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Abstract For an n-connected graph G, the n-wide diameter d,(G),
is the minimum integer m such that for any two vertices = and y there are
at least n internally disjoint paths of length at most m from = to y. For
a given integer I, a subset S of V(G) is called a (I,n)- dominating set of
G if for any vertex z € V(G) — S there are at least n internally disjoint
(di)paths of length at most [ from S to z. The minimum cardinality among
all ({, n)-dominating sets of G is called the (I, n)-domination number. In
this paper, we obtain that the (I,w)-domination numbers of the circulant
digraph G(d™; {1,d,---,d""!}) is equal to 2 for 1 < w < n and d,(G) —
(g9(d,n) +4) <! < d,(G)—1, where g(d,n) = min{e[n/2] —e—2,(|n/2] +
1)(e'—l)—2},6=0for1San—l and 6 =1 for w=n.

Keywords: Circulant network, Wide diameter, Reliability, Domination
number

MR Subject Classification: 05C40 68M10 68M15 68R10

1 Introduction

This paper uses graphs to represent networks. The notions of diameter and
connectivity of graphs have been treated extensively in the graph theory
literature. Reliability and efficiency are important criteria in the design of
interconnection networks. The distance dg(z,y) from a vertex z to another
vertex y in a network G is the minimum number of edges of a path from
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z to y. The diameter d(G) is the maximum distance from one vertex to
another. The connectivity k(G) is the minimum number of vertices whose
removal results in a disconnected or trivial network.

In order to characterize the reliability of transmission delay in a real-
time parallel processing system, Hsu and Lyuu [9], Flandrin and Li [6]
independently introduced n-wide diameter, which unifies diameter and con-
nectivity. For an n-connected graph G, the distance with width n from «
to y, denoted by d,(G;z,y), is the minimum number m for which there
are n internally disjoint (z,y)-paths in G of length at most m. The n-wide
diameter of G, i.e., the n-diameter, denoted by d,(G), is the maximum of
d.(G; z,y) over all pairs (z,y) of vertices of G.

Li and Xu {10] defined a new parameter (/, n)-domination number in an
n-connected undirected graph, in some sense, which can more accurately
characterize the reliability of networks than the wide-diameter does. This
motives us to generalize the definition to that of the digraph. Let G be an
n-connected digraph, S a nonempty and proper subset of V(G), = a vertex
in G — S. For a given positive integer [, z is (I, n)-dominated by S if there
are at least n internally disjoint (S,z)-dipaths of length at most . S is
said to be a (I,n)-dominating set of G if S can (l,n)-dominate any vertex
in G — S. The minimum cardinality among all (I, n)-dominating sets of G
is called the (,n)-domination number, denoted by ¥;.(G).

The circulant networks, which were originally proposed by Elspas and
Turner [5], have proved very useful in the design of fault-tolerant multi-
processor systems [1, 4]. For a positive integer N, let Zy be the additive
group of residue classes modulo N. The circulant digraph G(N; A) asso-
ciated with N and a subset A C Zy — {0} is a digraph with a vertex set
Zn and an edge set {zy : z,y € Zny and y —z € A}. It is clear that
G(N; A) is vertex-transitive. Every vertex in G(N; A) has an indegree and
an outdegree that are equal to |A|.

Let N =d" and A = {1,d,---,d""1}, then the diameter of G(d"; A) is
n(d—1). Hamidoune [8] showed that the connectivity of G(d"; A) is n. Hsu
and Lyuu [9], Duh and Chen (3] proved that d,(G(d"; A)) = n(d — 1) +1,
respectively. Liaw et al. [11] further showed that d,(G(d"; A)) = n(d — 1)
for 1 <w < n-1and d,(G(d"*; A)) =n(d —1) + 1.

In general, to determine the (I,7n)-domination number of a graph is
NP-Complete since its special case of (1,1), the domination number of
the graph, is NP-Complete[7]. It is clear that 11,,(G) = 1 for | > d.(G)
and v;,(G) = 2 for | < d,(G). So it is of interest to show some general
properties [10, 14] and values of the (I, n)-domination numbers for ! <
d,.(G) (see, for example (12, 13, 15]).

