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Let G = (V(G), E(G)) be a finite, simple, undirected, and connected graph
of order |V(G)| = n > 2. The distance between two vertices v, w € V(G),
denoted by dg(v, w), is the length of the shortest path between v and w in
G; we omit G when ambiguity is not a concern. The diameter, diam(G), of
a graph G is given by max{d(u,v) | u,v € V(G)}. For a vertex v € V(Q),
the open neighborhood of v is the set Ng(v) = {u | wv € E(G)} and the
closed neighborhood of v is the set Ng[v] = Ng(v) U {v}. More gener-
ally, for v € V(G), let N§[v] = {u € V(G) | do(u,v) < k}; notice that
Ng[v] = Ng[v]. The degree of a vertex v € V(G) is the the number of
edges incident to the vertex v; an end-vertez (or leaf) is a vertex of degree
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Abstract

A vertex z in a graph G strongly resolves a pair of vertices v, w if
there exists a shortest £—w path containing v or a shortest x—v path
containing w in G. A set of vertices S C V(G) is a strong resolving set
of G if every pair of distinct vertices of G is strongly resolved by some
vertex in S. The strong metric dimension sdim(G) of a graph G is the
minimum cardinality over all strong resolving sets of G. Let G; and
G: be disjoint copies of a graph G and let o : V(G;1) = V(G2) be a
permutation. Then a permutation graph G, = (V, E) has the vertex
set V = V(G1) UV(G2) and the edge set E = E(G1)UE(G2)U {uv |
v = o(u)}. We show that 2 < sdim(G,) < 2n—2, if G is a connected
graph of order n > 3; we also give an example showing that there is
no function f such that f(sdim(G)) > sdim(G.,) for all pairs (G, o).
We prove that sdim(Go,) < 2sdim(G) for oo the identity. Further,
we characterize permutation graphs G, satisfying sdim(G,) equals
2n — 2 or 2n — 3 when G is a complete k-partite graph, a cycle, or a
path on n vertices.
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one. We denote by K,,, Cp, and P, the complete graph, the cycle, and the
path, respectively, on n vertices. For other terminologies in graph theory,
refer to [5].

A vertex z € V(G) resolves a pair of vertices v,w € V(G) if d(v,z) #
d(w,z). A set of vertices S C V(G) resolves G if every pair of distinct ver-
tices of G is resolved by some vertex in S; then S is called a resolving set
of G. For an ordered set S = {u1,uz,...,ux} C V(G) of distinct vertices,
the (metric) representation of v € V(G) with respect to S is the k-vector
ra(v]S) = (d(v,u1),d(v, ug),...,d(v,ux)). The metric dimension of G, de-
noted by dim(G), is the minimum cardinality over all resolving sets of G.
Slater (21, 22] introduced the concept of a resolving set for a connected
graph under the term locating set. He referred to a minimum resolving set
as a reference set, and the cardinality of a minimum resolving set as the
location number of a graph. Independently, Harary and Melter [12] studied
these concepts under the term metric dimension. Metric dimension as a
graph parameter has numerous applications, among them are robot navi-
gation [15], sonar [21], combinatorial optimization [20], and pharmaceutical
chemistry [3]. In [10), it is noted that determining the metric dimension
of a graph is an NP-hard problem. Metric dimension has been extensively
studied; for surveys, see [1, 6]. For more articles on the metric dimension
of graphs, see (2, 7, 8, 9, 11, 13, 14, 18, 19].

A vertex z € V(G) strongly resolves a pair of vertices v,w € V(G) if
there exists a shortest z —w path containing v or a shortest z — v path con-
taining w. A set of vertices S C V(G) strongly resolves G if every pair of dis-
tinct vertices of G is strongly resolved by some vertex in S; then S is called
a strong resolving set of G. The strong metric dimension of G, denoted by
sdim(G), is the minimum cardinality over all strong resolving sets of G.
Seb6 and Tannier [20] introduced strong metric dimension; they observed
that if S is a strong resolving set, then the vectors {rg(v|S) | v € V(G)}
uniquely determine the graph G, i.e., if H is a graph with V(H) = V(G)
such that a strong resolving set S of H satisfies ry(v|S) = ra(v|S) for
all v € V(H) = V(G), then H = G. In [20], it is also noted that if S is
a resolving set, then the vectors {rg(v|S) | v € V(G)} may not uniquely
determine G. In [17), Oellermann and Peters-Fransen showed that deter-
mining the strong metric dimension of a graph is an NP-hard problem. For
more articles on the strong metric dimension of graphs, see [16, 23].

Chartrand and Harary [4] introduced a “permutation graph”, which is
also called a “generalized prism”.



Definition 1.1. [4] Let G; and G2 be disjoint copies of a graph G, and
let o : V(G)) = V(G2) be a permutation. A permutation graph G, =
(V,E) consists of the vertex set V = V(G;) U V(G2) and the edge set
E = E(G1)U E(G2) U {uv | v = o(u)}.

In this paper, we study the strong metric dimension of permutation
graphs. We show that 2 < sdim(G,) < 2n — 2, if G is a connected graph
of order n > 3; we also give an example showing that there is no function
f such that f(sdim(G)) > sdim(G,) for all pairs (G,o). We prove that
sdim(Ggy,) < 2sdim(G) for og the identity. Further, we characterize per-
mutation graphs G, satisfying sdim(G,) equals 2n — 2 or 2n — 3 when G
is a complete k-partite graph, a cycle, or a path on n vertices.

2 Preliminaries on the strong metric dimen-
sion of graphs

We first recall the following observations.
Observation 2.1. (a) [20] For any graph G, dim(G) < sdim(G).

