each $a_i \geq 2$ $(1 \leq i \leq k)$, let s = 0. Then

$$sdim(G) = \begin{cases} n-k & \text{if } s = 0\\ n+s-k-1 & \text{if } s \neq 0. \end{cases}$$

Proof. For $k \geq 2$, let $G = K_{a_1,a_2,...,a_k}$ be a complete k-partite graph of order $n = \sum_{i=1}^k a_i \geq 3$. If s = k, then $sdim(G) = sdim(K_n) = n-1$ by Observation 2.1(d). So, suppose that $G \not\cong K_n$ (i.e., $s \neq k$); notice that diam(G) = 2. If $0 \leq s \leq 1$, then $\overline{\omega}(G) = k$; thus sdim(G) = n-k by Theorem 2.3. If $2 \leq s < k$, then $\overline{\omega}(G) = k+1-s$; thus sdim(G) = n+s-k-1 by Theorem 2.3. \square

Next, we give bounds for the strong metric dimension of permutation graphs on complete k-partite graphs.

Lemma 4.3. For $k \geq 2$, let $G = K_{a_1,a_2,...,a_k}$ be a complete k-partite graph of order $n = \sum_{i=1}^k a_i \geq 3$. Then $2 \leq sdim(G_{\sigma}) \leq 2n - k$.

Proof. The lower bound follows from Proposition 3.1. The upper bound follows from Theorem 2.3, since $\overline{\omega}(G_{\sigma}) = k$.

Next, we characterize permutation graphs G_{σ} such that $sdim(G_{\sigma})$ equals $|V(G_{\sigma})|-2$ or $|V(G_{\sigma})|-3$ when G is a complete k-partite graph.

Theorem 4.4. For $k \geq 2$, let $G = K_{a_1,a_2,...,a_k}$ be a complete k-partite graph of order $n = \sum_{i=1}^k a_i \geq 3$. Then $sdim(G_{\sigma}) = 2n-2$ if and only if G_{σ} is isomorphic to one of the permutation graphs in Figure 2.

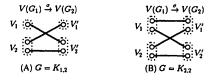


Figure 2: Permutation graphs G_{σ} on complete k-partite graphs with $sdim(G_{\sigma}) = 2|V(G)| - 2$

Proof. For $k \geq 2$, let $G = K_{a_1,a_2,...,a_k}$ be a complete k-partite graph of order $n = \sum_{i=1}^k a_i \geq 3$.

 (\Leftarrow) Suppose that G_{σ} is isomorphic to (A) or (B) of Figure 2. Since $diam(G_{\sigma}) = 2$ and $\overline{\omega}(G_{\sigma}) = 2$, $sdim(G_{\sigma}) = 2n - 2$ by Theorem 2.3.

 (\Longrightarrow) Suppose that $sdim(G_{\sigma})=2n-2$. We consider two cases.

Case 1: $|\sigma(V_i) \cap V_j'| \geq 2$ for some i, j, where $1 \leq i, j \leq k$. Assume that $\{\sigma(u_{i,1}), \sigma(u_{i,2})\} \subseteq V_j'$ by relabeling if necessary, where $1 \leq i, j \leq k$. Since $d_{G_{\sigma}}(u_{i,1}, \sigma(u_{i,2})) = 3$, $diam(G_{\sigma}) \geq 3$. Thus, $sdim(G_{\sigma}) \leq 2n - 3$ by Theorem 2.2.

Case 2: For each $i, j \ (1 \le i, j \le k), \ |\sigma(V_i) \cap V'_j| \le 1$. By Lemma 4.3, k = 2. Further, notice that $a_1 \le 2$ and $a_2 \le 2$; otherwise, two vertices of one partite set in G_1 must be mapped to the same partite set in G_2 . So, $G = K_{1,2}$ (see (A) of Figure 2) or $G = K_{2,2}$ (see (B) of Figure 2).

Theorem 4.5. For $k \geq 2$, let $G = K_{a_1,a_2,...,a_k}$ be a complete k-partite graph of order $n = \sum_{i=1}^k a_i \geq 3$. Then $sdim(G_{\sigma}) = 2n - 3$ if and only if G_{σ} is isomorphic to one of the permutation graphs in Figure 3 or G_{σ} is isomorphic to (C) of Figure 5.

Proof. For $k \geq 2$, let $G = K_{a_1,a_2,...,a_k}$ be a complete k-partite graph of order $n = \sum_{i=1}^k a_i \geq 3$; further, assume that $a_k \geq a_{k-1} \geq ... \geq a_2 \geq a_1$.

(\iff) First, suppose that G_{σ} is isomorphic to one of the permutation graphs in Figure 3. Then $diam(G_{\sigma}) = 2$ and $\overline{\omega}(G_{\sigma}) = 3$; thus $sdim(G_{\sigma}) = 2n - 3$ by Theorem 2.3.

Next, suppose that G_{σ} is isomorphic to (C) of Figure 5; we will show that $sdim(G_{\sigma})=2n-3$. Since $diam(G_{\sigma})=3$, $sdim(G_{\sigma})\leq 2n-3$ by Theorem 2.2. On the other hand, note that (i) any two vertices in $\{u_{2,1},u_{2,2},u'_{2,1},u'_{2,3}\}$ are mutually maximally distant in G_{σ} ; (ii) any two vertices in $\{u_{2,1},u_{2,3},u'_{2,1},u'_{2,2}\}$ are mutually maximally distant in G_{σ} ; (iii) $u_{1,1}$ and $u'_{1,1}$ are mutually maximally distant in G_{σ} . So, for any minimum strong resolving set S of G_{σ} , $|S| \geq 5 = 2n-3$; thus $sdim(G_{\sigma}) \geq 2n-3$. Therefore, $sdim(G_{\sigma}) = 5 = 2n-3$.