This paper studies the (l,w)-domination numbers of the circulant di-
graph G(d™; {1,d,---,d""!}) if d > 4 and n > 5, obtains v,,,(G) = 2
for 1 < w < n and d,(G) — (9(d,n) + 8) < |l < d,(G) — 1, where



9(d,n) = min{e[n/2] —e—2, (|n/2] +1)(e"—1)—2}, 0=0forl <w<n-1
andéd=1forw=n, |§] =ecand [§] =¢.
Terminologies and notations not defined here are referred to [2].

2 Preliminaries

In this paper, we take A = {1,d,--+,d"~1}, denote [%J and [%] by eand e,
respectively. Each vertex z of the circulant digraph G(d™; A) with 0 < z <
N =d" can be encoded as z = zp—1d" ! + z,_2d™ 2+ .- + 27d + ¢ mod
N, where 0 < z,_1,Zn_2,"+, 2o < d—1. Thus, vertex r can also be writ-
ten as (Tn—1,Zn—2, -, o), and z is connected to (Tn—1+1,ZTn-2," ", Zo)
(Tn-1,Tn—2+1,-+,20), +*, (Tn—1,ZTn—-2,"*+,Zo + 1), where additions are
performed modulo d*. For (zp-1,Zn—2,",Z0), we call z; the ith compo-
nent of z.

Bz=(-,2iZTic1, ", Tjg1, %5, ) With g, -+, 2541 S eand 7, ;5
> e, call such a sequence a maximal sequence of components with values
not exceeding e at ¢ — 1 with length i —  — 1 and z; its leading component.

Suppose 0 < jr <jr—1 < <j1 <n- lv 0< Ty Tj._ys° "9 Th < d—
1. For any vertices v, v =u+(0,--+,0,z;,,--+,2; _,,0,--+,0,2;_,0,---,0)
in G(d™; A), we denote the u-v dipath

u —u+d —>ut2dit - > utx; dT
—u+g; dir +di-t s utz; dit 425 > s u oz di
wjr_ld]'r—l
.-
—u+ xj,.dj" + mjr-—ldjr_l ot dt Sy .'lrj,_dj' + zj'._,djr-l.*.
...+2djl N 7]

by << Sﬂj'_dj",xjv,_ldj"-l’ s ’xj‘d]‘l >,
Using the method in [14], we can easily have the following proposition.

Proposition 2.1 For any digraph G of connectivity n, then
(1) 741,n(G) £ 71,0(G), where ! is a positive integer.
(2} M,w-1(G) £ Nw(G) for L <w < n.

3 Main results
Lemma 3.1 Let o = (0,0,---,0) € V(G(d"; A)). For any vertex z =
(Tn-1,ZTn-2,"--, o) € V(G(d"; A)) withz; >0 fori=0,1,---,n—1, then

n—-1
there exist n internally disjoint dipaths from o to z each with length Y z;.
i=0



Proof Construct the n dipaths from o to z as follows:
Py << x4d®, 2o d?FY, oz 1d™ L 2od?, - 2o 1d* T >>  fors =
0,1,---,n—-1.
n—1
So the length of each dipath is ) =z;. ]
i=0
Lemma 3.2 Let u = (e,e,---,e) € V(G(d"; A)). For any vertex

T = (xn—ly Tp—-2,""" )xO)
€ V(G(d™; A)) with z,—; > e, if z has [(> 1) components with values e and
the others with values more than e, then there exist n internally disjoint

n-1
dipaths from u to = each with length at most ) (z; —e) + I(d — 1).
) .