(b) [20] If T is a tree, then sdim(T') = L(T) — 1, where L(T) denotes the
number of leaves of T'.

(c) [17] If Cy is the cycle of order n > 3, then sdim(Cy) = [2].

(d) {17] If Ky, is the complete graph of order n > 2, then sdim(K,) =
n-—1.

We say that u € V(G) is mazimally distant from v € V(G) if for every
w € Ng(u), dg(w,v) < dg(u,v). If u is maximally distant from v and
v is maximally distant from u, then we say that « and v are mutually
mazimally distant. It was shown in [17] that if two vertices z and y are
mutually maximally distant in G, then any strong resolving set of G must
contain either z or y.

Theorem 2.2. (23] If G is a connected graph of order n > 2 and diameter
d, then
f(n,d) < sdim(G) <n—d,

where f(n,d) is the least positive integer k for which k + d* > n.

Next, we recall another upper bound of sdim(G) that is obtained in
[16]. Two vertices u,v € V(G) are called true twins if Ng[u] = Nglv).
We say that X C G is a twin-free clique in G if X is a clique containing

no true twins. The twin-free cliqgue number of G, denoted by @(G), is the
maximum cardinality among all twin-free cliques in G.
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Theorem 2.3. [16] Let G be a connected graph of order n > 2. Then
8dim(G) < n — wW(G), where the equality holds when diam(G) = 2.

Next, we recall characterizations of graphs (of order n > 2) with strong
metric dimension 1, n —1, or n — 2.

Theorem 2.4. [23] Let G be a connected graph of order n > 2. Then
(a) sdim(G) =1 if and only if G = Py,
(b) sdim(G) =n —1 if and only if G = K,,
(¢c) forn >4, sdim(G) = n—2 if and only if diam(G) = 2 and &(G) = 2.

3 sdim(G) versus sdim(Gy)

In this section, we show that 2 < sdim(G,) < 2n — 2, if G is a connected
graph of order n > 3; we also give an example showing that there is no func-
tion f such that f(sdim(G)) > sdim(G,) for all pairs (G,0). We prove
that sdim(Go,) < 2sdim(G) for o the identity.

First, we obtain general bounds for the strong metric dimension of per-
mutation graphs. If G is a connected graph of order 2, then G = P, and
sdim(G,) = 2 for any permutation ¢. So, we consider a connected graph
G of order n > 3 for the rest of the paper.

Proposition 3.1. Let G be a connected graph of order n > 3, and let
o : V(G1) = V(Gz) be a permutation. Then 2 < sdim(G,) < 2n—2.

Proof. Since G, contains a cycle, the lower bound follows from Theo-
rem 2.4(a); for the sharpness of the lower bound, take G = P, and ¢ = id,
the identity (see Lemma 6.1). Since G, ¥ Kan, the upper bound follows
from Theorem 2.4(b); for an example of G, achieving the upper bound,
take G = Cs and G, = P, the Petersen graph (see Theorem 5.1). O

Next, we give an example showing that there is no function f such that
f(sdim(G)) > sdim(G,) for all pairs (G, o).

Remark 3.2. There’s no function f such that f(sdim(G)) > sdim(G,)
for all pairs (G,0). Let G = Py, V(G1) = {ui | 1 £ i < 2k}, and
V(Gs) = {v: | 1 < i < 2k}, where k > 2. Let o : V(G1) = V(Gy)
be defined by o(ugi—1) = voi and o(uz) = vzi—1, where 1 < i < k (see
Figure 1). Then sdim(G) = 1 by Theorem 2.4(a), and sdim(G,) > 2k — 2
since, for each j (1 < j < k—1), uz; and vzj41 are mutually mazimally
distant and va; and ugj41 are mutually mazimally distant in G,
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V(G1) 4 V(G))

ut v
u v2
3! vz

0w Vi
k- M V-1
g vk

Figure 1: An example showing that there’s no function f such that
f(sdim(G)) > sdim(G,) for all pairs (G, o)

Question. Is there an example showing that there’s no function g such
that sdim(G) < g(sdim(G,)) for all pairs (G,0)?

Next, we prove the following theorem, where GOK5 can be viewed as
the permutation graph G,, with og = ¢d, the identity, on a connected graph
G.

Theorem 3.3. For a connected graph G, sdim(GOK,) < 2sdim(G), where
AOB denotes the Cartesian product of two graphs A and B.

Proof. Let G; and G2 be the two copies of G in GOK». Let S be a
minimum strong resolving set for G, and let Sy = {w;,ws,...,wix} and
Sz = {w],w},..., w;} be the minimum strong resolving set of Gy and Ga,
respectively, corresponding to S. We will show that S; U S, is a strong
resolving set for GOK>. Let z,y € V(GOK,) — (S, US;). We consider two
cases.

Case 1: Either {z,y} C V(G1) or {z,y} C V(G3), say the former.
Notice that depg, (T, w:) = dg, (z, w;:) and depk, (v, w:) = dg, (v, w;) for
1< i< k. So, z and y are strongly resolved by a vertex in S; C S; U Ss.

Case 2: Either z € V(G,) andy € V(Gz), orz € V(G3) and y €
V(G1), say the former. Notice that dgog, (z,w}) = deok, (z,w;) +1 =
de, (z,w;) + 1 and denk, (v, w;) = denk, (¥, w)) + 1 = dg, (v, w}) + 1 for
1 <7<k Ifdg (z,w;) < dg,(y,w’), then there exists a shortest y — wj
path containing = in GOKo,; if dg, (z,w;) > dg, (y,w}), then there exists
a shortest z — w} path containing y in GOK,. So, z and y are strongly
resolved by a vertex in S; U S,.