 (\Longrightarrow) Suppose that $sdim(G_{\sigma})=2n-3$. By Lemma 4.3, k=2 or k=3; otherwise, $k\geq 4$ and hence $sdim(G_{\sigma})\leq 2n-4$. Noting that $2 < diam(G_{\sigma}) \leq 3$, we consider two cases.

Case 1: $diam(G_{\sigma}) = 2$. That is, for each $i, j \ (1 \le i, j \le k), |\sigma(V_i) \cap V_j'| \le 1$; so, $a_{\ell} \le k$ for each $\ell \ (1 \le \ell \le k)$. By Theorem 2.3, $\overline{\omega}(G_{\sigma}) = 3$, and hence k = 3. So, (a_1, a_2, a_3) must take one of the following values: (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 2, 3), (1, 3, 3), (2, 2, 2), (2, 2, 3), (2, 3, 3), or <math>(3, 3, 3). If $(a_1, a_2, a_3) = (1, 3, 3)$, then two vertices in one partite set must be mapped to the same partite set, contradicting the assumption that $diam(G_{\sigma}) = 2$. One can readily check that there are 11 non-isomorphic permutation graphs G_{σ} such that $diam(G_{\sigma}) = 2$ and $\overline{\omega}(G_{\sigma}) = 3$ (see Figure 3).

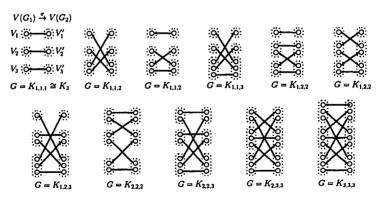


Figure 3: Permutation graphs G_{σ} on complete k-partite graphs with $diam(G_{\sigma}) = 2$ and $sdim(G_{\sigma}) = 2|V(G)| - 3$

Case 2: $diam(G_{\sigma}) = 3$. That is, $|\sigma(V_i) \cap V'_j| \ge 2$ for some i, j $(1 \le i, j \le k)$. By Lemma 4.3, k = 2 or k = 3. First, we consider k = 3. Assume

that $\sigma(u_{i,1})=u'_{j,1}$ and $\sigma(u_{i,2})=u'_{j,2}$ by relabeling if necessary, where $1\leq i,j\leq 3$. Since $V(G_\sigma)-\{u'_{x,1},u'_{y,1},u'_{j,1},u'_{j,2}\}$, where $x,y,j\in\{1,2,3\}$ are all distinct, forms a strong resolving set for G_σ , $sdim(G_\sigma)\leq 2n-4$. Next, we consider k=2. If G_σ contains one of the five configurations in Figure 4 as a subgraph, then $V(G_\sigma)-\{\sigma(x_1),\sigma(x_2),\sigma(x_3),\sigma(x_4)\}$ forms a strong resolving set for G_σ ; thus, $sdim(G_\sigma)\leq 2n-4$. Since $a_2\geq 4$ implies

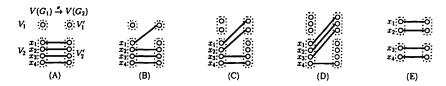


Figure 4: Subgraphs of G_{σ} on complete bi-partite graphs such that $diam(G_{\sigma}) = 3$ and $sdim(G_{\sigma}) \le 2|V(G)| - 4$

 $sdim(G_{\sigma}) \leq 2n-4$, $a_2 \leq 3$. So, (a_1,a_2) must take one of the following values: (1,2), (1,3), (2,2), (2,3), or (3,3). Among them, there are four non-isomorphic permutation graphs G_{σ} such that $diam(G_{\sigma}) = 3$ and G_{σ} does not contain (E) of Figure 4 as a subgraph. If G_{σ} is isomorphic to (A), (B), or (D) of Figure 5, then the solid vertices form a strong resolving set for G_{σ} , and thus $sdim(G_{\sigma}) \leq 2n-4$. If G_{σ} is isomorphic to (C) of Figure 5, then $sdim(G_{\sigma}) = 5 = 2n-3$ as shown earlier.

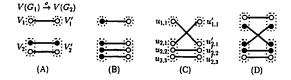


Figure 5: Permutation graphs G_{σ} on complete bi-partite graphs such that $diam(G_{\sigma}) = 3$ and G_{σ} does not contain any graph in Figure 4 as a subgraph

5 The strong metric dimension of permutation graphs on cycles

In this section, we characterize permutation graphs G_{σ} such that $sdim(G_{\sigma})$ equals $|V(G_{\sigma})|-2$ or $|V(G_{\sigma})|-3$ when G is a cycle C_n on $n\geq 3$ vertices. Throughout this section, let $V(G_1)=\{u_i\mid 1\leq i\leq n\}$ and let $E(G_1)=\{u_i\mid 1\leq i\leq n\}$

 $\{u_iu_{i+1} \mid 1 \le i \le n-1\} \cup \{u_1u_n\}; \text{ similarly, let } V(G_2) = \{v_i \mid 1 \le i \le n\}$ and let $E(G_2) = \{v_iv_{i+1} \mid 1 \le i \le n-1\} \cup \{v_1v_n\}.$

Theorem 5.1. Let $G = C_n$ be the cycle of order $n \geq 3$, and let $\sigma : V(G_1) \to V(G_2)$ be a permutation. Then $sdim(G_{\sigma}) = 2n - 2$ if and only if

- (i) n = 4 and $G_{\sigma} \ncong C_4 \square K_2$, or
- (ii) n=5 and $G_{\sigma} \cong \mathcal{P}$, the Petersen graph.

Proof. Let $G = C_n$ be the cycle of order $n \geq 3$.

(\iff) Suppose that G_{σ} is isomorphic to (B) of Figure 6 or (D) of Figure 7 (the Petersen graph \mathcal{P}). In each case, $diam(G_{\sigma}) = 2$ and $\overline{\omega}(G_{\sigma}) = 2$; thus $sdim(G_{\sigma}) = 2n - 2$ by Theorem 2.3.

