USING CHAINS OF BOXES TO RECOGNIZE STAIRCASE
STARSHAPED SETS IN R

MARILYN BREEN

ABSTRACT. Let C be a finite family of boxes in R%,d > 3, with
§ = U{C : C in €} connected and peS. Assume that, for every
geodesic chain D of C-boxes containing p, each coordinate projection
w(D) of D is staircase starshaped with (p) ¢ Ker #(D). Then S is
staircase starshaped and p¢ Ker S. For n fixed, 1 <2 < d -2, an
analogous result holds for composites of n coordmate projections of
D into (d — n)-dimensional flats.

1. INTRODUCTION

We begin with some definitions from [2]. A set B in R? is called a boz
if and only if B is a convex polytope (possibly degenerate) whose edges are
parallel to the coordinate axes. A set S in R? is an orthogonal polytope if
and only if S is a connected union of finitely many boxes. T.et A be a simple
polygonal path in R? whose edges are parallel to the coordinate axes. For
z,y in S, the path X is called an z — y path in S if and only if A lies in S
and has endpoints z and y. In this case, A(z,y) will represent the path A,
ordered from x to y. The path )\ is an z — y geodesic in S if and only if A
is an x — y path of minimal length in S. (Clearly an z — y geodesic need
not be unique.) The path A(z,y) is a staircase path (or simply a staircase)
if and only if no two of its edges have opposite directions. That is, for each
standard basis vector e;,1 < i < d, all the edges of A(z, y) parallel to e;
have the same direction. For convenience of notation, we use e; or —e; to
indicate the associated direction. Clearly if A(z, y) is a staircase path in S,
then A is an x — y geodesic.

For points z and y in a set S, we say x sees y (z is visible from y) via
staircase paths if and only if there is a staircese path in S that contains
both = and y. A set S is staircase convez (orthogonally convez) if and only
if, for every pair z,y in S, z sees y via staircase paths. Similarly, a set S is
staircase starshaped (orthogonally starshaped) if and only if, for some point
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pin S, p sees each point of S via staircase paths. The set of all such points
p is the staircase kernel of S, denoted Ker S.

We will use a few standard terms from graph theory. For F = {C},...,Cr}
a finite collection of distinct sets, the intersection graph G of F' has vertex
set {c1,...,cn}. Further, for 1 <i < j < n, the points ¢;, ¢; determine an
edge in G if and only if the corresponding sets C;, C; in F' have a nonempty
intersection. A graph G is a tree if and only if G is connected and acyclic. A
sequence 1, ..., U Of vertices in G is a walk if and only if each consecutive
pair v;, v;41 determines an edge of G,1 < i < k—1. A walk is a path if and
only if its points are distinct.

For By,...,Bn, & collection of distinct boxes in R%, we say that their
union is a chain of boxes (relative to our ordering) if and only if the in-
tersection graph of {By,..., B} is the path by, ...,b, (where b; represents
the set B; in the intersection graph, 1 < i < n). That is, relative to our
labeling, for 1 < i < j < k,B; N Bj # { if and only if j = i + 1. Finally,
for € a finite family of boxes in R? and § = U{C : C in €}, & chain A of
boxes from C is called a geodesic chain in S if and only if, for some z,y in
A and some z — y geodesic A(z,y) in S, A contains A(z, y) and no subchain
of A contains \(z,y). Certainly if A is a geodesic chain in 9, so are its
subchains.

Many results in convexity that involve the usual notion of visibility via
straight line segments have interesting analogues that instead use the idea
of visibility via staircase paths. For instance, the familiar Krasnosel'skii
theorem [7] says that, for a nonempty compact set S in the plane, S is
starshaped via segments if and only if every three points of S see via seg-
ments in S a common point. In the staircase analogue [1], for & nonempty
simply connected orthogonal polygon S in R2, § is staircase starshaped if
and only if every two points of S see via staircase paths in S a common
point. Further, in an interesting study involving rectilinear spaces, Chepoi
[3] has generalized the planar result to any set S = U{C : C in €}, where
€ is a finile lamily of distinct boxes in R? whose corresponding intersec-
tion graph is a tree. In [2], related results are established for such a set
S, and some of these results concern chains of boxes and their projections
into appropriate hyperplanes. Here we remove the requirement that the
intersection graph of € be a tree and obtain sufficient conditions for set S
to be staircase staxrshaped with a specified point p in its kernel.