For the sharpness of the bound, take G = Cj,,, an even cycle. By

Observation 2.1(c), sdim(G) = m. We will show that sdim(GOK,) = 2m.
Let V(Gl) = {ui |0 <i<2m- 1} and E(Gl) = {uiu,-.,.l I 0<i<L
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2m — 1 (mod 2m)}; similarly, let V{(Gs) = {v; | 0 £ ¢ £ 2m ~ 1} and
E(G3) = {viviz1 |0 < i £ 2m — 1 (mod 2m)}. Notice that, for each i €
{0,1,...,2m — 1}, u; and vi3m (mod 2m) are mutually maximally distant
in GOK3; thus sdim(GOK3?) > 2m. Since V(G,) forms a strong resolving
set for GOK3, sdim(GOK?) < 2m. Thus, sdim(GOK3) = 2m. a

4 The strong metric dimension of permuta-
tion graphs on complete k-partite graphs

In this section, we characterize permutation graphs G, such that sdim(G,)
equals |V(Gg)| — 2 or |V(G,)| — 3 when G is a complete k-partite graph.
For k > 2, let G = K, q,,...0, be & complete k-partite graph of order
n= Ef=1 a; > 3. Throughout this section, let V(G;) be partitioned into
k-partite sets V;, V3, ..., Vi, and let V(G2) be partitioned into k-partite sets
VI,V4,..., Vi, where V| = |V/| = a; (1 £ i £ k); further, for each ¢
(1<i<k),let V= {ui1,ui2,...,%iq}andlet V) = {u ,ui,,...,ui,.}

Proposition 4.1. Let G = K, be the complete graph of order n > 3, and
let 0 : V(Gy) = V(G2) be a permutation. Then sdim(G,) = n.

Proof. Since diam(G,) = 2 and @(G,) = n, sdim(G,) = n by Theo-
rem 2.3. a

Proposition 4.2. For k > 2, let G = Kg, q,,....a, be a complete k-partite
graph of order n = Z?:x a; > 3. Let s be the number of partite sets of G
consisting of one element; if each a; > 2 (1<i<k), let s=0. Then

, _ [ n-k ifs=0
s‘“m(G)"{ nts—k—1 ifs#0.

Proof. For k > 2, let G = Kg, q,,....0, be & complete k-partite graph of
order n = E:.;l a; > 3. If s = k, then sdim(G) = sdim(K,) =n —1 by
Observation 2.1(d). So, suppose that G ¥ K, (i.e., s # k); notice that
diam(G) = 2. If 0 < s < 1, then W(G) = k; thus sdim(G) = n — k by
Theorem 2.3. If 2 < s < k, then @(G) = k + 1 — s; thus sdim(G) =
n+ s — k — 1 by Theorem 2.3. O

Next, we give bounds for the strong metric dimension of permutation
graphs on complete k-partite graphs.

Lemma 4.3. Fork > 2, let G = Kg, a,,...,a, be @ complete k-partite graph
of order n = Zf___l a; > 3. Then 2 < sdim(G,) < 2n—k.



Proof. The lower bound follows from Proposition 3.1. The upper bound
follows from Theorem 2.3, since @W(G,) = k. O

Next, we characterize permutation graphs G, such that sdim(G,) equals
[V(Ges)] — 2 or [V(G5)| — 3 when G is a complete k-partite graph.

Theorem 4.4. For k > 2, let G = Kg,4,,..,0, be a complete k-partite
graph of order n = Zle a; 2 3. Then sdim(G,) = 2n — 2 if and only if
G, 1is isomorphic to one of the permutation graphs in Figure 2.

VI(G) 3 V(Gy) V(G1) = V(Ga)
Vi 8 AV Vo oV
Y ig——ioi ¥y viigi v

(A)G =K, (B) G = Kj2

Figure 2: Permutation graphs G, on complete k-partite graphs with
sdim(G,) = 2|V(G)| — 2

Proof. For k > 2, let G = K, 4,,...a. be a complete k-partite graph of
order n = Zf=1 a; > 3.

(«<=) Suppose that G, is isomorphic to (A) or (B) of Figure 2. Since
diam(G,) = 2 and @(G,) = 2, sdim(Gs) = 2n — 2 by Theorem 2.3.

(=) Suppose that sdim(G,) = 2n — 2. We consider two cases.

Case 1: |o(V;) N V]| > 2 for some 1,j, where 1 < i,j < k. Assume
that {o(ui1), 0(ui2)} C V] by relabeling if necessary, where 1 < ,j < k.
Since dg, (ui,1,0(ui2)) = 3 diam(G,) > 3. Thus, sdim(G,) < 2n — 3 by
Theorem 2.2.

Case 2: For each i,j (1 <i,j < k), |o(V;)NV]| < 1. By Lemma 4.3,
k = 2. Further, notice that a; <2 and a; < 2; otherw1se, two vertices of
one partite set in G; must be mapped to the same partite set in G3. So,
G = K3 (see (A) of Figure 2) or G = K> (see (B) of Figure 2). El

Theorem 4.5. For k > 2, let G = K, q,,..a, be a complete k-partite
graph of order n = Zf=l a; > 3. Then sdim(G,) = 2n — 3 if and only if
G is isomorphic to one of the permutation graphs in Figure 8 or G, is
isomorphic to (C) of Figure 5.

