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Abstract Let G be a graph with vertex set V(G) and edge set E(G), and let A
be an abelian group. A labeling f: V(G) — A induces an edge labeling f*: E(G)
— A defined by f*(xy) = f(x) + f(y), for each edge xy € E(G). Fori € A, let
vi(i) = [{v € V(G) : f(v) = i}|, and e(i) = |{e € E(G) : f*(e) = i}|. Let c(f)= {|
edi) — e(j)| : (i, j) € A x A}. A labeling f of a graph G is said to be A-friendly if
[ve(i) - vi(j)| < 1 for all (i, j) € A x A. If c(f) is a (0, 1)-matrix for an A-friendly
labeling f, then f'is said to be A-cordial. When A = Z,, the friendly index set of
the graph G, FI(G), is defined as {le{0) — e(1)| : the vertex labeling f is Z»-
friendly}. In this paper the friendly index sets for two classes of cubic graphs,
prisms and Mobius ladders, are completely determined.
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1. Introduction

Let G be a graph with vertex set V(G) and edge set E(G). Let A be an
abelian group. A labeling f: V(G) - A induces an edge labeling f*: E(G) - A
defined by f*(xy) = f(x) + f(y), for each edge xy € E(G). Fori € A, let ve(i) =
I{v e V(G) : f{v) = i}|, and ei) = |{e € E(G) : f*(e) = i}|. Let c(f) = {leqi) -
e(j)l : (i, j) € A x A}. A labeling f of a graph G is said to be A-friendly if [vg(i)
=vi(j)l< 1 forall (i, j) € A x A. If c(f) is a (0, 1)-matrix for an A-friendly
labeling f, then f is said to be A-cordial.

JCMCC 90 (2014), pp. 59-74



The notion of A-cordial labelings was first introduced by Hovey [10], who
generalized the concept of cordial graphs of Cahit [2]. Several constructions of
cordial graphs were proposed in {1, 3, 6, 7, 8, 10, 11, 12, 13, 14, 16, 21, 22, 23,
24). For more details of known results and open problems on cordial graphs, see
[4, 6].

In this paper, we will exclusively focus on A = Z,, and drop the reference to
the group. In [6] the friendly index set FI(G) of the graph G was introduced.
The set FI(G) is defined as {je{0) — ef1)| : the vertex labeling f is friendly}.
When the context is clear, we will drop the subscript f. Note that if 0 or 1 is in
FI(G), then G is cordial. Thus the concept of friendly index sets could be
viewed as a generalization of cordiality.

Cairnie and Edwards [5] have determined the computational complexity of
cordial labeling and Z,-cordial labeling. They proved that to decide whether a
graph admits a cordial labeling is NP-complete. Even the restricted problem of
deciding whether a connected graph of diameter 2 has a cordial labeling is NP-
complete. Thus in general it is difficult to determine the friendly index sets of
graphs.

In [17] the friendly index sets of complete bipartite graphs and cycles, are
determined. In [9, 15, 17, 18, 19, 20] the friendly index sets of other classes of
graphs are determined.

The following result was established in [17].

Theorem 1.1. For any graph with q edges, the friendly index set FI(G) ¢ {0, 2,
4,...,q}ifqisevenand FI(G)c {1,3, ..., q} if q is odd.

In [15], the friendly index sets of 2-regular graphs are studied. In 1989, the
first author, Ho and Shee [8] completely characterized cordial generalized
Petersen graphs. It is natural to extend our study of friendly index sets to cubic

graphs.
The smallest cubic graph is K4, and FI(Ks) = {2}.

Example 1. There are two non-isomorphic cubic graphs of order 6, K33 and the
prism C; x P,. They have different friendly index sets: FI(Ks;3) = {1, 9} and
FI(C; x P2) = {1, 3, 5}.



[e(1)-e(0)} =1 [e(1)-¢(0}| =3 [e(1)-e(0)| =5
Figure 1.