1=
Proof Assume z has maximal sequences of es at ,i9,---,%, with
lengths j1,72,--+,7k > 0, respectively, where &k > 1, iy > iz > -+ > 1.

k
Without loss of generality, we let > j, =1 and
t=1

i J2
_ e, e,
T = (xn—la"'ixil-f-lyey"' 1evxi1—j13"')ziz‘l‘l!e"":esxig—jz)"'v
Ik
,—/\-\
Tip+1:€," ", €, xlk—Jki : IB())

where:c,>eforz;ézt Je+ i —5+2,--- 4, witht=1,2,.-- k.
First construct the n — ! dipaths from u to z as follows:
P, i<< (T4 — €)%, (Tops — €)d*HL, -+, (Tnoy — €)d™Y, (20 — €)d°, (21 —
e)dl,-n,(:c,_l —e)d* ! >> for s # iy —jy+ 1,4 — 5 + 2,--+,%; with
t=1,2,---,k.

Then the length of each dipath is Z (zi —e).

Nextlfzt—]g+1<s<ztforanytw1tht-—12 -, k, we write T
as Zn-1d™ 1 + o+ T 0d™ 2 4 (24,4 — 1) 4 (e + d = L)ydit +..- +
(e+d—1)d**! + (e +d)d® + 3, —;,d" ™3 + .- + z4. , where additions are
performed modulo d". Construct the remaining ! dipaths from u to z as
follows:

P << (d— 1)d*, (d— 1)ds+1, <y {d- 1)di‘, (zi41—1 —e)d""“, (zi,42—
e)d*2 ... (z,_1—e)d""!, (zo—e)d’, (z1—€)d),- - -, (Tip—j, —€)d™* Tk ..o,
(l’i,-j, —e)dit=d d* >> for s = iy — jy 4+ 1,4 — je + 2, -+, 4, With ¢ =
1,2,-- k.

Then the length of each dipath is E (z; —e) + max {ji} - (d—1) <

1<t<k
n—1
5" (z; — e) + l(d — 1) and the equality holds for k = 1.
=5
' It is not hard to see that all n dipaths are internally disjoint.
So the proof is complete. ]



Lemma 3.3 Let u = (e,e,--,e) € V(G(d"; A)). For any vertex
T = (Tp-1,Tn-2," ", %0) € V(G(d"; A)) with z,_, > e, if z has (> 1)
components with values less than e and the others with values more than
e, then there exist n internally disjoint dipaths from u to z each with length

at most E(:c,—e)+(l+l)(d—l)+1

Proof Assume z has maximal sequences of components with values
less than e at i;,14,-- -, of lengths j1,j2,---,jk > 0, respectively, where
k
k>1,4>ip>---> 4. Let Y j,=1and
t=1
71
e e,
= (xn—h T+ Ty i —f1+ 1 Tig—jyy 0ty Tig1,
J2 I
P S — P —
Tigy' ’xiz—jz-{-hxiz—jzr v 1xik+l:xik1 e ,xik—jk’f-l!x‘ik—jk, Tt )$0)y
where the sth component z, < e for s =4, — j, + 1,43 — J¢ + 2, -+,4; with
t=1,2,--.,k and the other components with values more than e.

Then we write z as )
N

(xn—h' . yxi1+2yxi1+l_lvxi1 + d— 11 * ";m‘il—j1+2 + d- 11 x‘ix—jl+1 +3v
Ja2

Tiyjirt s Tig4 2y Tigpl — L Zig +d = 1, Tig g + 4 — 1, Tip_jpp1 +
Ik

xiz—jza e 7$jk+2i$jk+l—l)xik + d- 1) e axik—jk+2 + d— 17zik"jk+1 + dy
Tip—jir*** 1 T0)-
Case 1. Ti 41,Zip+1," ", Tip+1 > e+1. Using the method in Lemma 3.1,
n—1
construct the n dipaths from u to z each with length Y (z; —e)+1(d—1).
=0

Case 2. z;,41 = e+ 1 for some t with 1<t < k.
Subcase 2a. t #1or i #n—2.
Assume there exist s(s > 1) components x;, ;1 such that z;,+1 = e+ 1.
Then by Lemma 3.2, there exist n internally disjoint dipaths from u to z,
1

where the n— s dipaths each with length z—: (zi—e)+1(d—1), the s dipaths

each with length at most Z (zi—e)+ (I +1)(d-1).