Proof. For k > 2, let G = K, 4,,..,4. be a complete k-partite graph of
order n = E:;l a; > 3; further, assume that a; > ax_1 > ... > a9 > a;.
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(«<=) First, suppose that G, is isomorphic to one of the permutation
graphs in Figure 3. Then diam(G,) = 2 and @(G,) = 3; thus sdim(G,) =
2n — 3 by Theorem 2.3.

Next, suppose that G, is isomorphic to (C) of Figure 5; we will show
that sdim(G,) = 2n — 3. Since diam(G,) = 3, sdim(G,) < 2n — 3
by Theorem 2.2. On the other hand, note that (i) any two vertices in
{uz,1,u2,2,u5 1, u3 3} are mutually maximally distant in G,; (ii) any two
vertices in {ug 1,u2,3, U 1, Up o} are mutually maximally distant in Gg; (iii)
u1,1 and u ; are mutually maxxmally distant in G,. So, for any minimum
strong resolving set S of Gy, |S| > 5 = 2n — 3; thus sdim(G,) > 2n — 3.
Therefore, sdim(G,;) =5=2n-3.

(=>) Suppose that sdim(G,) = 2n — 3. By Lemma 4.3, k = 2 or
k = 3; otherwise, k > 4 and hence sdim(G,) < 2n — 4. Noting that
2 < diam(G,) < 3, we consider two cases.

Case 1: diam(G,) = 2. That is, for each i,j (1 < i,5 < k), |[o(Vi) N
VjI<1;s0,a¢ < kforeach£(1<£< k). By Theorem 2.3, W(G,) = 3, and
hence k = 3. So, (a1, az,a3) must take one of the following values: (1,1,1),
1,1,2), (1,1,3), (1,2,2), (1,2,3), (1,3,3), (2,2,2), (2,2,3), (2,3,3), or
(3,3,3). If (a1,a2,a3) = (1,3, 3), then two vertices in one partite set must
be mapped to the same partite set, contradicting the assumption that
diam(G,) = 2. One can readily check that there are 11 non-isomorphic
permutation graphs G, such that diam(G,) = 2 and W(G,) = 3 (see Fig-
ure 3).

V(G1) 5 V(Gy)
Vs iV o K
G=Ki.Ks G=Kp; G =Kz G= KIIJ G = K:m G = K;.'m

{O—0: : :

G =Kz G Kn.z G =Kiaa G =Kz G =Ky

Figure 3: Permutation graphs G, on complete k-partite graphs with
diam(G,) = 2 and sdim(G,) = 2|V(G)| -3

Case 2: diam(G,) = 3. That is, |o(V;) N V]| = 2 for some 3,7 (1 <
i,j < k). By Lemma 4.3, k = 2 or k = 3. First, we consider k = 3. Assume



that o(ui,1) = uj, and o(u;2) = uj, by relabeling if necessary, where
1 <14,5 < 3. Since V(G,) — {u;,l,u;'l,ug,l,u;-'z}, where z,y,j € {1,2,3}
are all distinct, forms a strong resolving set for G,, sdim(G,) < 2n — 4,
Next, we consider £ = 2. If G, contains one of the five configurations in
Figure 4 as a subgraph, then V(G,) — {0(z,),0(z2),0(z3),0(z4)} forms a
strong resolving set for G4; thus, sdim(G,) < 2n — 4. Since az > 4 implies

V(G) 5 V(Ga)
Vi @ B - mnd
0" / H o e
v, ZHO—0! niel ot 20—
Z3:08%=——0: "2 23; OO T40—0Q;
Qs o 23 Om——0:
(A) © ()

Figure 4: Subgraphs of G, on complete bi-partite graphs such that
diam(G,) = 3 and sdim(G,) < 2|V(G)| — 4

sdim(Gs) < 2n — 4, ay < 3. So, (a1,a2) must take one of the following
values: (1,2), (1,3), (2,2), (2,3), or (3,3). Among them, there are four
non-isomorphic permutation graphs G, such that diam(G,) = 3 and G,
does not contain (E) of Figure 4 as a subgraph. If G, is isomorphic to (A),
(B), or (D) of Figure 5, then the solid vertices form a strong resolving set
for G5, and thus sdim(G,) < 2n — 4. If G, is isomorphic to (C) of Figure

5, then sdim(G,) = 5 = 2n — 3 as shown earlier. a
V(G)) 3 V(Gy) e
(o A S T L T
yE—y, e "ms;><;“';n :><:
(A) (8 © (D)

Figure 5: Permutation graphs G, on complete bi-partite graphs such that
diam(G,) = 3 and G, does not contain any graph in Figure 4 as a subgraph

5 The strong metric dimension of permuta-
tion graphs on cycles

In this section, we characterize permutation graphs G, such that sdim(G;)
equals [V(G5)| - 2 or |V(G,)| — 3 when G is a cycle C,, on n > 3 vertices.
Throughout this section, let V(G1) = {u; | 1 < i < n} and let E(G;) =
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{wiipr | 1 € i € n—1}U {ugu,}; similarly, let V(G2) = {v; | 1 <4 < n}
and let E(G2) = {vivit1 |1 < i <n—-1}U {vivn}.

Theorem 5.1. Let G = C, be the cycle of order n > 3, and let o :
V(G1) = V(G2) be a permutation. Then sdim(G,) = 2n — 2 if and only if

(i) n =4 and G, ¥ C40K>, or
(i) n =5 and G, = P, the Petersen graph.
Proof. Let G = C,, be the cycle of order n > 3.

(<=) Suppose that G, is isomorphic to (B) of Figure 6 or (D) of Figure 7
(the Petersen graph P). In each case, diam(G,) = 2 and @W(G,) = 2; thus
sdim(Gy) = 2n — 2 by Theorem 2.3.