Example 2. Among the six cubic graphs of order 8, two have friendly index set
{0, 4, 12} (Figure 2) and four have friendly index set {0, 4, 8} (Figure 3).

le(1)-¢(@)1 =0 le(1)-e@=4  |e(1)-e(0)]=12
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A
le(1)-e(0)|=0 [e(1)-e(0)| =4 |e(1)-e(0)|=12

Figure 2.

61



v V2 V2 !
V; V3 A\ V3 \4 Vv Vs \2)
V3
Vs Va Va Vg Vavy
V7 Vi v vs v Vs V% Va
v, v,
6 6 Vg Vs
G G G Gy
1 2 3
Figure 3.

In the followin

gwe show the friendly index sets of G, G2, G3, and G4.
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The authors and Kwong [15] showed that for 2-regular graphs with two
components, the numbers in the friendly index sets form arithmetic
progressions. In this paper the friendly index sets for two classes of cubic
graphs, prisms and Mobius ladders, will be completely determined. These two
classes of cubic graphs are chosen to give some structure that we can handle,
and to show that their friendly index sets are very different from each other.
This somewhat confirms our previous statement on the difficulty to determine
friendly index sets in general. The problem on the friendly index sets of general

cubic graphs still seems to be beyond our reach at this moment.
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2. Prisms

In this section, we will determine the friendly index set of the prism C, x Pa.
Note that this graph has order 2n and size 3n. For notation, let PM, = C, x P,
denote the prism with V = {u,, uy, ... , uUn, v1, v, ... , Vn}, with the vertices u, uy,
... , Uy forming a cycle, the vertices vy, v, ... , v, forming a cycle, and the n
edges {u), vi}, {u, va}, ... {un, va} connecting the two cycles. To visualize the
graph, assume that the u vertices form an outer cycle, while the v vertices form
an inner cycle, with edges joining corresponding vertices of the two cycles.

From [17], we have the following
Lemma 2.1. Any vertex labeling (not necessarily friendly) of a cycle must have
e(1) equal to an even number.

Lemma 2.2. The number of edges labeled 0 among the n edges {u;, vi}, {uy,
V2}, ... {U,, o} must be even.

Proof. An edge labeled 0 must be incident on two vertices with the same label,
i.e., both vertices labeled 0 or 1. If there is an odd number of such edges, the
vertices that they are incident on must have unequal numbers of 0 labels and 1
labels. Thus among the remaining vertices, there are unequal numbers of 0
labels and 1 labels. Then the remaining edge labels cannot all be 1, because an
edge labeled 1 must be incident on two vertices with different labels.

Lemma 2.3. Forn 22, FI(PMz,) < {6n —4k | k is a non-negative integer and 6n
—4k 2 0}.

Proof. By Lemma 2.2, the number of edges labeled 0 among the 2n edges {u,
vi}, {uz, v2}, ... {uzn, v2n} must be even. Since there are altogether 2n such
edges, the number of edges labeled 1 among them must also be even. Thus for
the entire graph, e(1) must be even, i.e., all the possible values for e(1) are 0, 2,
4,...,6n—-4,6n-2, 6n. Then all the possible values for e(0) are 6n, 6n — 2, 6n
-4,...,4,2,0,respectively. We see that g = e(1) — e(0) = —6n, —6n — 4, —6n —
8,...,6n—8, 6n—4, 6n respectively. Taking absolute value gives the desired
result.

Lemma 2.4. Forn 22, 6n-4 ¢ FI(PMy,).

Proof. The only ways to get 6n — 4 are to have e(0) = 6n — 2 and e(1) =2, or
e(0) =2 and e(1) = 6n — 2. For the former to happen, one of the cycles must
have all edges labeled 0, meaning that all vertex labels in this cycle are the
same. Thus all vertex labels in the other cycle must also be the same, but
different from those in the first cycle. It is then obvious that e(1) # 2. For the
latter to happen, one of the cycles must have all edges labeled 1, meaning that
the vertex labels in this cycle alternate. It is then obvious that we cannot have

exactly two edges labeled 0.
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Theorem 2.1. Forn 2 2, FI(PM,,) = {6n} w {6n — 8 — 4k | k is a non-negative
integer and 6n — 8 — 4k = 0}. Thus FI(PM3,) = {0, 4,8, ... ,6n—8, 6n} if n is
even, and FI(PM2) = {2, 6, 10, ... , 6n —8, 6n} if n is odd.