 (\Longrightarrow) Suppose that $sdim(G_{\sigma})=2n-2$. By Theorem 2.4 (c), $diam(G_{\sigma})=2$ and $\overline{\omega}(G_{\sigma})=2$. We may assume that $\sigma(u_1)=v_1$ by relabeling if necessary. If $n\geq 6$, then $d_{G_{\sigma}}(u_1,u_4)=3$ and hence $diam(G_{\sigma})\geq 3$; thus $n\leq 5$. If n=3, then $\overline{\omega}(G_{\sigma})=3$ for any permutation σ . If n=4, G_{σ} is isomorphic to (A) or (B) of Figure 6 (see [4]): if G_{σ} is isomorphic to (A) of Figure 6, $diam(G_{\sigma})=3$; if G_{σ} is isomorphic to (B) of Figure 6, then $sdim(G_{\sigma})=2n-2$ as shown above. If n=5, one can easily check that $diam(G_{\sigma})=2$ implies that $G_{\sigma}\cong \mathcal{P}$ (the Petersen graph), and $sdim(\mathcal{P})=2n-2$ as shown above.

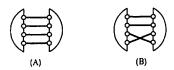


Figure 6: Two non-isomorphic permutation graphs G_{σ} for $G=C_4$

Theorem 5.2. Let $G = C_n$ be the cycle of order $n \geq 3$, and let $\sigma : V(G_1) \to V(G_2)$ be a permutation. Then $sdim(G_{\sigma}) = 2n - 3$ if and only if

- (i) n=3 (for any permutation σ), or
- (ii) n = 5 and G_{σ} is isomorphic to (C) of Figure 7.

Proof. Let $G = C_n$ be the cycle of order $n \geq 3$, and let $\sigma: V(G_1) \to V(G_2)$ be a permutation.

(\iff) If n=3, then $G_{\sigma}\cong C_3\square K_2$ (for any permutation σ); thus $sdim(G_{\sigma})=3=2n-3$ by Theorem 2.3, since $diam(G_{\sigma})=2$ and $\overline{\omega}(G_{\sigma})=3$

- 3. If G_{σ} is isomorphic to (C) of Figure 7, we will show that $sdim(G_{\sigma})=2n-3$. Note that (i) any two vertices in $\{u_1,u_4,v_2,v_4\}$ are mutually maximally distant in G_{σ} ; (ii) any two vertices in $\{u_3,v_1,v_3\}$ are mutually maximally distant in G_{σ} ; (iii) any two vertices in $\{u_2,v_3,v_5\}$ are mutually maximally distant in G_{σ} ; (iv) any two vertices in $\{u_2,u_5,v_5\}$ are mutually maximally distant in G_{σ} . Let S be a minimum strong resolving set for G_{σ} . If $v_3 \notin S$, then $S_0 = \{u_2,u_3,v_1,v_5\} \subseteq S$ by (ii) and (iii), and $|S-S_0| \ge 3$ by (i). If $v_3 \in S$, then $|S| \ge 7$ by (i), (ii), and (iv). In each case, $|S| \ge 7 = 2n-3$, and thus $sdim(G_{\sigma}) \ge 7 = 2n-3$. Since $diam(G_{\sigma}) = 3$, $sdim(G_{\sigma}) \le 2n-3$ by Theorem 2.2. Thus, $sdim(G_{\sigma}) = 2n-3$.
- $(\Longrightarrow) \text{ Suppose that } sdim(G_{\sigma}) = 2n-3. \text{ Let } \sigma(u_1) = v_1 \text{ by relabeling if necessary. By Theorem 2.2, } diam(G_{\sigma}) \leq 3; \text{ thus } n \leq 9; \text{ notice that } N_{G_{\sigma}}[u_1] = \{u_1, u_2, u_n, v_1\}, \ N_{G_{\sigma}}^2[u_1] = N_{G_{\sigma}}[u_1] \cup \{u_3, u_{n-1}, \sigma(u_2), \sigma(u_n), v_2, v_n\}, \text{ and } N_{G_{\sigma}}^3[u_1] \cap V(G_1) = [N_{G_{\sigma}}^2[u_1] \cap V(G_1)] \cup \{u_4, u_{n-2}, \sigma^{-1}(v_2), \sigma^{-1}(v_n)\}.$ We consider six cases.

Case 1: n=3 or n=4. If n=3, $sdim(G_{\sigma})=3=2n-3$ as shown above. If n=4, see Figure 6 for two non-isomorphic G_{σ} : (i) if G_{σ} is isomorphic to (A) of Figure 6, then $sdim(G_{\sigma}) \leq 2n-4$ since $V(G_1)$ forms a strong resolving set for G_{σ} ; (ii) if G_{σ} is isomorphic to (B) of Figure 6, then $sdim(G_{\sigma})=2n-2$ (see Theorem 5.1).

Case 2: n=5. There are four non-isomorphic permutation graphs G_{σ} (see Figure 7): (i) if G_{σ} is isomorphic to (A) or (B) of Figure 7, then $V(G_{\sigma}) - \{u_1, u_2, v_1, v_2\}$ forms a strong resolving set for G_{σ} , and thus $sdim(G_{\sigma}) \leq 2n-4$; (ii) if G_{σ} is isomorphic to (C) of Figure 7, $sdim(G_{\sigma}) = 2n-3$ as shown above; (iii) if G_{σ} is isomorphic to (D) of Figure 7, then $sdim(G_{\sigma}) = 8 = 2n-2$ (see Theorem 5.1).

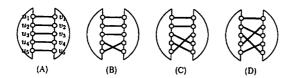


Figure 7: Four non-isomorphic permutation graphs G_{σ} for $G=C_{5}$

Case 3: n = 6. Since $diam(G_{\sigma}) \leq 3$, $G_{\sigma} \not\cong C_6 \square K_2$. We consider four subcases; in each case, we will show that $sdim(G_{\sigma}) \leq 2n - 4$.