Subcase 2b. Otherw1se
We illustrate this case ast =1, 4; =n — 2 and ¢t = 2. By Lemma 3.2,
first we easily construct the n — 1 dipaths from u to z, where the n — 2

-1
dipaths Ps(0 < s £ n—2, s # iz +1) each with length nz (i —e)+i(d-1)
i=0

n—1
and the one dipath P;,;; with length at most ) (z;: —e) + (! +1)(d —1).
1=0



Next we write z as z + (d,0,---,0). Construct the remaining dipath
P,_; from u to z as << (d — 1)d"~!, Py, 1d""! >>, the length of the

dipath is Z (zi—e)+(+1)(d-1)+1.

It is not hard to see that all dipaths are internally disjoint.
So the proof is complete. ]
By Lemmas 3.2 and 3.3, we can easily have the following lemma.

Lemma 3.4 Let u = (e,e,---,e) € V(G(d™; A)). For any vertex
T = (Tn_1,Tn-2, ', %0) € V(G(d"; A)) with z,_; > e, if = has I(> 1)
components with values no more than e and the others with values more
than e, then there exist n internally disjoint dipaths from u to = each with

n—1
length at most Y (z; —e)+ (1 +1)(d—1)+1. ]
i=0

Lemma 3.5 Let S = {o,u} be a vertex subset of G(d"; A) with o =
(0,0,---,0) and u = (e,e,---,€), where d > 4 and n > 5. For any vertex
T = (Tn_1,Tn-2, -+, To) € V(G(d"; A)) — S with z,_; > e, then S can
({,n)-dominate z for l = n(d—1) — f(d,n), where f(d,n) = min{e[n/2] —
2,(|n/2] + 1)(€ — 1)~ 1}.

Proof By definition of the (I,n)-dominating set, it suffices to con-
struct n internally disjoint dipaths of length at most n(d — 1) — f(d,n)
from S to z with z,_; > e. We consider the following cases:

Case 1. z; >efori=0,1,---,n—2.

By vertex-transitivity and Lemma 3.1, there exist n internally disjoint

n—1
dipaths from u to z each with length 3" (z; — e) < n(d — 1) — ne.
Case 2. 0<z1;<e fori=0,1,-~,’n0—2.
Construct the n dipaths from o to z the same as in Lemma 3.1 each

with length E z; <n(d—1) = (n—1) —1).

=0

Case 3. :t:,—Oforz_Ol -+,n —2, that is z = (z,-1,0, 0)

Subcase 3a. T,_1 > e+ 1. We write z as (z,—y — 1,d~1,---,d—1,d).
Construct the n dipaths from u to z each with length (:z:n_l - e) +(n-
(e —-1) < n(d-1)—ne

Subcase 3b. T, =e+1. We write z as (e+d,d—1,---,d—1,d). Itis
similar to Subcase 2b in Lemma 3.3, construct the n dipaths from u to z
each with length at most z,,_; +n(d—1)—ne+1=n(d—1)—e(n—-1)+2.

Case 4. = has l(1 < ! < n—2) components with values e and the others
with values more than e.

If I < [n/2]. Construct the n dipaths from u to = each with length at



most
n—1
D (@i—e)+Ud-1) <n(d-1) —e(n—1) < n(d~1) - e[n/2].
i=0

If I > |n/2] + 1. Construct the n dipaths from o to z each with length

n—1
Y zi<le+(n-l)(d—1) <n(d—1) - (|n/2] + 1)(e —1).
=0
Case 5. z has I(1 £ < n —2) components with values not only less
than e but more than 0 and the others with values more than e.
Subcase 5a. All the leading components of = are more than e + 1.
If I < |n/2]. By Case 1 of Lemma 3.3, construct the n dipaths from u
to = each with length at most

n-1
> (zi—e)+U(d—1) < n(d—1)+l(e—1) —ne < n(d—1) —e[n/2] - [n/2].

i=0
If 1 > {n/2] + 1. Construct the n dipaths from o to = each with length
n-1 , ,
Y zi<n(d-1)—le <n(d-1)-e(|n/2] +1).
i=0
Subcase 5b. Some of the leading components of  are equal to e + 1.