Proof. The lemmas above show that these are the only possible values in
FI(PM_,). It suffices to show that they are all attainable.

Let all the u vertices be labeled 0, and all the v vertices be labeled 1. Then
e(1) = 2n and ¢(0) = 4n, making g = e(1) — e(0) =—2n. Successively interchange
the vertex labels at u; and vj wherej=1,3, 5, ... ,2n— 1. Each such
interchange increases e(1) by 4 and decreases e(0) by 4. These give the possible
g values of —2n + 8i, where i=0, 1, 2, ... , n. The absolute values are 6n, 6n —
8,6n-16, ...

Now let all the u vertices be labeled 0, with the exception of uz, which is
labeled 1, and let all the v vertices be labeled 1, with the exception of v,, which
is labeled 0. Then e(1) =2n + 2 and e(0) =4n — 2, making g = ¢(1) — e(0) = —2n
+ 4. Successively interchange the vertex labels at u; and v; where j=35,7, ...,
2n - 1. Each such interchange increases e(1) by 4 and decreases e(0) by 4.
These give the possible g values of 2n + 4 + 8i, wherei=0, 1,2, ... ,n-2.
The absolute values are 6n — 12, 6n - 20, ...

Example 3. We see from Example 2 that FI(PMs) = {0, 4, 12}. Figure 4 shows
that FI(PM,) = {2, 6, 10, 18}.

Figure 4.

Lemma 2.5. Fornz 1, 6n + 3 & FI(PMan+1).

Proof. In an odd cycle, there must be two neighboring vertices with the same
label. Thus e(0) # 0. On the other hand, e(1) # 0, because otherwise all the
vertex labels in the outer cycle must be the same, making all the vertex labels in
the inner cycle the same but different from those of the outer cycle, which is not

possible for e(1) = 0.



Lemma2.6. Fornz2 1, 6n+ 1 g FI(PMa1).

Proof. The only ways to get 6n + 1 are to have e(0) =6n +2 and e(1) =1, or
e(0) = 1and e(1) = 6n + 2. For (1) = 1, one of the cycles must have all edges
labeled 0, i.e., all vertices labeled the same way. This would require all the
vertex labels in the other cycle the same but different from those of the first
cycle, which is not possible for e(1) = 1. On the other hand, by Lemma 2.1, the
number of edges labeled 0 in the outer cycle must be odd, and the number of
edges labeled 0 in the inner cycle must also be odd. Using these and Lemma

2.2, ¢(0) must be even, making e(0) = 1 impossible.

Lemma 2.7. Forn 22, 6n -3 g FI(PMz+1).

Proof. The only ways to get 6n — 3 are to have e(0) = 6n and e(1) = 3, or e(0) =
3 and e(1) = 6n. For e(1) =3, using Lemma 2.1, we see that one of the cycles
must have all edges labeled 0, i.e., all vertices labeled the same way. This
would require all the vertex labels in the other cycle the same but different from
those of the first cycle, giving e(1) =2n + 1. Sincen # 1, e(1) = 3 is impossible.
On the other hand, by Lemma 2.1, the number of edges labeled 0 in the outer
cycle must be odd, and the number of edges labeled 0 in the inner cycle must
also be odd. Using these and Lemma 2.2, e(0) must be even, making e(0) = 3
impossible.

Theorem 2.2. FI(PM;) = {1, 3, 5}. Forn22, FI(PMz+1) = {6n -1} U {6n-5
—2k | k is a non-negative integer and 6n — 5 — 2k > 0}.

Proof. By Lemmas 2.5 and 2.6, FI(PM;) < {1, 3, 5}. Figure 1 shows that all
these values are possible.

Forn 2 2, the lemmas above show that the given values are the only possible
values in FI(PMan+1). It suffices to show that they are all attainable.