(=) Suppose that sdim(G,) = 2n—2. By Theorem 2.4 (c), diam(G,) =
2 and @W(G,) = 2. We may assume that o(u;) = v by relabeling if nec-
essary. If n > 6, then dg,(u1,u4) = 3 and hence diam(G,) > 3; thus
n < 5. If n = 3, then @(G,) = 3 for any permutation 0. If n = 4,
G, is isomorphic to (A) or (B) of Figure 6 (see [4]): if G, is isomorphic
to (A) of Figure 6, diam(G,) = 3; if G, is isomorphic to (B) of Fig-
ure 6, then sdim(G,) = 2n — 2 as shown above. If n = 5, one can easily
check that diam(G,) = 2 implies that G, = P (the Petersen graph), and
sdim(P) = 2n — 2 as shown above. O

& &

(A) (B)

Figure 6: Two non-isomorphic permutation graphs G, for G = Cy

Theorem 5.2. Let G = C, be the cycle of order n > 3, and let o :
V(G1) = V(G3) be a permutation. Then sdim(G,) = 2n —3 if and only if

(i) n =3 (for any permutation o), or
(i) n =5 and G, is isomorphic to (C) of Figure 7.

Proof. Let G = C,, be the cycle of order n > 3, and let o : V(G;) = V(G2)
be a permutation.

(<) If n = 3, then G, = C30K; (for any permutation o); thus
sdim(G,) = 3 = 2n — 3 by Theorem 2.3, since diam(G,) = 2 and W(G,) =



3. If G, is isomorphic to (C) of Figure 7, we will show that sdim(G,) = 2n—
3. Note that (i) any two vertices in {u;,u4,v2,v4} are mutually maximally
distant in G,; (ii) any two vertices in {us,v1,v3} are mutually maximally
distant in G; (iii) any two vertices in {ug,vs,vs} are mutually maximally
distant in G,; (iv) any two vertices in {ug, us,vs} are mutually maximally
distant in G,. Let S be a minimum strong resolving set for G,. If vz & S,
then Sp = {ug,u3,vy,v5} C S by (ii) and (iii), and |S — Sp| > 3 by (i). If
vs € S, then |S| > 7 by (i), (ii), and (iv). In each case, |S| > 7 = 2n — 3,
and thus sdim(G,) > 7 = 2n - 3. Since diam(G,) = 3, sdim(G,) < 2n-3
by Theorem 2.2. Thus, sdim(G,) =2n — 3.

(=) Suppose that sdim(G,) = 2n — 3. Let o(u;) = v; by relabel-
ing if necessary. By Theorem 2.2, diam(G,) < 3; thus n < 9: notice that
Ng, (w1} = {u1, u2,un,v1}, Ng_[u1) = Ng, [u1]U{ua, un_1,0(u2), 0(us), vz,
v}, and NE_ [11)NV(G1) = [N2_ [us]V(G1)]U{ua, Un—2,0 1 (v2), 0~ 1 (vn) }.
We consider six cases.

Case I: n =3 orn =4. If n = 3, sdim(G,) = 3 = 2n — 3 as shown
above. If n = 4, see Figure 6 for two non-isomorphic G,: (i) if G, is
isomorphic to (A) of Figure 6, then sdim(G,) < 2n — 4 since V(G,) forms
a strong resolving set for G,; (ii) if G, is isomorphic to (B) of Figure 6,
then sdim(G,) = 2n — 2 (see Theorem 5.1).

Case 2: n = 5. There are four non-isomorphic permutation graphs
Go (see Figure 7): (i) if G, is isomorphic to (A) or (B) of Figure 7,
then V(G,) — {u1,u2,v1,v2} forms a strong resolving set for G,, and
thus sdim(G,) < 2n — 4; (ii) if G, is isomorphic to (C) of Figure 7,
sdim(Gs) = 2n — 3 as shown above; (iii) if G, is isomorphic to (D) of
Figure 7, then sdim(G,) = 8 = 2n — 2 (see Theorem 5.1).

(B) © >

Figure 7: Four non-isomorphic permutation graphs G, for G = C;s

Case 3: n = 6. Since diam(G,) < 3, G, ¥ Cs0K,. We consider four
subcases; in each case, we will show that sdim(G,) < 2n — 4.

Subcase 3.1: P4OK,; C G, € Ps0OK,. There is a unique G, up to
isomorphism (see (A) of Figure 8). If G, is isomorphic to (A) of Figure 8,
V(Go) — {u2,us, us,v3} forms a strong resolving set for G,.

Subcase 3.2: P;0K, C G, € P,OK,. Assume that o(u;) = v; for
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i =1,2,3, by relabeling if necessary; then o(u4) € {vs,v6}. If o(usg) = vs,
see (B) of Figure 8. If o(u4) = ve, dg, (u2,vs) < 3 implies that o(ug) = vs;
then G, is isomorphic to (B) of Figure 8. If G, is isomorphic to (B) of
Figure 8, V(G,) — {us, v2,v3,v4} forms a strong resolving set for G,.

Subcase 2.3: P,OK; C G, € Ps0OK,. Assume that o(u;) = v; for
i = 1,2, by relabeling if necessary. One can readily check that there are
five non-isomorphic G, with diam(G,) = 3 (see (C), (D), (E), (F), and (G)
of Figure 8). If G, is isomorphic to (C), (D), or (F) of Figure 8, V(G,) —
{u2,v1,v2,v3} forms a strong resolving set for G,; if G, is isomorphic to
(E) or (G) of Figure 8, V(G,) — {us, v2,v3,v4} forms a strong resolving set
for G,.