Subcase 3.1: $P_4 \square K_2 \subseteq G_\sigma \not\subseteq P_6 \square K_2$. There is a unique G_σ up to isomorphism (see (A) of Figure 8). If G_σ is isomorphic to (A) of Figure 8, $V(G_\sigma) - \{u_2, u_3, u_4, v_3\}$ forms a strong resolving set for G_σ .

Subcase 3.2: $P_3 \square K_2 \subseteq G_\sigma \not\subseteq P_4 \square K_2$. Assume that $\sigma(u_i) = v_i$ for

i=1,2,3, by relabeling if necessary; then $\sigma(u_4) \in \{v_5,v_6\}$. If $\sigma(u_4) = v_5$, see (B) of Figure 8. If $\sigma(u_4) = v_6$, $d_{G_{\sigma}}(u_2,v_5) \leq 3$ implies that $\sigma(u_6) = v_5$; then G_{σ} is isomorphic to (B) of Figure 8. If G_{σ} is isomorphic to (B) of Figure 8, $V(G_{\sigma}) - \{u_3,v_2,v_3,v_4\}$ forms a strong resolving set for G_{σ} .

Subcase 3.3: $P_2 \square K_2 \subseteq G_\sigma \not\subseteq P_3 \square K_2$. Assume that $\sigma(u_i) = v_i$ for i = 1, 2, by relabeling if necessary. One can readily check that there are five non-isomorphic G_σ with $diam(G_\sigma) = 3$ (see (C), (D), (E), (F), and (G) of Figure 8). If G_σ is isomorphic to (C), (D), or (F) of Figure 8, $V(G_\sigma) - \{u_2, v_1, v_2, v_3\}$ forms a strong resolving set for G_σ ; if G_σ is isomorphic to (E) or (G) of Figure 8, $V(G_\sigma) - \{u_6, v_2, v_3, v_4\}$ forms a strong resolving set for G_σ .

Subcase 3.4: $G_{\sigma} \not\supseteq P_2 \square K_2$. One can easily check that there exists a unique G_{σ} with $diam(G_{\sigma}) = 3$, up to isomorphism (see (H) of Figure 8). If G_{σ} is isomorphic to (H) of Figure 8, $V(G_{\sigma}) - \{u_5, v_1, v_2, v_3\}$ forms a strong resolving set for G_{σ} .

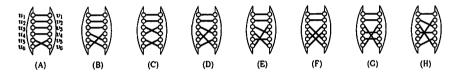


Figure 8: Permutation graphs G_{σ} for $G = C_6$ with $diam(G_{\sigma}) = 3$

Case 4: n = 7. Since $diam(G_{\sigma}) \leq 3$, G_{σ} does not contain $P_4 \square K_2$ as a subgraph: if $\sigma(u_i) = v_i$ for each $i \in \{1, 2, 3, 4\}$, then $d_{G_{\sigma}}(u_2, v_5) = 4$ or $d_{G_{\sigma}}(u_2, v_6) = 4$. We consider three subcases. In each case, we will show that $sdim(G_{\sigma}) \leq 2n - 4$.

Subcase 4.1: $P_3 \square K_2 \subseteq G_\sigma \not\subseteq P_4 \square K_2$. Assume that $\sigma(u_i) = v_i$ for i=1,2,3, by relabeling if necessary. Since $diam(G_\sigma) \le 3$, $d_{G_\sigma}(u_2,v_5) \le 3$ and $d_{G_\sigma}(u_2,v_6) \le 3$ imply that $\{\sigma(u_4),\sigma(u_7)\} = \{v_5,v_6\}$. There are two non-isomorphic G_σ with $diam(G_\sigma) = 3$ (see (A) and (B) of Figure 9). In each case, $V(G_\sigma) - \{u_2,v_1,v_2,v_3\}$ forms a strong resolving set for G_σ .

Subcase 4.2: $P_2 \square K_2 \subseteq G_\sigma \not\subseteq P_3 \square K_2$. Assume that $\sigma(u_i) = v_i$ for i=1,2, by relabeling if necessary. One can readily check that there are 9 non-isomorphic G_σ with $diam(G_\sigma)=3$ (see (C), (D), (E), (F), (G), (H), (I), (J), and (K) of Figure 9). If G_σ is isomorphic to (C), (E), or (F) of Figure 9, $V(G_\sigma) - \{u_3, v_3, v_4, v_5\}$ forms a strong resolving set for G_σ ; if G_σ is isomorphic to (D) of Figure 9, $V(G_\sigma) - \{u_3, v_4, v_5, v_6\}$ forms a strong resolving set for G_σ ; if G_σ is isomorphic to (G) of Figure 9, $V(G_\sigma) - \{u_6, v_2, v_3, v_4\}$ forms a strong resolving set for G_σ ; if G_σ is isomorphic to (H) of Figure 9, $V(G_\sigma) - \{u_4, v_3, v_4, v_5\}$ forms a strong resolving set for G_σ ; if G_σ is isomorphic to (I) of Figure 9, $V(G_\sigma) - \{u_6, v_5, v_6, v_7\}$ forms a

strong resolving set for G_{σ} ; if G_{σ} is isomorphic to (J) of Figure 9, $V(G_{\sigma}) - \{u_5, v_2, v_3, v_4\}$ forms a strong resolving set for G_{σ} ; if G_{σ} is isomorphic to (K) of Figure 9, $V(G_{\sigma}) - \{u_7, v_3, v_4, v_5\}$ forms a strong resolving set for G_{σ} .

Subcase 4.3: $G_{\sigma} \not\supseteq P_2 \square K_2$. Noting that $\sigma(u_1) = v_1$, one can readily check that there are three non-isomorphic G_{σ} with $diam(G_{\sigma}) = 3$ (see (L), (M), and (N) of Figure 9). In each case, $V(G_{\sigma}) - \{u_1, u_2, v_1, v_3\}$ forms a strong resolving set for G_{σ} .