Letuy, us, ... , uz1 be labeled 0, and ug, uy, ... , Uz, Uzns) be labeled 1. Let
Vi, V3, ... , V2n-1 be labeled 1, and vy, vy, ... , Vag, Vane) be labeled 0. Then e(1) =
6n + 1 and ¢(0) = 2, making g = e(1) - e(0) = 6n — 1. Successively interchange
the vertex labels at u; and vy where j=1, 3, 5, ... ,2n— 1. Each such
interchange decreases e(1) by 4 and increases e(0) by 4. These give the possible
g values of 6n — 1 — 8i, wherei=0,1,2, ... ,n,ie.,6n—1,6n-9,6n-17, ...,
-2n+7,-2n-1.

Let u; and v, be labeled 0, uz and v, be labeled 1. Letus, us, ... , Uz be
labeled 0, and ug, ug, ... , uz, be labeled 1. Let v, vs, ... , vans) be labeled 1, and
V4, V6, ... , Van be labeled 0. Then e(1) = 6n — 1 and e(1) = 4, making g = e(1) -
e(0) =6n - 5. Successively interchange the vertex labels at y; and v; where j = 4,
6, ..., 2n. Each such interchange decreases e(1) by 4 and increases e(0) by 4.
These give the possible g values of 6n — 5 — 8i, where i=0, 1,2, ... ,n— 1, i.e.,
6n-5,6n-13,6n-21,...,2n+11,—2n+3.

Letu, uy, ... , un+1 be labeled 0, and un+2, Unss, ... , Uze+1 be labeled 1. Let vy,
V2, ..., Va be labeled 0, and Vue1, Vasa, ... , Vaner be labeled 1. Then e(1) =5 and
¢(0) = 6n -2, making g = e(1) — e(0) =—6n + 7. Successively interchange the
vertex labels at v; and vyq+1j where j=n,n—1, ... ,2. Each such interchange
increases e(1) by 2 and decreases e(0) by 2. These give the possible g values of
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—6n +7 + 4i, wherei=0,1,2,...,n-1,ie,-6n+7,-6n+11,-6n+15, ... ,-
2n + 3. ‘

Now we need only show that these three sequences of numbers give all the
values in = {6n — 1} U {6n - 5 — 2k | k is a non-negative integer and 6n — 5 — 2k
2 0}. Combining the first two sequences, we have 6n -1, 6n — 5, 6n -9, 6n —
13,6n-17,6n-21, ...,-2n+11,-2n+7,-2n+3,-2n—1, ie,6n-1-4i,
wherei=0, 1,2, ..., 2n. The absolute values are 6n—1, 6n -5, 6n -9, 6n —
13,6n—17,6n-21,...,2n+7,2n+3,2n+1,2n-1,2n-3,2n-5,...,7,5,
3,1,ie,6n-1-4i,i=0,1,2,...,n-1,and2n+1-2i,i=0,1,2, ... ,n.
The absolute values of the third sequence are 6n—7,6n—-11,6n-15, ... ,2n-
3,ie.,6n—7—4i,wherei=0, 1,2,...,n-1. All these absolute values
together constitute {6n — 1} u {6n— 5 — 2k | k is a non-negative integer and 6n
— 5 -2k >0}, with 2n + 1 and 2n - 3 repeating,.

Example 4. Figure 5 shows that FI(PMs) = {1, 3, 5,7, 11}.

[e(L)-e(0)| =7 je(1)-e(0)| =11
Figure 5.

3. Mébius ladders

Let n be a positive integer. The M&bius ladder (also known as the Mébius
wheel) is the cycle Ca,, with n additional edges joining diagonally opposite
vertices. We will denote this graph by Mz, and its vertices by vi, vz, ... , Van.
Then the edges are (vi, v2), (V2, V3), .. , (Van, V1) Of the cycle, and the n
diagonals (v1, Vn+1), (V2, Vas2), .- » (Va, V2n). Figure 6 shows the M&bius ladder
M, for n = 3, 4, drawn in both the circulant form and the ladder form.
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Figure 6.

