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Abstract

Let T(G) and bind(G) be the tenacity and the binding number,
respectively, of a graph G. The inequality T(G) > bind(G) — 1 was
derived by D. Moazzami in [11]. In this paper, we provide a stronger
lower bound on T'(G) that is best possible when bind(G) > 1.

1 Introduction

We consider only nonempty, finite, simple, undirected graphs. Given two
graphs G and H we use G + H to denote their join and G U H to denote
their disjoint union. We define the tenacity of G, denoted T(G), as in [9],
and the binding number of G, denoted bind(G), as in [12]:

T(G) = min { %ig—) S CV(G) and w(G - 8) > 2}
and
bind(G) = min { % 0 #SCV(G), N(S)# V(G)} ,

where m(G — S) is the order of a largest component of G — S, w(G — §) is
the number of components of G — S, and N(S) is the set of neighbors of S.
Let K, be the complete graph on n vertices. Then we define T(K,) := n.
Notice that T(G) > L > 0 for all graphs G on n vertices (the lower bound
given by T(nK,)). A graph G is b-binding if bind(G) > b and t-tenacious
ifT(G) >t

*Part of this work was completed while the author was a Ph.D candidate in the
Department of Mathematical Sciences at Stevens Institute of Technology.
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The binding number and the tenacity are both members of a class of vul-
nerability parameters of a graph that are often used to study network stabil-
ity. Other parameters that fall under this heading are vertex-connectivity,
edge-connectivity, and toughness. Discussions of relationships between mul-
tiple vulnerability parameters can be found in [1] and [11].

In terms of computational complexity, determining the tenacity of a
graph is NP-hard (D. Moazzami, personal communication, May 29, 2010).
However, Cunningham [10] has shown that bind(G) is tractable. Therefore,
one can benefit from knowing how T(G) compares to bind(G). Such a
relationship was provided by Moazzami [11] in the form of Theorem 1.1
below.

Theorem 1.1. Let G be a graph. Then T(G) > bind(G) — 1.

Our main goal is to replace the lower bound of Theorem 1.1 with one
that is best possible when bind(G) > 1. We will then show how certain
information about the degrees of vertices of G can help to strengthen this
relationship. For this second task, we require the notion of a best monotone
P theorem for a graph property P. The next few paragraphs contain a
summary of ideas originally formalized in [4] and [3].

The degree sequence of a graph G is a list of the degrees of all the
vertices of G, with repetition if multiple vertices have the same degree.
In this paper the degree sequences are in nondecreasing order. If 7 is a
degree sequence of length n, then we typically denote it as # = (d; < dg <
--- <d,). At times we may utilize exponents to indicate the number of
times a degree appears, e.g., © = (2,2,2,2,4) = 244!, Given two sequences
7= (d £dpg £---<dn)and 7' = (d] £ dy <--- < d}), we say that =’
majorizes m, denoted 7’ > , if d > d; for all i, e.g., 2332 > 25. A sequence
w=(d <dg <---<d,) is a graphical sequence if there exists a graph G
with 7 as its degree sequence, such a graph G is called a realization of the
sequence w. Now, a graphical sequence 7 can have more than one distinct
realization. However, given a property P, it may be every realization of #
has the property P, in which case we say that « is forcibly P. For example,
the graphical sequence 7 = 25 is forcibly hamiltonian.

Assume that we are given a graphical sequence 7 and a property P. It
is sometimes the case that we have conditions for determining when = is
forcibly P. A theorem that declares a sequence 7 to be forcibly P, rendering
no result if = fails to meet the conditions of the theorem, is called a forcibly
P theorem (or simply P theorem). For instance, Chvatal provides such a
sufficient condition for hamiltonicity in (8].
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Theorem 1.2. Let 7 = (d) < --- £ d,) be a graphical sequence, with
n>3 Ifd;<i< g implies dn—; > n — i, then w is forcibly hamiltonian.

Thus, Theorem 1.2 is a forcibly hamiltonian theorem. In addition, this
theorem possesses other interesting properties, which we now discuss.

If T is a. P theorem, then T is monotone if whenever T declares w forcibly
P it also declares #/ forcibly P for all #/ > w. Clearly, Theorem 1.2 is mono-
tone. Another property that Theorem 1.2 has is that if = fails the given
condition for some i < 2, then the sequence 7/ =if(n —i — 1)*~%(n — 1)*
majorizes 7 and has a realization G’ = K; + (Kn_2; UK;) that is not hamil-
tonian. This leads us to our next definition. A P theorem T, is weakly
optimal if whenever a sequence = fails the conditions of Ty, there exists a
sequence 7’ > 7 such that 7’ has a realization without P. So, Theorem 1.2
is weakly optimal. Finally, a P theorem Tj is best monotone if Tp is mono-
tone and weakly optimal. Best monotone P theorems have the following

appealing property.