If1 < |n/2] —1. By Case 2 of Lemma 3.3, construct the n dipaths from
u to z each with length at most

'fz_:l(xi —e)+(l+1)d-1)+1
Shd-1)+1(e—1)—e(n—1)+2
<n(d-1)-(|n/2] +e[n/2]) +3.

If I > |n/2]. Construct the n dipaths from o to = each with length

n-—1
dDom<n(d-1)—e(l+1)+2<n(d-1) —€'(|n/2] +1) +2.

=0

Case 6. z has [(1 <! < n—2) components with values 0 and the others
with values more than e .
Subcase 6a. All the leading components of x are more than e + 1.

n—1
Construct the n dipaths from u to z each with length at most ) (z;—e)+
i=0
l(d—1) <n(d—-1) —ne.



Subcase 6b. Some of the leading components of = are equal to e + 1.
n-1
Construct the n dipaths from u to z each with length at most 3 (z; —e)+

i=0
(I+1)(d-1)+1<n(d-1)—e(n—-1)+2.

Case 7. « has [;(1 £ I} £ ! —1) components with values e, [ — I,
components with values not only less than e but more than 0 and the
others with values more than e, where 2 <! <n -2,

Subcase 7a. All the leading components of x are more than e + 1.

If 1 > |n/2] + 1. Construct the n dipaths from o to z each with length

o <nd-1)-l +
T <nd=1 -l —1)-1
<n(d-1)=(|n/2) +1)(e —1) - 1.

If | < [n/2]. Construct the n dipaths from u to z each with length at
most

Z(:vz —e)+id-1)
<n(d—1)+l(e—1)+l1 —ne
<n(d—1)+ell—n)-1
<n(d-1)—e[n/2] - 1.
Subcase 7b. Some of the leading components of z are equal to e + 1.
If I > |n/2]. Construct the n dipaths from o to z each with length

n—-1 ,
Sz, <n(d-1)—-(+1e +1; +2
=0

<n(d-1)—(+1)e -1)
n(d —1) = (|n/2] +1)(e' - 1).

If 1 < |n/2] — 1. Construct the n dipaths from u to z each with length
at most
n-—1
S (zi—e)+(I+1)(d-1)+1
i=0
<n(d-1)+e(l+1)—ne—Il+1;+2
<n(d-1)+ell-n+1)+1
<n(d—-1)—e[n/2]+1.
Case 8. z has [;(1 <l <1 —1) components with values 0, ! — I,
components with values not only less than e but more than 0 and the

others with values more than e, where 2 <1< n-2.
Subcase 8a. All the leading components of = are more than e + 1.

10



If iy > 1 - |n/2]. Construct the n dipaths from u to = each with length
at most
n-1
) (zi—e)+U(d—1) < n(d—1)+(I~l)(e~1)-ne < n(d—1)—e[n/2]—|n/2].
i=0
Ifl; <1—|n/2] — 1. Construct the n dipaths from o to = each with
length at most
n—l ' ’
dzi+h(d-1)<n(d-1)—e(l-h) <n(d-1)—€(|n/2) +1).
i=0
Subcase 8b. Some of the leading components of z are equal to e + 1.
If iy > 1 - |n/2] + 1. Construct the n dipaths from u to z each with
length at most
n-1
Y(xi—-e)+({l+1)(d-1)+1
1=0
<nd-1)+({I-l)e—1)—e(n-1)+2
<n(d-1)—e[n/2] — |n/2] + 3.

If i} <1—|n/2]. Construct the n dipaths from o to z each with length
at most
n-—1
D zi+li(d-1) Sn(d-1)—€ (-l +1)+2 < n(d—1)—€ (|n/2] +1)+2.
i=0

Case 9. z has [;(1 < |} £ — 1) components with values 0, { — )
components with values e and the others with values more than e, where
2<l<n-2.

Subcase 9a. All the leading components of x are more than e + 1.