Lemma 3.1. ¢(0) is even.

Proof. In the cycle, the number of edges labeled 1 must be even, and so the
number of edges labeled 0 must also be even. A diagonal labeled 0 must link
together vertices with the same label. An odd number of diagonals labeled 0
would link together vertices with unequal 0 labels and 1 labels. Then it is
impossible for the remaining diagonals to be all labeled 1.

Lemma 3.2. e(1)=0.
Proof. If all edges have labels 0, then all vertex labels are the same. This is not

a friendly vertex labeling.

Lemma 3.3. (1) =#2.

Proof. Assume e(1) =2. Since the vertex labels cannot all be the same, there
must be at least one edge in the cycle labeled 1. Thus both 1 edge labels must
be in the cycle. The vertex labels must be a sequence of 0’s followed by a
sequence of 1’s. These 0’s and 1’s are opposite to each other, making all
diagonal labels equal to 1.

Lemma 3.4. In My, €(0) # 0.

Proof. Otherwise, all edges are labeled 1. Then the vertex labels in the cycle
must be labeled alternately as 0 and 1. If so, diagonally opposite vertices have
the same label, and so all the diagonals have edge labels 0.

Corollary 3.5. FI(Msn) < {6n -4 —4k | k is a non-negative integer and 6n — 4 —
4k 2 0}.

Proof. In May, there are 6n edges. The possible values of e(0) are 2, 4, ... , 6n —
4, and the corresponding values of e(1) are 6n —2, 6n —4, ... , 4. Thus the
possible values of [e(1) — e(0)| are 6n — 4, 6n -8, ... , ending with 0 if n is even,
ending with 2 if n is odd.

To show that all these values are attainable, we introduce the following
constructions.
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Construction 1 (for Mun):

Label the vertices vj, vz, ... , v alternately by 0 and 1. Interchange the
vertex labels at v, and v,. In this graph, e(1) = 4n and e(0) = 2n, giving g = e(1)
—e(0) =2n. Successively interchange the vertex labels at vo;; and v,; where j =
2,3, ...,n. Each such interchange increases the number of 1-diagonals by 2
and decreases the number of 0-diagonals by 2. These give the possible g values
of 2n + 4i, wherei=0,1,2,...,n-1,ie.,2n,2n+4,...,6n-4.

Construction 2 (for Man, with n even):

Label the vertices vy, va, ... , Vanp Sequentially by 001100 1 I, etc.
Interchange the vertex labels at v, and van. In this graph, e(1) = 2n + 4 and e(0)
=4n -4, giving g = e(1) — e(0) =—2n + 8. Successively interchange the vertex
labels at vj and vanj+) where j=3, 5, ... ,2n - 1. Each such interchange
increases the number of 1-diagonals by 2 and decreases the number of 0-
diagonals by 2. These give the possible g values of -2n + 8 + 4i, where i =0, 1,
2,...,n—1,ie,-2n+8,-2n+12, ... ,2n+4.

We note that —2n + 8 < 0 if and only if n > 4.

Construction 3 (for Mun, with n odd):

Label the vertices van-1 and vaq by 1, the vertices van-1 and vaq by 0. Label the
vertices vi, vz, ... , Van-2 sequentially by 00 1 100 1 1, etc. Label the vertices
Vantl, Vans2, --- 5 Van2 Sequentially by 001100 1 1, etc. Interchange the vertex
labels at v; and van2. In this graph, e(1)=2n + 4 and e(0) = 4n — 4, giving g =
e(1) —e(0) =-2n + 8. Successively interchange the vertex labels at v; and vap-1-j
where j=3, 5, ...,2n-3. Each such interchange increases the number of 1-
diagonals by 2 and decreases the number of 0-diagonals by 2. These give the
possible g values of —2n + 8 + 4i, wherei=0, 1,2, ... ,n-2,ie,-2n+8,-2n
+12,...,2n.

We note that —2n + 8 <2 if and only if n > 3.

Theorem 3.1. FI(M4,) = {6n ~4 —4k | k is a non-negative integer and 6n —4 —
4k 2 0}.