Subcase 3.4: G, 2 P,00K,. One can easily check that there exists a
unique G, with diam(G,) = 3, up to isomorphism (see (H) of Figure 8). If
G, is isomorphic to (H) of Figure 8, V(G,) — {us, v1,v2,v3} forms a strong
resolving set for G,.

n vy
uz 7}
uy
s
ug ve
(B) © (D) (] (F) © (H)

(A)

Figure 8: Permutation graphs G, for G = Cs with diam(G,) = 3

Case 4: n = 7. Since diam(G,) < 3, G, does not contain P;0K> as
a subgraph: if o(u;) = v; for each i € {1,2,3,4}, then dg, (u2,vs) = 4 or
dg, (u2,v6) = 4. We consider three subcases. In each case, we will show
that sdim(G,) < 2n — 4.

Subcase 4.1: P30OKy, C G, € PyOK,. Assume that o(u;) = v; for
i = 1,2, 3, by relabeling if necessary. Since diam(G,) < 3, dg, (u2,vs) < 3
and dg, (uz,v6) < 3 imply that {o(us),0(ur)} = {vs,v6}. There are two
non-isomorphic G, with diam(G,) = 3 (see (A) and (B) of Figure 9). In
each case, V(G,) — {uz,v1,v2,v3} forms a strong resolving set for G,.

Subcase 4.2: P,0OK; € G, € P;0OK,. Assume that o(u;) = v; for
i = 1,2, by relabeling if necessary. One can readily check that there are 9
non-isomorphic G, with diam(G,) = 3 (see (C), (D), (E), (F), (G), (H),
(D), (J), and (K) of Figure 9). If G, is isomorphic to (C), (E), or (F)
of Figure 9, V(G,) — {us,vs,v4,vs5} forms a strong resolving set for Gg;
if G, is isomorphic to (D) of Figure 9, V(G,) — {u3,vs,vs,v6} forms a
strong resolving set for Go; if G is isomorphic to (G) of Figure 9, V(Go,) —
{ug,v2,v3,v4} forms a strong resolving set for G,; if G, is isomorphic to
(H) of Figure 9, V(G,) — {ua,v3,v4,vs} forms a strong resolving set for
G,; if G, is isomorphic to (I) of Figure 9, V(G,) — {us,vs, vs, v7} forms a
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strong resolving set for G,; if G, is isomorphic to (J) of Figure 9, V(G,) —
{us,v2,v3,v4} forms a strong resolving set for G,; if G, is isomorphic to
(K) of Figure 9, V(G,) — {ur,vs,vs,vs} forms a strong resolving set for
Gs.

Subcase 4.3: G, 2 P,0K,. Noting that o(u;) = v;, one can readily
check that there are three non-isomorphic G, with diam(G,)=3 (see (L),
(M), and (N) of Figure 9). In each case, V(G,) — {u1,u2,v1,v3} forms a
strong resolving set for G,.

TLILLIL

AREWE®E

M

Figure 9: Permutation graphs G, for G = C; with diam(G,) = 3

Case 5: n = 8. Since diam(G,) < 3, dg,(w1,us) < 3 implies that
o(us) € {vs,vs}: assume that o(us) = vy by relabeling if necessary. Simi-
larly, dg, (v2,vs) < 3 implies that 0~ (ve) € {u4,us}: we may assume that
~!(vg) = ug by relabeling if necessary. Further, dg, (v1,v5) < 3 implies
that 0"1(‘05) € {uz,‘us}

First, we consider 0~1(vs) = ug; we will show that diam(G,) > 4.
Note that (i) dg,(us,u2) < 3 implies o(ug) = vy; (ii) dg, (us,us) < 3
implies o(ug) = vy; (iii) dg, (v7,v3) < 3 implies o(u3) = vz (see (B) of
Figure 10). If G, is isomorphic to (B) of Figure 10, then da, (ua,ur) = 4;
thus diam(G,) > 4.

Next, suppose that 6=!(vs) = up (see (A) of Figure 10). Notice that
o(us) € {va,vs,v7,u8}. If o(us) = vs, then dg,(us,ur) < 3 implies
o(u7) = vg, and dg, (vs,v7) < 3 implies o(ug) = v7 (see (A;) of Fig-
ure 10). If o(us) = vy, then dg,(us,u7) < 3 implies o(u7) = vs, and
dg, (vs,v7) < 3 implies o(ug) = vy (see (Az) of Figure 10). If o(u3) = v7,
then dg,(us,u7) < 3 implies o(u7) = vs, and dg, (v7,v3) < 3 implies
o(uq) = vz (see (A3) of Figure 10). If o(uz) = vg, then dg, (u3, u7) < 3
implies o(u7) = v7, and dg, (v7,v3) < 3 implies o(ug) = va (see (A4) of Fig-
ure 10). One can easily check that (A;), (Az), (As), and (A4) of Figure 10
are isomorphic. Since V(G,) — {u2,us,vs,vs} forms a strong resolving set
for G5 in (A1) of Figure 10, sdim(G,) < 2n — 4.
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(A4) (A7) (43) (A4

Figure 10: Permutation graphs G, for G = Cg

Case 6: n = 9. Since diam(G,) < 3, dg, (v1,us) < 3 and dg, (u1,us) <
3 imply that {o(us),0(ug)} = {va,ve}: assume that o(us) = vz and
o(ug) = vg by relabeling if necessary. Similarly, dg,(v1,v5) < 3 and
dg, (v1,06) < 3 imply that {7~} (vs),0~*(v6)} = {uz, ug} (see Figure 11).
In each case, dg, (u2,u¢) = 4, and thus diam(G,) > 4. ]

Figure 11: Subgraphs of permutation graphs G, for G = Cy

6 The strong metric dimension of permuta-
tion graphs on paths

In this section, we characterize permutation graphs G, such that sdim(G,)
equals |V (G,)| — 2 or |V(G,)| — 3 when G is a path P, on n > 3 vertices.
Throughout this section, let V(G1) = {ui | 1 < i < n} and let E(G1) =
{wirie1 | 1 < i < n— 1}; similarly, let V(G2) = {v; | 1 <4 < n} and let
E(G2) = {viviq1 |1 i <n—1}.