We will use the following terminology. We call each of the hyperplanes
{(%1,--.,2d) : zi = 0},1 < i < d, a coordinate hyperplane. Similarly, any
intersection of coordinate hyperplanes will be a coordinate flat. Any pro-
jection of R? onto a coordinate hyperplane will be a coordinate projection.
For d > 3,n any fixed integer, 1 <n<d—-2,and m,..., 7, any n distinct
coordinate projections, we say that the composite function ¥y =my -... 7
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mapping R? onto a coordinate (d — n)- flat is an n- composite projection.
Readers may refer to Valentine [9], to Lay [8], to Danzer, Griinbaum, Klee
[4], and to Eckhoff [5] for discussions concerning visibility via straight line
segments and starshaped sets. Readers may refer to Harary [6] for infor-
mation on intersection graphs, trees, and other graph theoretic concepts.

2. THE RESULTS.

In the paper, we refer to several results from [2]. For completeness, we
include these as Results 1, 2, and 3 below.

Result 1 {2, Lemma 2]). For d > 2 and for each i,1 < i < d, let
m; denote the coordinate projection from R onto the coordinate hyperplane
{(z1,...,24) : 7, = 0}. Let A,C be bozes in R%. If ANC =0, then for at
least d —~ 1 of the projections m;,1 <t < d,m;(A) Nmi(C) = 0.

Result 2 [2, Theorem 3]. Let A = B; U...U By be a chain of
bozes in R%.d > 3. The chain A is staircase convez if and only if, for
every subchain D of A, each projection of D into a coordinate hyperplane
is staircase convez.

Result 3 [2, Corollary 3.1]. Ford > 3, let € = {C},...,Cn} be a
family of distinct bozes in R® whose intersection graph is a tree, and let
S=C1U...UCy,. The set S is staircase convez if and only if, for every
chain A of bozes in C, each projection of A into a coordinate hyperplane is
sleircese convez.

We begin our discussion with some easy observations.

Observation 1. Let € be a finite family of distinct boxes in R?, with
§=U{C:Cin €}, and let p,qeS. If S contains a p — g staircase, then
every p — g geodesic in S is a staircase.

Observation 2. If A, B are boxes in R4 and ANB # 0, then AU B is
staircase convex.

Lemma 1. Let C be a finite family of distinct bozes in R?, with S =
U{C : C in €} connected. For every p,q in S, there ezist a p — q geodesic
Ao in S and a corresponding subcollection {C,,...,Cx,} of C such that
A CCLU...UCy and C1 U...UCy, is e chain of bozes.

Proof. For each p — g geodesic A in S, there are finitely many subfamilies
€» of € for which A\g C U{C : C in €,}. Fix €,. For each C in €,, consider
the finite collection X(C) of components of C N A. Then examine all such
components for all C in €5. That is, examine {A¢c : A¢ in X(C) for some
C in C,}. Each set A¢ is a connected subpath of A of the form A(a4c,bac)
for aac,bac on A(p, g), where a4, precedes (or equals) by relative to our
order from p to g. Now select a subfamily of these components Ac whose
union containg A such that the subfamily consists of as few sets as possible.
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Observe that the corresponding 4. points will be distinct, as will the bs,
points. Moreover, if a4, precedes a4, on A(p, g), then by precedes by,
as well (for selected sets A¢ and Ap).

For the selected components Ag, list the associated points a4, in the
order established along A(p, ¢) from p to q. For each a4, in our ordered list,
pass to the corresponding set C. Preserving the order established above,
label the selected C sets by Cj,. .., C}. Of course, at this point, there is no
guarantee that the sets Cj, .. ., C}, should be distinct. However, consecutive
sets in our ordering will be distinct. Denote the k above by k(C)).

For each p —~ g geodesic A(p, g), consider all associated families C, de-
scribed above and corresponding numbers k(C,). Select k(C,) as small as
possible (for all €,), and call it k(). Let kp denote the smallest member
of {k(A) : X 2 p— ¢ geodesic in S}. Finally, choose a p — g geodesic A for
which k() = ko, and choose an associated family {C,. .., Ck,} of labeled
sets selected according to the scheme described in the previous paragraph
(for some €y,)-