Proof, Forn =1, My has 4 vertices and 6 edges. The vertex labels 00 1 1 give
(1) — e(0) = 2. For n odd and > 3, Constructions 1 and 3 show that all the
possible values are attainable.

For n = 2, M; has 8 vertices and 12 edges. The vertex labels 1010010 1
give e(1) —e(0) = 8. The vertex labels 1010100 1 give e(1)—e(0) =4. The
vertex labels 1 1110000 give e(1) —e(0)=0. Fornevenand 24,
Constructions 1 and 2 show that all the possible values are attainable.



Example 5. FI(Mi2) = {2, 6, 10, 14}.

le(1)-e(0)] =2

le(1)-e(0) = 6

le(1)-e(0){ =10

V7 Vg 9V Vi Viz
v v, V3 \2 Vs Vg
[Tt -‘- 1)-e(0)| = 14
V3 Vs Vo Ve Vi Via
Figure 7.
Example 6. FI(Mi¢) = {0, 4, 8, 12, 16, 20}.
v, v, vy v, vs 2 v, Vg
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le(13-¢(0)| =0
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Lemma 3.6. In M., €(0) #2.

Proof. If e(0) = 2, the two edges labeled 0 must be both diagonals or both in the
cycle. If they are both diagonals, the edges in the cycle all have labels 1, and so
the vertex labels must be alternately 0’s and 1’s. Then all diagonals should have
1 labels, which is a contradiction. Now assume the 0 edge labels are in the
cycle. The incident vertices must be two 0’s and two 1°s, otherwise there must
be other vertices with the same label next to each other. For these two 0’s and
two 1’s, the vertices between them must be alternately labeled 1’s and 0’s.

Since there are 4n + 2 vertices, the two 0’s and the two 1°s cannot be exactly
opposite to each other. Thus there must be two vertices with the same label

diagonally opposite to each other.

Lemma 3.7. In Mz, (1) # 1.
Proof. Ife(1) = 1, the only edge labeled 1 must be a diagonal. Since all the
edge labels in the cycle are 0, the vertex labels must all be the same. This is not

a friendly vertex labeling.

Lemma 3.8. In M2, €(1) #3.

Proof. Assume e(1) = 3. Then either e(1) = 0 in the cycle or (1) =2 in the
cycle. Ife(1) = 0 in the cycle, all the vertex labels in the cycle must be the same.
This is not a friendly vertex labeling. If e(1) = 2 in the cycle, then there is a
unique diagonal labeled 1, i.e., a unique diagonal connecting a 0-vertex and a 1-
vertex. Let this unique diagonal be (v, van+2). The labels of vz, vs, ..., vann
cannot have the same label, because otherwise the labels of vani3, Vanss, ... , Vans2
must have the same complementary label, giving all diagonals labeled 1. Thus
among the vertices vz, v3, ... , Vane1, two adjacent vertices must have
complementary labels. Then their diagonally opposite vertices must have the
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same complementary labels. By considering how these 0-vertices and 1-vertices
are situated relative to (v), van+2), it is obvious that there must be other 1-edges.

Corollary 3.9. FI(Mun+2) < {6n +3} U {6n—5 -2k | k is a non-negative
integer and 6n — 5 — 2k > 0}.

Proof. In My, there are 6n + 3 edges. The possible values of e(0) are 0, 4, 6,
8,...,6n—4, 6n-2, and the corresponding values of (1) are 6n + 3, 6n— 1, 6n
~3,6n-35,...,7,5. Thus the possible values of |e(1) — e(0)] are 6n + 3, 6n - 5,
6n-7,6n-9,6n-11,...,3, 1.

To show that all these values are attainable, we introduce the following
constructions.