If I > |n/2| — 1. Construct the n dipaths from u to z each with length

at most

n—1
D (zi—e)+i(d—1) Sn(d—1)—e(n—1+1) < n(d-1) —eln/2].
i=0
If I} <1 - {n/2] — 1. Construct the n dipaths from o to = each with
length at most

n—1
D o mith(d—1) Sn(d-1)—(—h)(e ~1) < n(d—1)—(|n/2] +1)(e —1).

i=0

Subcase 9b. Some of the leading components of = are equal to e + 1.



If l, >1—|n/2] + 1. Construct the n dipaths from u to z each with
length at most

S+ (+1d-1)+1
Sh(d=1)—e(n—l+1—1)+2
<n(d-1)—efn/2] +2.

Ifl, <1—|n/2]. Construct the n dipaths from o to x each with length
at most

n—1

Z x; + ll(d - 1)

i=0

<nd-1)—( -1)({-L+1)+1

<n(d-1)—(|n/2] +1)(e —1) +1.

Case 10. z has [;(1 <l; <1 —2) components with values 0, [5(1 < Iy <

I —; — 1) components with values not only less than e but more than 0,
I — 1} — l; components with values e and the others with values more than
e,where3<Il<n-2.

Subease 10a. All the leading components of = are more than e + 1.
Ifl; > 1—|n/2]. Construct the n dipaths from u to = each with length

at most

n—1
S (zi-e)+i(d—1) S n(d—1) =l +e(l— 1y —n) < n(d—1) —e[n/2] — 1.

=0

If [, <1 - |n/2] — 1. Construct the n dipaths from o to = each with
length at most

Z fl!,-}-ll(d—l)

<n(d——1)-—(l-ll)(e —1)—12
<n(d-1)—(|n/2) +1)(e' = 1) — 1.

Subcase 10b. Some of the leading components of = are equal to e + 1.
If I, >1—|n/2] +1. Construct the n dipaths from u to = each with
length at most

Z(x,—e)+(l+1) d-1)+1

<n(d—1) Lb+ell—li—n+1)+2
<n(d-1)—e[n/2] +1.

12



If l; £1—|n/2]. Construct the n dipaths from o to = each with length
at most

n=1
Yozi+li(d-1)
i=0
<nd-1)-(U-L+1)e -1)—l+1
<n(d-1)—(|n/2] +1)(e - 1).
Case 11. z has l(1 <! < n —2) components with values not only less

than e but more than 0 and the others with values e.
Construct the n dipaths from o to z each with length

n—1
d zi<ne—l+e —1<nd-1)—(n—1)e -1)—1.
i=0
Case 12. z has {(1 < | < n — 2) components with values 0 and the
others with values e.

Subcase 12a. z,_1 > e+ 1.
If I < [n/2] — 2. Construct the n dipaths from o to = each with length

at most
n_l 1 !
domi+ld-1) <ne+ (L+1)(e —1) <n(d—1) - ([n/2] +1)(e —1).
i=0
If 1 > [n/2] — 1. Construct the n dipaths from u to z each with length
at most

n—1
Y (@i—e)+(n—1)(d-1) <n(d-1) - (I +1)e < n(d - 1) — e[n/2].
i=0
Subcase 12b. z,_; =e+ 1.
Ifl < [n/2] — 1. Construct the n dipaths from o to x each with length
at most

n-1
S zi+id—1) <ne+l(e —1)+1<n(d—1) - ([n/2] +1)(e —1)+1.
i=0
If I > [n/2]. Construct the n dipaths from u to z each with length at
most
n-1
Z(:z:i —e)+n(d-1)+1<n(d—1)—-le+2<n(d-1)—e[n/2] +2.
=0
Case 13. z has [;(1 <!} €1 —1) components with values 0, ! — {;
components with values not only less than e but more than 0 and the
others with values e, where 2 <! < n —2.

13



Subcase 18a. 1 > e+ 1.
Ifl; £ [n/2] —2. Construct the n dipaths from o to = each with length

at most

n—1
S zi+lhi(d-1)
=0

<ne—l+le +e —1
<ne+l(e —1)+e -2
<n(d-1)—(|n/2] +1)(e —1) - 1.
Ifl; > [n/2] — 1. Construct the n dipaths from u to z each with length

at most

1.12_—:::(.’1?1' -e)+(n—1)(d-1)
<nd-1)—l-lie—1)—e
<n(d-1)—e(l; +1)—1
<n(d-1)—e[n/2] - 1.