We assert that A\p and C4,...,Cj, satisfy the lemma. Certainly Ao C
1U. . .UCk,. We must show that C3U...UCY, is a chain. That is, we must
show that the boxes are distinct and, for 1 < i < j < ko, C;NC; # 0 if and
only if j = i + 1. If kg = 1, the result is trivial, so assume that &y 2> 2. To
begin, observe that nonconsecutive sets are disjoint: For kg > 3, consider
sets C; and Cj, where 2 < i+ 1 < j < ko. Suppose on the contrary
that C; N C; # 0. Then by Observation 2 C; U C; would be staircase
convex. The geodesic A from its first point in C; to its last point in Cj
could be replaced by a staircase in C; U C; to yield a new p — q path .
Since every staircase is a geodesic, this replacement would not increase
the length of our path. That is, the length of p would not exceed the
length of )\, so p would be a p — g geodesic in S. Applying our earlier
argument to the family C,...,C;,Cj,. .., Ck, would yield a family of at
most ko — 1 labeled sets satisfying our requirements. Then k(u) < ko — 1,
contradicting the minimality of ko. Our supposition must be false, and
nonconsecutive sets C;, C; in our ordering must be disjoint. Of course, this
implies that nonconsecutive C;, C; are distinct as well. Since consecutive
sets are distinct, the boxes (... ., G are distinct.

It remains to show that consecutive sets C;, Ci41 have a nonempty in-
tersection for 1 < i < kg — 1. Since each of the boxes C;, Ci4) appears
exactly once in our list, by earlier comments, the first point a; of Ao N C;
precedes the first point ai41 of Ao N Ci41 and o; is not in Cyyq. Simi-
larly, the last point b;y; of A\g N Ci41 follows the last point 4; of Ag N C;,
and b;4+1 is not in C;. The associated order on Xg is a4, @i41, bi. bi+1 and
Ao(ai. bi41) € Ci U Ciqa. Since Ao(a;, bi1) is connected, the boxes C; and
Ci4+1 cannot be disjoint. We conclude that, for 1 <i < j < ko,CiNC; #£ 0
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if and only if j = i+ 1, and C, U...UCy, is a chain, finishing the proof of
Lemma 1. O

Lemmea 2 is a staircase starshaped analogue of Result 2 [2, Theorem 3].

Lemma 2. Let A be a chain of bozes in R%, d > 3, with point p in A.
The chain A is staircase starshaped with pec Ker A if and only if, for each
subchain D of A containing p, each projection m(D) of D into a coordinate
hyperplane is staircase starshaped with n(p) ¢ Ker n(D).

Proof. To establish the necessity, assume that p ¢ Ker A, and let D be any
subchain of A containing p. Let #(D) denote the projection of D into a
coordinate hyperplane, and for convenience assume that this hyperplane is
defined by {(z1,...,24) : 1 = 0}. To show that n(p)e Ker n(D), select
any point z’e¢n(D). Then z' = =n(z) for some z in D. Since pe Ker
A, A contains a p — z staircase path )\, and since D is a subchain of chain
A, ) C D. It is easy to see that 7()) defines a slaircase from #(p) to 7(z)
in (D) : Vectors in ) parallel to the z,-axis map to singleton sets in 7(D).
Each remaining vector ¥ in A maps to a vector in w(A) parallel to ¥ and
having the same direction as 7.

To prove the converse, suppose that, for each subchain /7 of A containing
P, each coordinate projection 7(D) is staircase starshaped with 7(p) ¢ Ker
(D), to prove that pc Ker A. We will use induction on the number of
boxes in the chain A. If A is a chain of one or two boxes, then A is staircase
convex, and the result is trivial. Inductively, assume that the result holds
for chains of k — 1 or fewer boxes, k > 3, to prove for a chain of k boxes.
Let A be the chain B; U...U By to show that A is staircase starshaped at
p. Without loss of generality, assume that one of p or z, say p, belongs to
By \ By, while the other point z belongs to By \ Br—1. (Otherwise, p and
z would lie in a subchain of A having at most k — 1 boxes, and the result
would follow from our induction hypothesis.) Let A = A(p,g) beap -z
geodesic in A, and let z, 2/, respectively, denote the first and last points of
A(p. q) in Bi_;. By our induction hypothesis, By U ... U By is staircase
starshaped at p. Hence B; U...U By—1 C A contains a p — 2’ staircase,
and by Observation 1, every p — 2’ geodesic in A is a staircase. Therefore,
A(p. 2') is a staircase. Since B3 U By is staircase convex, A(z, z) is also a
staircase. We will show that A(p, 2') U A(2/,z) = A(p, z) is a staircase.