Construction 4 (for Mq+2):

Label the vertex van+1 by 1, and the vertex van2 by 0. Label the vertices v,
V2, ... , V2o alternately by 0 and 1. Label the vertices van+2, Vanss, ... 5 Vot
alternately by 0 and 1. In this graph, e(1)=4n + 1 and e(0) = 2n + 2, giving g =
(1) —e(0) = 2n — 1. Successively interchange the vertex labels at v;-; and vy
wherej=1,2,3,...,n-1. Each such interchange increases the number of 1-
diagonals by 2 and decreases the number of 0-diagonals by 2. These give the
possible g values of 2n— 1 + 4i, wherei=0,1,2, ... ,n-1,i.e.,2n-1,2n+ 3,
., 6n =35,

Finally interchange the vertex labels of v,-1 and v2,. Besides the same
changes in 1-diagonals and 0-diagonals, this also increases the number of 1-
edges by 2 and decreases the number of 0-edges by 2 in the cycle, making g =
6n + 3.

Construction 5 (for Mun+2):

Label the vertex van+1 by 1, and the vertex vans2 by 0. Label the vertices v,,
V2, ..., Van by 0, and the vertices Vags2, Vanss, ... , Vans1 by 1. Interchange the
vertex labels at vi and van+1. In this graph, e(1) = 2n + 3 and ¢(0) = 4n, giving g
=e(1)—e(0) =—2n + 3. Successively interchange the vertex labels at v; and
Van+2-j Where j =2, 3, ..., n. Each such interchange decreases the number of 1-
diagonals by 2 and increases the number of 0-diagonals by 2. These give the
possible g values of —2n + 3 —4i, where i=0, 1,2, ... ,n—1,i.e.,=2n+3, 2n -
l,...,-6n+7.

Construction 6 (for Muq+2, with n even):

Label the vertex vzq+1 by 1, and the vertex vans2 by 0. Label the vertices vi,
V3, ..., V2n sequentially by 00 1 1 00 1 1, etc. Label the vertices van+2, Vanss, ...
» Van+1 Sequentially by 00 1 100 1 1, etc. Interchange the vertex labels at v; and
Van+1. In this graph, e(1) =2n + 5 and e(0) = 4n - 2, giving g = e(1) - e(0) = —2n
+7. Successively interchange the vertex labels at v; and Vans2-; Where j =3, 5,
..., 2n—1. Each such interchange increases the number of 1-diagonals by 2
and decreases the number of 0-diagonals by 2. These give the possible g values
of2n+7+4i,wherei=0,1,2,...,n—1,ie.,-2n+7,-2n+ 11, ... ,2n+3.
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Construction 7 (for Man+2, with n odd):

Label the vertices van-1, vanand vans1 by 1, 1 and 0, the vertices Van, Van+1 and
Van+2 by 1, 0 and 0. Label the vertices vy, Vv, ... , Van2 Sequentially by 00 1 1 0
01 1, etc. Label the vertices vzg+2, Vaqs+s, ... , Van-1 Sequentially by 001100 1
1, etc. Interchange the vertex labels at v; and v4-1. In this graph, e(1)=2n + 5
and e(0) = 4n - 2, giving g = e(1) — e(0) = —2n + 7. Successively interchange the
vertex labels at vj and van-j where j=3, 5, ..., 2n—3. Each such interchange
increases the number of 1-diagonals by 2 and decreases the number of 0-
diagonals by 2. These give the possible g values of -2n + 7 + 4i, where i =0, I,
2,...,n=-2,ie.,-2n+7,-2n+11,...,2n-1.

Theorem 3.2. FI(Mun+2) = {6n + 3} U {6n — 5 —2k | k is a non-negative integer
and 6n - 5 -2k > 0}.

Proof. For n odd, Constructions 4, 5 and 7 show that all the possible values are
attainable. For n even, Constructions 4, 5 and 6 show that all the possible values
are attainable.

Example 7. Kj;is isomorphic to Ms. We see in Example 1 that FI(Ms) = {1,
9}. The above Theorem shows that FI(Mio) = {1, 3, 5, 7, 15}.

v, v, 2 v, Vg
1 03 ® 0
le(1)-e(0)| =1
le(1)-e(0)| =3
le(1)-e(0)| =5
le(1)-e(0){ =7

le(1)-e(0)| =15

Figure 9.
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