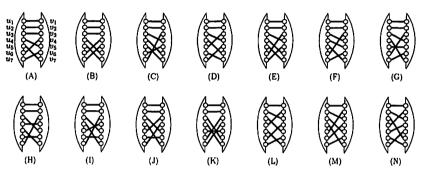


Figure 9: Permutation graphs G_{σ} for $G = C_7$ with $diam(G_{\sigma}) = 3$

Case 5: n=8. Since $diam(G_{\sigma}) \leq 3$, $d_{G_{\sigma}}(u_1,u_5) \leq 3$ implies that $\sigma(u_5) \in \{v_2,v_8\}$: assume that $\sigma(u_5)=v_2$ by relabeling if necessary. Similarly, $d_{G_{\sigma}}(v_2,v_6) \leq 3$ implies that $\sigma^{-1}(v_6) \in \{u_4,u_6\}$: we may assume that $\sigma^{-1}(v_6)=u_6$ by relabeling if necessary. Further, $d_{G_{\sigma}}(v_1,v_5) \leq 3$ implies that $\sigma^{-1}(v_5) \in \{u_2,u_8\}$.

First, we consider $\sigma^{-1}(v_5)=u_8$; we will show that $diam(G_\sigma)\geq 4$. Note that (i) $d_{G_\sigma}(u_6,u_2)\leq 3$ implies $\sigma(u_2)=v_7$; (ii) $d_{G_\sigma}(u_8,u_4)\leq 3$ implies $\sigma(u_4)=v_4$; (iii) $d_{G_\sigma}(v_7,v_3)\leq 3$ implies $\sigma(u_3)=v_3$ (see (B) of Figure 10). If G_σ is isomorphic to (B) of Figure 10, then $d_{G_\sigma}(u_3,u_7)=4$; thus $diam(G_\sigma)\geq 4$.

Next, suppose that $\sigma^{-1}(v_5)=u_2$ (see (A) of Figure 10). Notice that $\sigma(u_3)\in\{v_3,v_4,v_7,v_8\}$. If $\sigma(u_3)=v_3$, then $d_{G_\sigma}(u_3,u_7)\leq 3$ implies $\sigma(u_7)=v_4$, and $d_{G_\sigma}(v_3,v_7)\leq 3$ implies $\sigma(u_4)=v_7$ (see (A₁) of Figure 10). If $\sigma(u_3)=v_4$, then $d_{G_\sigma}(u_3,u_7)\leq 3$ implies $\sigma(u_7)=v_3$, and $d_{G_\sigma}(v_3,v_7)\leq 3$ implies $\sigma(u_8)=v_7$ (see (A₂) of Figure 10). If $\sigma(u_3)=v_7$, then $d_{G_\sigma}(u_3,u_7)\leq 3$ implies $\sigma(u_7)=v_8$, and $d_{G_\sigma}(v_7,v_3)\leq 3$ implies $\sigma(u_4)=v_3$ (see (A₃) of Figure 10). If $\sigma(u_3)=v_8$, then $d_{G_\sigma}(u_3,u_7)\leq 3$ implies $\sigma(u_7)=v_7$, and $d_{G_\sigma}(v_7,v_3)\leq 3$ implies $\sigma(u_8)=v_3$ (see (A₄) of Figure 10). One can easily check that (A₁), (A₂), (A₃), and (A₄) of Figure 10 are isomorphic. Since $V(G_\sigma)-\{u_2,u_3,v_3,v_5\}$ forms a strong resolving set for G_σ in (A₁) of Figure 10, $sdim(G_\sigma)\leq 2n-4$.

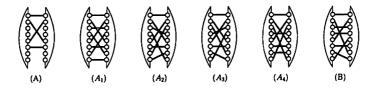


Figure 10: Permutation graphs G_{σ} for $G = C_8$

Case 6: n=9. Since $diam(G_{\sigma}) \leq 3$, $d_{G_{\sigma}}(u_1,u_5) \leq 3$ and $d_{G_{\sigma}}(u_1,u_6) \leq 3$ imply that $\{\sigma(u_5),\sigma(u_6)\}=\{v_2,v_9\}$: assume that $\sigma(u_5)=v_2$ and $\sigma(u_6)=v_9$ by relabeling if necessary. Similarly, $d_{G_{\sigma}}(v_1,v_5)\leq 3$ and $d_{G_{\sigma}}(v_1,v_6)\leq 3$ imply that $\{\sigma^{-1}(v_5),\sigma^{-1}(v_6)\}=\{u_2,u_9\}$ (see Figure 11). In each case, $d_{G_{\sigma}}(u_2,u_6)=4$, and thus $diam(G_{\sigma})\geq 4$.

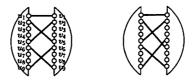


Figure 11: Subgraphs of permutation graphs G_{σ} for $G=C_9$

6 The strong metric dimension of permutation graphs on paths

In this section, we characterize permutation graphs G_{σ} such that $sdim(G_{\sigma})$ equals $|V(G_{\sigma})|-2$ or $|V(G_{\sigma})|-3$ when G is a path P_n on $n\geq 3$ vertices. Throughout this section, let $V(G_1)=\{u_i\mid 1\leq i\leq n\}$ and let $E(G_1)=\{u_iu_{i+1}\mid 1\leq i\leq n-1\}$; similarly, let $V(G_2)=\{v_i\mid 1\leq i\leq n\}$ and let $E(G_2)=\{v_iv_{i+1}\mid 1\leq i\leq n-1\}$.

Lemma 6.1. Let $G = P_n$ be the path of order $n \geq 3$, and let $id : V(G_1) \rightarrow V(G_2)$ be the identity. Then $sdim(G_{id}) = 2$.

Proof. Since $G_{id} \not\cong P_{2n}$, $sdim(G_{id}) \geq 2$ by Theorem 2.4(a). On the other hand, $sdim(G_{id}) \leq 2$ by Theorem 3.3 and the fact that $sdim(P_n) = 1$. Thus $sdim(G_{id}) = 2$.