Suppose on the contrary that A(p, z) is not a staircase path. For con-
venience of notation, assume that the staircase A(p, z’) uses vectors in the
directions ey, ..., e; for some j,1 < j < d. If A(p, z) is not e staircase, then
for at least one ¢;,1 < i < j, staircase A(2’,z) in B; must use a vector
in direction —e;. Without loss of generality, say ¢ = 1. In at least one
box By,,1 < m < k-1, ) must use a vector in direction e;. Observe that
m # k —1, for if )\ used direction e; in Bk, and direction —e; in By, then
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A(2,z) would not be a staircase. Thus 1 < m < k — 2, so by the definition
of chain, B, N Bx = @. By Result 1 [2, Lemma 2], for at least d — 1 of the
coordinate projections m;,1 < i < d, m(Bm) N 7i(Bx) = O. Since d > 3,
we may choose such a projection m; with i 3 1. For convenience, assume
i = 2 and m2(Bm) N m2(Bx) = 0. But then the corresponding projection
w2(B1U...UB;) of our chain cannot be staircase starshaped at 72(p), since
any m2(p) — 72(x) geodesic will require at least one vector in direction ¢; (to
travel from 72(p) to m2(Bm+1) ) and at least one vector in direction —¢; (to
travel from 72( Bm41) to m2(z)). We have contradicted our hypothesis. Our
supposition is false, and A(p, z) is a staircasc path, finishing the induction
and completing the proof of Lemma 2. (]

Corollary 0. Letn be any fized inleger, 1 < n < d—2. Let A be e chain
of bozes in R%, d > 3, with point p in A. The chain A is staircase starshaped
with pe Ker A if and only if, for each subchaein D of A conteining p, each
n-composite projection ¥(D) of D into e coordinate (d —n)-flat is staircase
starshaped with Y(p) ¢ Ker (D).

Proof. The proof is a direct analogue of the proof of Lemma 2. The main
difference occurs in the second parl of the proof, and we briefly discuss the
needed adjustment: Following the argument and the notation of Lemma
2, we may use Result 1 [2, Lemma 2] to select an appropriate n < d — 2
coordinate projections m;,1 < i < n, with m(By,) N7;(Bi) = @ and i #
1. This allows us to obtain an n-composite projection that violates our
hypothesis. a

We are ready for the following result.

Theorem 1. Let @ be o finite fomily of bozes in R%,d > 3, with S =
U{C : C in C} connected and pe S. Assume that, for every geodesic chain D
of € bozes containing p, each coordinate projection n(D) of D is staircase
starshaped with w(p)e Ker m(D). Then S is staircase starshaped and pe
Ker S.

Proof. By Lemma 1, for every z in S, there exist a p — z geodesic Ao(p, z)
in S and a corresponding chain A of C-boxes such that Ag(p,z) C A. Cer-
tainly we may assume that A is a geodesic chain, as are its subchains. By
hypothesis, for A and for each of its subchains D containing p, each coor-
dinate projection 7(D) of D is staircase starshaped with n(p) ¢ Ker (D).
Hence by Lemma 2, p¢ Ker A. It follows that S contains a p — z staircase,
and by Observation 1, geodesic \g(p, z) is a staircase path. Therefore, p
sees each x in § via staircase paths, and pe Ker S. O

Corollary 1. Letn be any fized integer, 1 < n < d—2. Let € be a finite
family of bozes in R%,d > 3, with S = U{C : C in C} connected and pc S.
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Assume that, for every geodesic chain D of C-bozes containing p and each
n- composite projection Y(D) of D into a coordinate (d — n)-flat, w(D) is
staircase starshaped with yY(p) ¢ Ker (D). Then S is staircase starsheped
andpc Ker S.

Proof. The argument parallels the proof of Theorem 1, using Corollary 0
to Lemma 2 instead of Lemma, 2 itself. a

Finally, Corollary 2 is an analogue of Resuit 3 [2, Corollary 3.1].

Corollary 2. Letn be any fized integer, 1 <n < d—2. Let C be a finite
family of bozes in R, d > 3, with § = U{C : C in €} connected. Assume
that, for every geodesic chain D of C-bozes and each n-composite projection
¥(D) of D into a coordinate (d — n)-flat, (D) is staircase convez. Then
S is staircase convez, too.

Proof. By Corollary 1 above, for every point p in S.pe Ker S. Hence S =
Ker S and S is staircase convex. O
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