Theorem 1.3. Let Ty be a best monotone P theorem. Then given any other
monotone P theorem T, if T declares a graphical sequence to be forcibly P,
then Ty will also declare it to be forcibly P.

Proof of Theorem 1.3: Let T be a best monotone P theorem and let 7
be a graphical sequence. Assume that T is another monotone P theorem
and that T declares m to be forcibly P. If Ty does not declare = to be
forcibly P, then there exists ' > 7 with a realization G’ not having the

property P. However, since T is monotone, 7’ is forcibly P, a contradiction.
[ |

We see that Theorem 1.2 is best monotone with respect to the property
of hamiltonicity. Of course, best monotone theorems exist for other graph
properties as well. For instance, in [6] Boesch showed that the following
theorem of Bondy for vertex-connectivity [7] (stated here in the form given
in [6]) is best monotone.

Theorem 1.4. Let ®# = (dy < --- < d,) be a graphical sequence with
n>2 andletl <k<n-1. Ifd; <i+k—2impliesdn_pr1 > n—1, for

1<i< %(n — k + 1), then 7 is forcibly k-connected.

Recently, various authors have taken up the task of finding best mono-
tone theorems for other graph properties, such as edge-connectivity (3],
toughness (2], and b-binding [5]. Continuing along these lines, we derive
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a best monotone theorem for the property of being t-tenacious in the last
section of this paper.

We now use the idea of a best monotone theorem to define a special class
of graphical sequences. Let P be a graph property and let BM(P) denote
the set of graphical sequences that satisfy a best monotone P theorem. We
say that a graphical sequence w is best monotone P if m € BM(P). For
example, 7 = 22324! ¢ BM(hamiltonian), since 7 satisfies Theorem 1.2.
Given two properties P; and P, such that P, implies P;, it is clear that if
7 is forcibly Pj, then 7 is forcibly P,. However, we can say more.

Theorem 1.5. Let Py, P, be graph properties such that P, implies P, and
let m be a graphical sequence. Then m € BM(P,) implies 7 € BM(P;).

Proof of Theorem 1.3: Suppose to the contrary that # € BM(P),
but 7 ¢ BM(P;). Then there exists a graphical sequence 7’ > = having
a realization G’ without property P». Since P; implies P, G’ also does
not have property P,. However, # € BM(P;) and n’ > 7 together imply
that 7’ € BM(P,), and thus every realization of #’ has property Pj, a
contradiction. ]

2 Best Possible Upper Bound on the Binding
Number

We start with the following theorem.

Theorem 2.1. Let G be a graph on n > 2 vertices. Then

(*)  bind(G) < max {2(26—) +1, T(G)},

and the upper bound is best possible.

Before proving Theorem 2.1, we show that (%) is best possible. Assume
that T(G) = § > 0, where § is in lowest terms. If T(G) = § < 2,
then the upper bound in (%) is T(G)/2 + 1. Consider the graphs G :=
K(cm—2) +dmK>, for m > 3. Let v € V(dmK,). Taking S := V(K(cm-2))

and §' := V(dmK_,) — {v}, we have that
|S| + m(G - S) _ (em —2)+2

[+
TG = w(G = 5) dm d
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and
IN(S')] _ (em—2)+2dm -1 cm—-2 c

bind(C) = I 2dm —1 “%dm_1" 1< 24t L
Thus 0 (G)
. cm — C
blnd(G)—%—_—l'+1T'2—d'+1——-2—'—+l.

Next, if T(G) = § > 2, then the upper bound in (*) is T(G). Consider
the graphs G := K(cn—1) + dmK;, for m > 2. Taking § := V(K(cm-1))
and S’ := V(dmK,), we have that

_ISl+m(G=5) (em-1)+1 ¢
e = wG-5) dm T d’
and IN(S)| 1 1
. cm — c c

In each case the limit is from below, and so the upper bound cannot be
improved.

Proof of Theorem 2.1: If G = K, then bind(G) =n -1 < n =T(G)
and we are done. So assume that G is noncomplete. Then, there exists
X C V(G) such that XHREX = T(G) and w == w(G - X) > 2. Let
Ay, ..., A, be the components of G — X, with |A;| > ... > |A,|. Define
z :=|X| and a; := |A;] for each i. Then T(G) = (z + a1)/w.