Theorem 6.2. Let $G = P_n$ be the path of order $n \geq 3$, and let $\sigma : V(G_1) \rightarrow V(G_2)$ be a permutation. Then $sdim(G_{\sigma}) = 2n - 2$ if and only if n = 3 and $G_{\sigma} \ncong P_3 \square K_2$.

Proof. Let $G=P_n$ be the path of order $n\geq 3$. If n=3, then there are two non-isomorphic permutation graphs (see Figure 12): if G_σ is isomorphic to (A) of Figure 12, then $sdim(G_\sigma)=2<2n-2$ by Lemma 6.1; if G_σ is isomorphic to (B) of Figure 12, then $diam(G_\sigma)=2$ and $\overline{\omega}(G_\sigma)=2$, and thus $sdim(G_\sigma)=4=2n-2$ by Theorem 2.3. If $n\geq 4$, then $diam(G_\sigma)\geq 3$ since $d_{G_\sigma}(u_1,u_4)=3$; thus $sdim(G_\sigma)\leq 2n-3$ by Theorem 2.2.

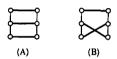


Figure 12: Two non-isomorphic permutation graphs G_{σ} for $G = P_3$

As an immediate consequence of Theorem 6.2, we have the following

Corollary 6.3. Let $G = P_n$ be the path of order $n \ge 4$, and let $\sigma : V(G_1) \to V(G_2)$ be a permutation. Then $2 \le sdim(G_{\sigma}) \le 2n - 3$.

Next, we characterize permutation graphs G_{σ} such that $sdim(G_{\sigma}) = |V(G_{\sigma})| - 3$ when G is a path.

Theorem 6.4. Let $G = P_n$ be the path of order $n \ge 4$, and let $\sigma : V(G_1) \to V(G_2)$ be a permutation. Then $sdim(G_{\sigma}) = 2n - 3$ if and only if

- (i) G_{σ} is isomorphic to (A) of Figure 13, or
- (ii) G_{σ} is isomorphic to one of the permutation graphs in Figure 14.

Proof. Let $G = P_n$ be the path of order $n \ge 4$, and let $\sigma: V(G_1) \to V(G_2)$ be a permutation.

 (\Leftarrow) Let S be a minimum strong resolving set for G_{σ} .

First, suppose that G_{σ} is isomorphic to (A) of Figure 13; we will show that $sdim(G_{\sigma})=2n-3$. Note that (i) the following pairs are mutually maximally distant in G_{σ} : $\{u_1,u_4\}$, $\{u_1,v_4\}$, $\{v_1,u_4\}$, and $\{v_1,v_4\}$; (ii) u_2 and v_2 are mutually maximally distant in G_{σ} ; (iii) u_3 and v_3 are mutually maximally distant in G_{σ} ; (iv) the following pairs are mutually maximally distant in G_{σ} : $\{u_3,v_4\}$ and $\{v_3,u_4\}$. By (i), $|S \cap \{u_1,u_4,v_1,v_4\}| \geq 2$. If $|S \cap \{u_1,u_4,v_1,v_4\}| \geq 3$, then $|S| \geq 5 = 2n-3$ by (ii) and (iii). If $|S \cap \{u_1,u_4,v_1,v_4\}| = 2$, say $S_0 = \{u_1,v_1\} \subseteq S$, by (i) and relabeling if

necessary, then $|S - S_0| \ge 3$ by (ii) and (iv). Thus, $sdim(G_{\sigma}) \ge 5 = 2n - 3$. Since $sdim(G_{\sigma}) \le 2n - 3$ by Corollary 6.3, we have $sdim(G_{\sigma}) = 5 = 2n - 3$.

Next, suppose that G_{σ} is isomorphic to one of the permutation graphs in Figure 14; we will show that $sdim(G_{\sigma})=2n-3$ in each case. Note that (i) since any two vertices in $\{u_1,u_4,v_1,v_4\}$ are mutually maximally distant in G_{σ} , $|S\cap\{u_1,u_4,v_1,v_4\}|\geq 3$; (ii) since u_2 and v_3 are mutually maximally distant in G_{σ} , $|S\cap\{u_2,v_3\}|\geq 1$; (iii) since u_3 and v_2 are mutually maximally distant in G_{σ} , $|S\cap\{u_3,v_2\}|\geq 1$. So, $|S|\geq 5=2n-3$, and hence $sdim(G_{\sigma})\geq 2n-3$. Since $sdim(G_{\sigma})\leq 2n-3$ by Corollary 6.3, we have $sdim(G_{\sigma})=2n-3$.

 (\Longrightarrow) Suppose that $sdim(G_{\sigma})=2n-3$. Then $diam(G_{\sigma})\leq 3$ by Theorem 2.2. We consider two cases.

Case 1: $\{\sigma(u_1), \sigma(u_n)\} \cap \{v_1, v_n\} \neq \emptyset$. We may assume that $\sigma(u_1) = v_1$, by relabeling if necessary. Notice that $N_{G_{\sigma}}[u_1] = \{u_1, u_2, v_1\}, \ N_{G_{\sigma}}^2[u_1] = N_{G_{\sigma}}[u_1] \cup \{u_3, v_2, \sigma(u_2)\}, \ \text{and} \ N_{G_{\sigma}}^3[u_1] \cap V(G_1) = [N_{G_{\sigma}}^2[u_1] \cap V(G_1)] \cup \{u_4, \sigma^{-1}(v_2)\}.$ Since $diam(G_{\sigma}) \leq 3, \ n \leq 5$.

First, we consider n=4. Noting that $sdim(P_4\square K_2)=2$ by Lemma 6.1, there are four non-isomorphic permutation graphs to consider (see (A), (B), (C), and (D) of Figure 13). In each case, $diam(G_\sigma)=3$. If G_σ is isomorphic to (A) of Figure 13, then $sdim(G_\sigma)=5=2n-3$ as shown above. If G_σ is isomorphic to (B), (C), or (D) of Figure 13, then $sdim(G_\sigma)\leq 2n-4$: (i) if G_σ is isomorphic to (B) of Figure 13, $V(G_\sigma)-\{u_1,u_2,v_1,v_2\}$ forms a strong resolving set for G_σ ; (ii) if G_σ is isomorphic to (C) of Figure 13, $V(G_\sigma)-\{u_1,u_2,u_3,v_1\}$ forms a strong resolving set for G_σ ; (iii) if G_σ is isomorphic to (D) of Figure 13, $V(G_\sigma)-\{u_2,u_3,u_4,v_3\}$ forms a strong resolving set for G_σ .