Subcase 18b. z,_) = e+ 1.
If ! < [n/2] — 1. Construct the n dipaths from o to z each with length

at most

n—1 !
S zi+h(d-1)
i=0

t=l
<ne—l+le +1
<ne+li(e —1)
<n(d—1) - (|n/2] + (e —1).
If ; > [n/2]. Construct the n dipaths from u to x each with length at

most .
(zi—e)+nd-1)+1
1=0

<nd-1)—-1l-li(e—1)+2
<n(d-1)—lhe+1
<n(d-1)—e[n/2] +1.
Case 14. z has [(1 £ | € n — 2) components with values 0 and the
others with values not only less than e but more than 0.

Subcase 14a. Tn—y > e+ 1.
If I < [n/2] — 2. Construct the n dipaths from o to = each with length

n-1

Y ozi+ld—1)<nfe—1)+(+1)e <n(d—1)—e(|n/2] +1).

i=0

Ifl > [n/2] — 1. Construct the » dipaths from u to = each with length

at most



Z(-’Er—e)+(n—1)( -1)

<n(d—1)-(l+1)(e—1)—'n
< n(d 1) - e[n/2] - [n/2].
Subcase 14b. x,-1 = e+ 1.
If 1 < [n/2] — 1. Construct the n dipaths from o to = each with length
at most
n_l ’ ’
> zi+Ud—1) <nle—1)+le +2<n(d—1)—€(|n/2] +1)+2.
1=0
If Il > [n/2]. Construct the n dipaths from u to x each with length at
most

ni:l(mi —e)+n(d—-1)+1

Shd—1)—le—1)—n+3
<n(d-1)—e[n/2] - [n/2] +3.
Summarizing above cases, there exist n internally disjoint dipaths from
S to z for z,..; > e each with length at most max{n(d — 1) — e[n/2] +
2,n(d —1) — (|n/2] +1)(e — 1) +1}.
So the proof is complete. 1
For any vertex 2 = (zpn—-1,Zn-2,'*,%o) € V(G(d"; A)) — S with 0 <
Zn—1 < e, using the method in Lemma 3.5, we can also construct n in-
ternally disjoint dipaths from S to z such that length of each dipath is as
small as possible. The details are omitted here and left to the reader. Next
we consider the following lemma.

Lemma 3.6 Let S = {o,u} be a vertex subset of G(d"; A) with o =
(0,0,---,0) and u = (e,e,---,e), where d > 4 and n > 5. For any vertex
ZT = (Tn-1,Tn-2, -+, Z0) € V(G(d™; A))—S with 0 < z,,_; < e, then S can
(!,n)-dominate « for I = n(d - 1) — g(d,n), where g(d,n) = min{e[n/2] -
e—2,(ln/2) +1)(e —1) —2}.

Proof It suffices to construct n internally disjoint dipaths of length
at most n(d — 1) — g(d,n) from S to z with 0 < z,_; < e Lety =
(d—1,zn_2,---,z0) be a vertex in G(d™; A). According to the proof of
Lemma 3.5, there exist n internally disjoint dipaths P;(0 < i < n—1) from
o (or u) to y. We consider the following cases:

Case 1. The n dipaths start at vertex u.

Subcase 1a. z; > efori=0,1,---,n — 2. Then we write z as (2,1 +
d,Tp_g,---,2g). It is easy to construct the n dipaths from u to = each with

n—1
length Y (z; —e)+d<n(d-1)—e(n—-1)+1.
i=0
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Subcase 1b. Otherwise. .