If a; = 1, let j = 0. Otherwise, suppose ai,...,a; = 2, but aj4; =
-va, =1, for 1 < j < w. We consider three cases.

Case 1l. j=0.

Let §:= V(wkK;). Then

Thus, bind(G) < T(G) < max {Isg-z + l,T(G)}.
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Case 2. 0<j<w.

Let S := {Ji_, V(Ka,)U{v}, where v € V(K,,), so that |S| = ag+---+
a;j+(w—3j)+1>2w+j—1. Then

. IN(S)| z4+ay+az+---+a;—1
bind(G) <
e T A S W ) By

:c+a.1—2—(w—j)
a2+ Fa;+(w—j)+1°

1+

Ifz+a; —2— (w—j) <0, then bind(G) < 1 < max{ﬂzﬂ + l,T(G)}
and we are done. So assume that  +a; — 2 — (w — j) > 0. Recalling that
T(G) = (z + a1) /w, we have

. :1:+a1-2—(w—j)
bind(G) < 1+az+--'+aj+(w-j)+l
T(Gw+2j-3

w+j-1
T(Gw+2j-2
w+j—-1

<

Let F(5) := M— Then F(j) achieves its maximum when j = w —1
if T(G) <2 and when j=1ifT(G) > 2. Thus
TEHHe=t §T(G) <2
bind(G) < F(j) <
T(G) if T(G) > 2.

Since w > 2, L—@zzj'z;“’“" < T(zc) + 1 when T(G) < 2. Therefore,

D +1 fTG)<2
bind(G)<{ : O = }:max{ (G)+1T(G)}
TG) fT(G)>2

Case 3. j=uw.

Let S := ;s V(Ka,) U {v}, where v € V(K,,). Define 6 :=az +--- +
a, + 1, so that |S’| 0 > 2w — 1. Then
|N(S)| x+a1+0—2 z+a;—2 T(Gw —2

ST = 9 == — =1+

bind(G) <



We know that T(G)w — 2 > 0, since T(G) = Zt&1 > 2 5,
{ IO 11 #T(G) <4
HEH i T(G) > 4.

T(Gw-2

i <
bind(G) <1 + o — 1

It follows that

D +1 #TG) <2
bind(G)<{ 1 HTO)s }:ma.x{T(G)+1T(G)}
T(G) ifT(C)>?2

n

By rephrasing the inequality (*), we obtain a lower bound on T(G) with
respect to bind(G) that is best possible when bind(G) > 1.

Theorem 2.2. Let G be a graph on n > 2 vertices. Then
T(G) > min{2(bind(G) — 1), bind(G)},
and the lower bound is best possible when bind(G) > 1.

It is clear that this lower bound on T(G) implies Theorem 1.1.

We now show that Theorem 2.2 is best possible. If 1 < bind(G) < 2,
then the lower bound on T(G) given by Theorem 2.2 is 2(bind(G) — 1).
Consider the graph G := Kc_aym + (d ) Ky, withd<e<2d,m2>1,
and dm odd. Let v be a vertex in (4%t) K,. Taking S := V (K(c—aym)
and S’ :=V ((4Btl) K,) — {v}, we have

_IS|+m(G-8) (c—dym+2 . [(c—dym+2
e = wG-8) =~ dmil 2 dm+1 '
and IN(S)| _ (c—dym+d
. c—am-+am c
bind(6) = S = SRR - S <
Thus

T(G) =2 (%) 12 (c%d) — 2(bind(G) — 1).

Next if bind(G) > 2, the lower bound on T(G) given by Theorem 2.2 is
bind(G). Consider the graphs G := K¢ + dmK;, with ¢ > 2d and m > 1.
Taking S := V (dmK,) and S’ := V (K.m), we have

_IN(S) _em

[
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and
[S'|+m(G-S8") em+1

T = w(G-5) dm

1-_blac)

If bind(G) < 1, all we can say is T(G) > 0. Indeed, given b < 1 and a
connected graph H with |[H| > 2 and bind(H) = b, let G := HU(m ~1)K>.
Then bind(G) = bind(H) = b and T(G) < |H|/m, which can be made
arbitrarily small.