Next, we consider n=5. Since $diam(G_{\sigma}) \leq 3$, $d_{G_{\sigma}}(u_1, u_5) \leq 3$ implies that $\sigma^{-1}(v_2) = u_5$; similarly, $d_{G_{\sigma}}(v_1, v_5) \leq 3$ implies that $\sigma(u_2) = v_5$. If $\sigma(u_3) = v_4$ and $\sigma(u_4) = v_3$, then $d_{G_{\sigma}}(u_5, v_5) = 4$, and thus $diam(G_{\sigma}) \geq 4$. So, $\sigma(u_3) = v_3$ and $\sigma(u_4) = v_4$ (see (E) of Figure 13); here, notice that $V(G_{\sigma}) - \{u_4, u_5, v_2, v_4\}$ forms a strong resolving set for G_{σ} , and thus $sdim(G_{\sigma}) \leq 2n - 4$.

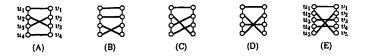


Figure 13: Permutation graphs G_{σ} for $G \in \{P_4, P_5\}$ such that $diam(G_{\sigma}) = 3$ and $\sigma(u_1) = v_1$

Case 2: $\{\sigma(u_1), \sigma(u_n)\} \cap \{v_1, v_n\} = \emptyset$. Then $N_{G_{\sigma}}[u_1] = \{u_1, u_2, \sigma(u_1)\}$, $N_{G_{\sigma}}^2[u_1] = N_{G_{\sigma}}[u_1] \cup \{u_3, \sigma(u_2)\} \cup N_{G_2}(\sigma(u_1))$, and $N_{G_{\sigma}}^3[u_1] \cap V(G_1) = [N_{G_{\sigma}}^2[u_1] \cap V(G_1)] \cup \{u_4, \sigma^{-1}(v_x), \sigma^{-1}(v_y)\}$, where $\{v_x, v_y\} = N_{G_2}(\sigma(u_1))$. Since $diam(G_{\sigma}) \leq 3$, $n \leq 6$. We consider three subcases.

Subcase 2.1: n=4. Assume that $\sigma(u_1)=v_2$ and $\sigma(u_4)=v_3$, by relabeling if necessary. There are two permutation graphs to consider (see Figure 14): in each case, $sdim(G_{\sigma})=2n-3$ as shown above.

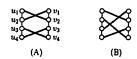


Figure 14: Permutation graphs G_{σ} for $G=P_4$ such that $\sigma(u_1)=v_2$ and $\sigma(u_4)=v_3$

Subcase 2.2: n = 5. We may assume that $\sigma(u_1) \in \{v_2, v_3\}$, by relabeling if necessary. If $\sigma(u_1)=v_2$, then $d_{G_{\sigma}}(u_1,u_5)\leq 3$ implies $u_5\in$ $\{\sigma^{-1}(v_1), \sigma^{-1}(v_3)\}; \text{ since } u_5 \neq \sigma^{-1}(v_1), u_5 = \sigma^{-1}(v_3). \text{ If } \sigma(u_1) = v_3,$ then $u_5 \in {\sigma^{-1}(v_2), \sigma^{-1}(v_4)}$, say $u_5 = \sigma^{-1}(v_4)$, by relabeling if necessary; here, notice that this configuration is isomorphic to G_{σ} satisfying $\sigma(u_1) = v_2$ and $u_5 = \sigma^{-1}(v_3)$. So, let $\sigma(u_1) = v_2$ and $\sigma(u_5) = v_3$. If $\sigma(u_2) = v_1, d_{G_{\sigma}}(v_1, v_5) \leq 3$ implies that $v_5 = \sigma(u_3)$ (see (A) of Figure 15); if $\sigma(u_2) = v_5$, $d_{G_{\sigma}}(v_5, v_1) \leq 3$ implies that $v_1 = \sigma(u_3)$ (see (D) of Figure 15); if $\sigma(u_2) = v_4$, see (B) and (C) of Figure 15. In each case, we will show that $sdim(G_{\sigma}) \leq n-4$: (i) if G_{σ} is isomorphic to (A) of Figure 15, $V(G_{\sigma}) - \{u_4, u_5, v_3, v_4\}$ forms a strong resolving set for G_{σ} ; (ii) if G_σ is isomorphic to (B) of Figure 15, $V(G_\sigma) - \{u_1, u_2, v_3, v_4\}$ forms a strong resolving set for G_{σ} ; (iii) if G_{σ} is isomorphic to (C) of Figure 15, $V(G_{\sigma}) - \{u_5, v_2, v_3, v_4\}$ forms a strong resolving set for G_{σ} ; (iv) if G_{σ} is isomorphic to (D) of Figure 15, $V(G_{\sigma}) - \{u_2, u_3, v_1, v_2\}$ forms a strong resolving set for G_{σ} .