Lemma 6.1. Let G = P, be the path of order n > 3, and let id : V(Gy) —
V(G2) be the identity. Then sdim(Giqg) = 2.

Proof. Since Gig & Pon, sdim(Giq) > 2 by Theorem 2.4(a). On the other
hand, sdim(Gig) < 2 by Theorem 3.3 and the fact that sdim(F,) = 1.

Thus sdim(Giq) = 2. O
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Theorem 6.2. Let G = P, be the path of ordern > 3, and let o : V(G;) =
V(G2) be a permutation. Then sdim(G,) = 2n—2 if and only if n = 3 and
G, ¥ P0K,.

Proof. Let G = P, be the path of order n > 3. If n = 3, then there are two
non-isomorphic permutation graphs (see Figure 12): if G, is isomorphic to
(A) of Figure 12, then sdim(G,) = 2 < 2n — 2 by Lemma 6.1; if G, is
isomorphic to (B) of Figure 12, then diam(G,) = 2 and &(G,) = 2, and
thus sdim(G,) = 4 = 2n — 2 by Theorem 2.3. If n > 4, then diam(G,) > 3
since dg, (u1,%4) = 3; thus sdim(G,) < 2n — 3 by Theorem 2.2. O

(A) (B)

Figure 12: Two non-isomorphic permutation graphs G, for G = P

As an immediate consequence of Theorem 6.2, we have the following

Corollary 6.3. Let G = P, be the path of ordern > 4, and let o : V(G;) —
V(G2) be a permutation. Then 2 < sdim(G,) < 2n — 3.

Next, we characterize permutation graphs G, such that sdim(G,) =
|[V(Gs)| — 3 when G is a path.

Theorem 6.4. Let G = P, be the path of ordern > 4, and let o : V(Gy) =
V(G2) be a permutation. Then sdim(G,) = 2n — 3 if and only if

(i) G, is isomorphic to (A) of Figure 13, or
(i) G, is isomorphic to one of the permutation graphs in Figure 14.

Proof. Let G = P, be the path of order n > 4, and let 0 : V(G1) = V(G2)
be a permutation.

(<=) Let S be a minimum strong resolving set for G,,.

First, suppose that G, is isomorphic to (A) of Figure 13; we will show
that sdim(G,) = 2n — 3. Note that (i) the following pairs are mutually
maximally distant in Gy: {u1,uq}, {u1,va}, {v1,us}, and {v1,v4}; (ii) w2
and vp are mutually maximally distant in G,; (iii) u3 and v3 are mutually
maximally distant in G,; (iv) the following pairs are mutually maximally
distant in G,: {u3,vs} and {vs,us}. By (i), |S N {wy,uq,v1,v4} > 2.
If [S N {u1,uq,v1,v4}| 2 3, then [S| > 5 = 2n — 3 by (ii) and (iii). If
IS 0 {u1,uq,v1,v4}| = 2, say Sp = {u1,m1} C S, by (i) and relabeling if
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necessary, then |S — Sp| > 3 by (ii) and (iv). Thus, sdim(G,) > 5 =2n-3.
Since sdim(G,) < 2n—3 by Corollary 6.3, we have sdim(G,;) = 5 = 2n—3.

Next, suppose that G, is isomorphic to one of the permutation graphs
in Figure 14; we will show that sdim(Gs) = 2n — 3 in each case. Note that
(i) since any two vertices in {u1,u4,v1,v4} are mutually maximally distant
in Gg, |SN{u1,u4,v1,v4}| > 3; (ii) since uz and vz are mutually maximally
distant in G,, |S N {ug,vs}| 2 1; (iii) since u3 and vz are mutually maxi-
mally distant in Gs, |S N {us,v2}| = 1. So, |S| > 5 = 2n — 3, and hence
sdim(G,) > 2n — 3. Since sdim(G,) < 2n — 3 by Corollary 6.3, we have
sdim(Gy) = 2n — 3.

(=) Suppose that sdim(G,) = 2n — 3. Then diam(G,) < 3 by Theo-
rem 2.2. We consider two cases.

Case 1: {o(u1),0(un)}N{v1,v,} # 0. We may assume that a(ul) = vy,
by relabeling if necessary. Notice that Ng, [u1] = {ul,ug,vl}, NG [w1] =
Ng,[u1] U {u3,v2,0(u2)}, and N§_[u1] N V(Gy) = [N [ui] N V(Gl)] u
{u4,071(v2)}. Since diam(G,) <3, n <5.

First, we consider n = 4. Noting that sdim(P40K3) = 2 by Lemma 6.1,
there are four non-isomorphic permutation graphs to consider (see (A), (B),
(C), and (D) of Figure 13). In each case, diam(G,) = 3. If G, is isomorphic
to (A) of Figure 13, then sdim(G,) = 5 = 2n — 3 as shown above. If G,
is isomorphic to (B), (C), or (D) of Figure 13, then sdim(G,) < 2n — 4:
(i) if G, is isomorphic to (B) of Figure 13, V(G,) — {u1,u2,v1,v2} forms
a strong resolving set for G,; (ii) if G, is isomorphic to (C) of Figure 13,
V(Gs) — {u1,uz,us,v1} forms a strong resolving set for G,; (iii) if G, is
isomorphic to (D) of Figure 13, V(G,) — {u2,u3,uq,v3} forms a strong
resolving set for G,.