3 A Best Monotone Degree Improvement Over
Theorem 2.2

As stated, Theorem 2.2 is best possible when bind(G) > 1. However, in
this section we will introduce a class of graphs that are known to satisfy a
stronger result. Recall that for a given graph property P and a graphical
sequence w, we say that 7 is best monotone P if 7 satisfies a best monotone
P theorem, and we denote this by @ € BM(P). Before progressing, we
present best monotone theorems for the properties of being b-binding and
t-tenacious. The following two theorems appear in [5].

Theorem 3.1. Let0<b<1, andletw=(d, £---<d,) be a graphical
sequence, with n > 2. If

(i) di<[bi]-1 = dp_ppqq12n—14, for1<i< [%J, and

n
@) )2 [b+—1J
then 7 is forcibly b-binding.

Theorem 3.2. Letb > 1, andlet®# = (d) < +-+ £ d,) be a graphical
sequence, withn > [b+1]. If

(i) ¢gn-[

and

) 4z |

then m is forcibly b-binding.

n—1

J—1=>dl.._. >n-—i, forl<1<[—£——J,

]+ b+1

We can also prove the following.
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Theorem 3.3. Let 7 = (dy < --- < dy,) be a graphical sequence with n > 2

and let t be a real number with —— < t < n. If

n—1
(1) danja2n l%}_‘

then m is forcibly t-tenacious.

Proof of Theorem 3. 3 Let m=(d1 £ d2 < ... £ d,), with n > 2, satisfy
(t) for a fixed t with 25 <t < n. Assume that m has a realization G that

is not t-tenacious. Then there exists S C V(G) with w(G — S) = 2 such
that T(G) = 29 < ¢, Define s := [§], m := m(G - §) > 1, and
w:=w(G — S) so that T(G) = &2 < ¢.
Since every vertex not in S has degree at most s + m — 1, we have
dn.s<s+m—1 Definej:=s+m—12s.
n+l|
t+1

Claim. j<n-— [

Proof of Claim: Note that w > #£™ and n > s +m+ (w — 1). Therefore,

n—j=n—s—m+12w>sim=%—l.
Thus
< in 1 —n n 1
J tr1 t+1  t+1 t+1
n+1 n+1
= n—|—)<n- )
t4+1 t+1
proving the Claim. O

It follows that

1
d[%};J+ISdn—jsdn—sSan_ln+ }_11
a contradiction. [ |

All three theorems above are best monotone for their respective prop-
erties. Clearly, each are monotone. The weak optimality of Theorems 3.1
and 3.2 is demonstrated in [5]. To see that Theorem 3.3 is weakly optimal,
notice that if 7 fails to satisfy (), then

(el ) o
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majorizes w and has a realization G’ = K"‘lﬁ'Tl |1 + K |2tk |41 with

roy - LolE]my e no([a] ) o
lﬁ%J“Ll ['ﬁ'ﬂ+1
n—d+1

nt1
t+1

<

From Theorem 2.2 we know that if = is a graphical sequence of length
n, then

(7 forcibly b-binding) = (w forcibly t-tenacious)
for t =max{%,min{2(b—1),b}}. (1)

However if # € BM(b-binding), we get a stronger result.

Theorem 3.4. Let n > 2 and b be fired with ﬁ <b<n-1 Ifrn=
(d1 < --- < d,) is a graphical sequence, then

((n+2b+1

7w € BM(b — binding) = m € BM - tenacious) .

Since Lﬁ‘*—;w > b > min{2(b — 1), b}, this is an improvement over (1).

Proof of Theorem 3.4: Let b > -L;, and assume that 7 € BM(b —
binding). Then

n
n > - T . 4
Uses1 27 Lw 1J ’
by condition (iz) of Theorem 3.1 or 3.2.
Lett:ﬁﬂyﬁ. Then -2; <t <nand

[?I” B L"—*'Z);11+1J B [(b:(f)(tzllnj B thIJ'

Thus ‘1
n n
a1 = U1 27~ LTJFTJ =nT [t+1_‘ ’
and therefore 7 satisfies (1) for t = M |

n
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If a graph G is b-binding, then T(G) > min{2(b—1), b} by Theorem 2.2.
Now, let P be a graph property. Define

BMG(P) := {G| G is a realization of some = € BM(P)}.

Then by Theorem 3.4, for any G € BMG(b-binding) it follows that T(G) >
Kﬁi.}lﬂ’i'_l > min{2(b — 1),b}. What is interesting here is how Theorem 2.2
is best possible, for b > 1, but any graph in BMG(b-binding) satisfies a
stronger inequality when b > —15. So, knowing that G is in BMG(b-
binding) provides a tighter bound on T(G) than the one we get when G is
simply known to be b-binding.
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