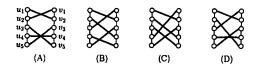


Figure 15: Permutation graphs G_{σ} for $G = P_5$ such that $diam(G_{\sigma}) = 3$ and $\{\sigma(u_1), \sigma(u_5)\} \cap \{v_1, v_5\} = \emptyset$

Subcase 2.3: n=6. We may assume that $\sigma(u_1)\in\{v_2,v_3\}$, by relabeling if necessary. If $\sigma(u_1)=v_2$, then $d_{G_\sigma}(u_1,u_5)\leq 3$ and $d_{G_\sigma}(u_1,u_6)\leq 3$ im-

ply that $\{\sigma^{-1}(v_1), \sigma^{-1}(v_3)\} = \{u_5, u_6\}$; since $u_6 \neq \sigma^{-1}(v_1), \sigma^{-1}(v_1) = u_5$ and $\sigma^{-1}(v_3) = u_6$ (see (A) of Figure 16). If G_{σ} contains (A) of Figure 16 as a subgraph, then $d_{G_{\sigma}}(v_1, v_5) = 4$ or $d_{G_{\sigma}}(v_1, v_6) = 4$; thus $diam(G_{\sigma}) \geq 4$. If $\sigma(u_1) = v_3$, then $d_{G_{\sigma}}(u_1, u_5) \leq 3$ and $d_{G_{\sigma}}(u_1, u_6) \leq 3$ imply that $\{\sigma^{-1}(v_2), \sigma^{-1}(v_4)\} = \{u_5, u_6\}$: if $\sigma^{-1}(v_2) = u_6$ and $\sigma^{-1}(v_4) = u_5$ (see (B) of Figure 16), then $d_{G_{\sigma}}(v_2, v_6) = 4$, and hence $diam(G_{\sigma}) \geq 4$; thus, $\sigma^{-1}(v_2) = u_5$ and $\sigma^{-1}(v_4) = u_6$. If $\sigma^{-1}(v_6) \neq u_4$ (see (C) of Figure 16), then $d_{G_{\sigma}}(v_2, v_6) = 4$, and thus $diam(G_{\sigma}) \geq 4$. So, $\sigma(u_4) = v_6$ and $\{\sigma(u_2), \sigma(u_3)\} = \{v_1, v_5\}$. If $\sigma(u_2) = v_1$ and $\sigma(u_3) = v_5$, then $d_{G_{\sigma}}(v_1, v_6) = 4$, and hence $diam(G_{\sigma}) \geq 4$; thus $\sigma(u_2) = v_5$ and $\sigma(u_3) = v_1$ (see (D) of Figure 16). If G_{σ} is isomorphic to (D) of Figure 16, then $diam(G_{\sigma}) = 3$ and $V(G_{\sigma}) - \{u_5, v_2, v_3, v_4\}$ forms a strong resolving set for G_{σ} ; thus $sdim(G_{\sigma}) \leq 2n - 4$.

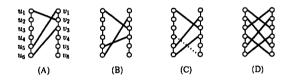


Figure 16: Permutation graphs G_{σ} for $G = P_6$ such that $\{\sigma(u_1), \sigma(u_6)\} \cap \{v_1, v_6\} = \emptyset$

References

- R.F. Bailey and P.J. Cameron, Base size, metric dimension and other invariants of groups and graphs. *Bull. London Math. Soc.* 43(2) (2011) 209-242.
- [2] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara and D.R. Wood, On the metric dimension of Cartesian products of graphs. SIAM J. Discrete Math. 21, Issue 2 (2007) 423-441.
- [3] G. Chartrand, L. Eroh, M.A. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph. *Discrete Appl. Math.* 105 (2000) 99-113.
- [4] G. Chartrand and F. Harary, Planar permutation graphs. Ann. Inst. H. Poincare (Sect. B) 3 (1967) 433-438.
- [5] G. Chartrand and P. Zhang, Introduction to graph theory. McGraw-Hill, Kalamazoo, MI (2004).

- [6] G. Chartrand and P. Zhang, The theory and applications of resolvability in graphs. A Survey. Congr. Numer. 160 (2003) 47-68.
- [7] L. Eroh, P. Feit, C.X. Kang and E. Yi, The effect of vertex or edge deletion on metric dimension of graphs. *submitted*.
- [8] L. Eroh, C.X. Kang and E. Yi, A comparison between the metric dimension and zero forcing number of trees and unicyclic graphs. submitted.
- [9] L. Eroh, C.X. Kang and E. Yi, A comparison between the metric dimension and zero forcing number of line graphs. *submitted*.
- [10] M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory of NP-completeness. Freeman, New York (1979).
- [11] M. Hallaway, C.X. Kang and E. Yi, On metric dimension of permutation graphs. J. Comb. Optim. to appear.
- [12] F. Harary and R.A. Melter, On the metric dimension of a graph. Ars Combin. 2 (1976) 191-195.
- [13] C. Hernando, M. Mora, I.M. Pelayo, C. Seara and D.R. Wood, Extremal graph theory for metric dimension and diameter. *Electron. J. Combin.* 17(1) (2010) #R30.
- [14] M. Jannesari and B. Omoomi, Characterization of *n*-vertex graphs with metric dimension n-3. arXiv:1103.3588v1.
- [15] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs. Discrete Appl. Math. 70(3) (1996) 217-229.
- [16] D. Kuziak, I.G. Yero and J.A. Rodríguez-Velázquez, On the strong metric dimension of corona product graphs and join graphs. arXiv:1204.0495v1.
- [17] O.R. Oellermann and J. Peters-Fransen, The strong metric dimension of graphs and digraphs. Discrete Appl. Math. 155 (2007) 356-364.
- [18] C. Poisson and P. Zhang, The metric dimension of unicyclic graphs. J. Combin. Math. Combin. Comput. 40 (2002) 17-32.
- [19] S. W. Saputro, E.T. Baskoro, A.N.M. Salman and D. Suprijanto, The metric dimension of a complete n-partite graph and its Cartesian product with a path. J. Combin. Math. Combin. Comput. 71 (2009) 283-293.

- [20] A. Sebö and E. Tannier, On metric generators of graphs. *Math. Oper.* Res. 29(2) (2004) 383-393.
- [21] P.J. Slater, Leaves of trees. Congr. Numer. 14 (1975) 549-559.
- [22] P.J. Slater, Dominating and reference sets in a graph. J. Math. Phys. Sci. 22 (1998) 445-455.
- [23] E. Yi, On strong metric dimension of graphs and their complements. Acta Math. Sin. (Engl. Ser.) to appear.