21
. . —— |
We illustrate this case as y = (d — 1, Tp—2,**, iy 41, Tiyy - * s Tiymjy 419

J2
Tiy—jyr**y Tig41s €+ 1€ Tis—jp,** +, To), Where j1, 52 > 1, z; < e for i =
i1—g1+1,--,ipandx; >efori#i—j+1,---,4 witht =1,2. Then
we write y as
N

(d_ly v ’xil+21wi1+1—1axi1 +d— 1,--- y Liy—j1+2 +d- 11xi1—jl+l + d;
J2

Zig—jir 1y Lig42: Tig+1 — 1,2+d—- 1,---,e+d— 1,€+(2,x,’2_]’2,'--,x0).

If ;41 > e+1and z;,41 > e+ 1. According to Case 4, Subcases 9a

and 12a in Lemma 3.5, we know each length of the n dipaths is at most
, n—2

n(d—1)—e[n/2]. By case 1 in Lemma 3.3, sowe have e —1+4 ) (z;—e)+
i=0

(1 +d2)d—1) <n(d-1)- e|'n/ 2] Without loss of generahty, denote the

dipath P; by << Pyd?, Py d**!, -+, Pip_1d™" Y, Pppd®, - -+, Piiq di-! >>

for i = 0,1,--.,n — 1, where P,-J- means links through the jth compo-

nent along the dipath P; for j = 0,1,.-.,n — 1. Next we write z as

¥y + (Tp-1 + 1,0,---,0). Then construct the n dipaths from u to = as

<< Pydi, Piprd™t, oo (Pinoy + Tno1 4+ 1)d™ 1, Pipd®, -+, Py di~1 >>
n-2
fori=0,1,-- — 1. So the length of each dipath is x,_; + e + > (=

i=0
e) + (71 +j2)( -1)<n(d-1)—e[n/2] +e+1.
If z;,41 =e+1or z;,+1 = e+ 1. According to Subcases 2a in Lemma
n—2
3.3 and Subcase 9b in Lemma 3.5,, we also have e’ —1+ Y (z: —e) + (j1 +
i=0
j2+1)(d—1) < n(d—1)—e[n/2] +1, and can construct the n dipaths from

, mn=2
u to = each with length at most z,—;+e + > (z;—e)+(j1 +j2+1)(d—1) <

=0
n(d—1) —e[n/2] +e+2.

Case 2. The n dipaths start at vertex o.

By Lemma 3.5, each length of the n dipaths is at most n(d — 1) —
(In/2] +1)(e' - 1) +1. Assume the dipath P; as << Pyd?, Py dit!, -,
Pipn_1d™ Y, Pyod®, -+, Pyi_1d*"1 >>, where i = 0,1,---,n — 1.

Ifz,_;=0, then write = as (d, p—2," -+, Zo), it is easy construct the n
dipaths from o to z each with length at most n(d—1)—([n/2] +1)(e -1)42.

If z,—1 > 1, construct the n dlpaths from o to z as << Pjd?, P,,.,.ld““

oy (Pin_1—(d=1=Tp_1))d™ 1, Pod®, - - -, Pyy_1d""! >>fori = 0,1, -+, n—
1. Obviously, the length of each dipath is less than n(d — 1) — (|_n/ 2] +
1)(e —1)+1.

So the proof is complete. ]
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Finally, we can see that Proposition 2.1, Lemmas 3.5 and 3.6 yield the
following theorem:

Theorem 3.7 Let G = G(d*;A) with d > 4 and n > 5. Then
Nw(G) =2 for 1 <w < nand dy(G) — (9(d,n) +6) < ! < du(G) -1,
where g(d,n) = min{e[n/2] —e —2,({n/2] + 1)(¢ —=1) -2}, § = 0 for
l1<w<n—landd=1forw=n.

4 Conclusion and problems

For the circulant network G(d™; A) with d > 4 and n > 5, we prove that
Mw(G) =2 for 1 £ w < n and d,(G) — (9(d,n) + 6) <! £ d,(G) -1,
where g(d,n) = min{e[n/2] — e —2,([n/2] +1)(e' = 1) =2}, § = 0 for
1<w<n—-1andd =1 for w=n. Important and practical problems are
how to choose a vertex subset S of G(d"; A) and determine the values of
T,w(G(d"; A)) if 1 Sw < nand! < d,(G) - (g9(d,n) + §) for some special
values of d and n.
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