Next, we consider n = 5. Since diam(G,) < 3, dg, (v1,us) < 3 implies
that o~ !(vz) = us; similarly, dg, (v1,vs) < 3 implies that o(uz) = vs. If
o(u3) = vg and o(ug) = vs, then dg,(us,vs) = 4, and thus diam(G,) >
4. So, o(u3) = vz and o(us) = vg (see (E) of Figure 13); here, notice
that V(G,) — {u4,us, v, vq} forms a strong resolving set for G, and thus
sdim(Gy) < 2n — 4.

uy un "l :'1
% v by .z
1y vy u, kA
ug g u3 v

(A) (B) © o) (E)

Figure 13: Permutation graphs G, for G € {P;, Ps} such that diam(G,) =
3and o(u1) =1
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Case 2: {0(v1),0(un)} N{v1,vn} = 0. Then Ng, [u1] = {u1, uz,0(u1)},
N2 fu1] = No,fur] U {us, 0(u2)} U Ne, (0(u1)), and N3, [w] 0 V(Gy) =
[NZ, 1] N V/(G1)] U {ug, 0= (us), 0= (wy)}, where {us, v} = N, (o(uy)).
Since diam(G,) < 3, n < 6. We consider three subcases.

Subcase 2.1: n = 4. Assume that o(u;) = v; and o(uy) = vs, by
relabeling if necessary. There are two permutation graphs to consider (see
Figure 14): in each case, sdim(G,) = 2n — 3 as shown above.

uy v
e X
us v3
N vy
(A) (B)

Figure 14: Permutation graphs G, for G = P, such that o(u;) = v and
o (u4) =v3

Subcase 2.2: n = 5. We may assume that o(u;,) € {v2,vs}, by re-
labeling if necessary. If o(u;) = va, then dg, (u1,us) < 3 implies ug €
{e7Y(v1), 07 (v3)}; since us # o~ (v1), us = o~ 1(ws). If o(uy) = vs,
then us € {07 1(v2), 07 (v4)}, say us = 0~'(vg), by relabeling if neces-
sary; here, notice that this configuration is isomorphic to G, satisfying
o(u1) = vy and us = o~ }(vz). So, let o(u1) = vy and o(us) = v3. If
o(uz) = v1, dg, (v1,vs) < 3 implies that vs = o(u3) (see (A) of Figure 15);
if o(uz) = vs, dg,(vs,v1) < 3 implies that v; = o(u3) (see (D) of Fig-
ure 15); if o(uz) = vy, see (B) and (C) of Figure 15. In each case, we
will show that sdim(G,) < n — 4: (i) if G, is isomorphic to (A) of Fig-
ure 15, V(G,) — {u4,us,vs,v4} forms a strong resolving set for Gy; (ii)
if Go is isomorphic to (B) of Figure 15, V(G,) — {u1,u2,v3,v4} forms a
strong resolving set for G,; (iii) if G, is isomorphic to (C) of Figure 15,
V(Gs) — {us,v2,v3,v4} forms a strong resolving set for G,; (iv) if G, is
isomorphic to (D) of Figure 15, V(G,) — {uz,u3,v1,v2} forms a strong
resolving set for G,.

uy v
uz v
uy 3
Uy vy
s vs

(A) (B) © (D)

Figure 15: Permutation graphs G, for G = P5 such that diam(G,) = 3
and {o(u1),0(us)} N {v1,v5} =@

Subcase 2.3: n = 6. We may assume that o(u;) € {vs, vz}, by relabeling
if necessary. If o(u1) = vy, then dg, (u1,us) < 3 and dg, (v1,us) < 3 im-
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ply that {o~1(v1),0™ (v3)} = {us,us}; since ug # o1 (v1), 071 (v1) = us
and 0~ !(v3) = ug (see (A) of Figure 16). If G, contains (A) of Fig-
ure 16 as a subgraph, then dg_(vi,v5) = 4 or dg,(v1,v) = 4; thus
diam(G,) = 4. If o(u1) = vs, thendg, (u1,us) < 3 and dg, (u1,us) < 3 im-
ply that {o=1(v2),07 (va)} = {us,us}: if o~ (v2) = ug and o1 (vy) = us
(see (B) of Figure 16), then dg,(v2,v6) = 4, and hence diam(Gs) > 4;
thus, 0~ 1(v2) = us and 0~ (vy) = ug. If 0 (ve) # u4 (see (C) of Fig-
ure 16), then dg, (v2,v6) = 4, and thus diam(G,) > 4. So, o(uq) = vs
and {o(uz2),0(us)} = {vi,vs}. If o(u2) = v and o(uz) = vs, then
dg, (v1,vs) = 4, and hence diam(G,) > 4; thus o(uz) = vs and o(u3) = v,
(see (D) of Figure 16). If G, is isomorphic to (D) of Figure 16, then
diam(G,) = 3 and V(G,) — {us, vs, vs3, v4} forms a strong resolving set for
Gy; thus sdim(G,) < 2n — 4. 0O

w v
2 vz
u3 v
uy L3
ug Ug
Ug v ‘
(A) (B) ©) (D)

Figure 16: Permutation graphs G, for G = P such that {o(u1),0(ug)} N
{'Ul, 'Ue} = Q
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