Isolated toughness condition for a graph to be a

fractional (g, f,n)-critical graph *

Wei Gao!, Tianwei Xu!! Li Liang!, Juxiang Zhou?
1. School of Information Science and Technology, Yunnan Normal University,
Kunming 650500, China
2. Key Laboratory of Educational Informatization for Nationalities,
Ministry of Education, Yunnan Normal University, Kunming 650500, China

Abstract: Let i(G) be the number of isolated vertices in graph G. The
isolated toughness of G is defined as I(G) = +o0 if G is complete; I(G) =
min{|S|/i{(G — S) : S C V(G),i(G — S) > 2} otherwise. In this paper, we
determine that G is a fractional (g, f,n)-critical graph if I(G) > 92—*%"—‘—1 if
b>a; I(G)2b+nifa=b
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1 Introduction

The graphs considered here are finite and simple. Let G be a graph
with the vertex set V(G) and the edge set E(G). For a vertex z € V(G),
we denote by dg(z) and Ng(z) the degree and the neighborhood of x
in G, respectively. Let §(G) denote the minimum degree of G. For any
S C V(G), we write G[S] for the subgraph of G induced by S. Let i(G —S)
be the number of isolated vertices in G — S. The readers can refer to [1]
for standard graph theoretic concepts and terms used but undefined in this
paper.

Let g and f be two integer-valued functions on V(G) such that 0 <
g(z) < f(z) for all z € V(G). A spanning subgraph F of G is called a
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(9, f)-factor if g(z) < dr(z) < f(x) for evert vertex x € V(G). A fractional
(g, f)-factor is a function h that assigns to each edge of a graph G a number
in [0,1] so that for each vertex z we have g(z) < Y. h(e) < f(z). If
ecE(x)
g9(z) = a, f(z) = b for all z € V(G), then a fractional (g, f)-factor is a
fractional [a, b]-factor. Moreover, if g(z) = f(z) = k (k > 1 is an integer
throughout this paper, and we will not reiterate it again) for all z € V(G),
then a fractional (g, f)-factor is just a fractional k-factor.

Liu and Zhang [2] gave the result for the existence of a fractional (g, f)-
factor. Several characterization of fractional (g, f)-factors due to Liu and
Zhang (2, 3]. A graph G is called a fractional (g, f,n)-critical graph if after
deleting any n vertices from G, the resulting graph still has a fractional
(g, f)-factor. Similarly, a graph G is called a (g, f, n)-critical graph if after
removing any n vertices from G, the resulting graph admits a (g, f)-factor.
Some sufficient conditions for (a, b, n)-critical graphs can refer [9] and [10].

A milestone result on fractional (g, f, n)-critical graph was obtained by
Liu [5], and its equal version can be stated as follows.

Lemma 1 (Liu [5]) Let G be a graph and let g,f be two non-negative
integer-valued functions defined on V(G) satisfying g(z) < f(z) for all
z € V(G). Letn be a non-negative integer. Then G is a fractional (g, f,n)-
critical graph if and only if

f(8) = 9(T) + dg-s(T) 2 max{f(U) : U C S,|U| = n} (1)
for any disjoint subsets S and T of V(G) with |S| > n.

Yang et al. [8] introduced the concept of isolated toughness I(G) of
graph G as follows. If G is not complete,

5] :
- - > 2}.
I{G) = min{———= C-5) : S CV(GR),i(G-S) > 2}
Otherwise, I(G) =

Ma and Liu [7] confirmed G is fractional k-factor if I(G) > k and
0(G) > k, and showed that the result is sharp. Recently, in [6], Liu studied
a isolated toughness condition for graphs to be fractional (g, f, n)-critical.
It is determined that G is a fractional (g, f, n)-cntlcal graph if a = b (mod
2), §(G) > [(0+b)2+2(b—a)](n+1) and I(G) > [(a+b)? +2(b—°)l("ﬂ, oraZb
(mod 2), §(G) > ab? +2-a)4llntl) ong 1(@) > u+b>2+z@-a>+11<n+n

However, the author of (6] dldn t know whether the condltlon is best or
not. The question which tight isolated toughness condition for fractional
(g, f,n)-critical graphs is subject of a open problem. It motivates con-
sidering the better I(G) for fractional (g, f,n)-critical graphs, and we are
interested in deriving such isolated toughness bound. Our main result to
be proved in next section can be stated as follows.
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Theorem 2 Let G be a graph, n be a non-negative integer, g, f be two
non-negative integer-valued functions on V(G), and a < g(z) < f(z) <b
for all z € V(G), where a,b are two integers with 1 < a < b and b > 2.

§G) > % + L’%ﬁ +b—1. If G satisfies isolated toughness

bltbnol ifb>a

I(G)Z{H%, " ifa=b.

Then, G is a fractional (g, f,n)-critical graph.

The proof strategy is similar to the one in Liu and Zhang [4] but we
need to cope with the more detail case now and hence new methods are
necessary. Begin on the way to the proof of Theorem 2, we would like to
show some useful lemmas.

Lemma 3 (Liu and Zhang [4]) Let G be a graph and let H = G[T] such
that 6(H) > 1 and 1 < dg(z) < k—1 for every z € V(H) where T C V(G)
and k > 2. Let T1,...,Tr_1 be a partition of the vertices of H satisfying
de(x) = j for each x € T; where we allow some T; to be empty. If each
component of H has a vertex of degree at most k — 2 in G, then H has a
mazimal independent set I and a covering set C = V(H) — I such that

k-1 k-1
> (k=d)e; <D (k—2)(k - 5)ij,
ij=1 i=1

where ¢; = |CNTy| and i; = |INT}| for every j=1,...,k—1.
The lemma below can be deduced from Lemma 2.2 in [4].

Lemma 4 (Liu and Zhang [4]) Let G be a graph and let H = G[T] such that
de(z) = k—1 for every x € V(H) and no component of H is isomorphic to
Ky where T C V(G) and k > 2. Then there exists a mazimal independent
set I and the covering set C = V(H) — I of H satisfying

V(H)| < ; k—i+)I® [l
[V( )I_Z( —i+1) l——2—

i=1

and .
) I(l)|
< oo - 2
O 3 (k=IO - =,

k
where I) = {x € I,dy(z) =k -1}, 1 <i<k and 3 |ID|=|I|.
=1
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2 Proof of Theorem 2

The aim of this Section is to prove our main result. We only verify
that Theorem 2 holds when b > a, because the case analysis for a = b is
similar to that of the case b > a. We always assume that G is not complete
since the result for complete graph immediately follows from 6(G) > % +

2
G b1

Suppose that G is a counter-example of Theorem 2, then G satisfies the

conditions of Theorem 2, but exists subsets S and T of V(G) such that

alS| + " dg_s(z) — bIT| < £(S) — 9(T) +de—s(T) <bn.  (2)

z€T

We choose subsets S and T such that |T| is minimum. Obviously, T # 0.
If dg-s(z) > g(z) for some z € T, then the subsets S and T \ {z} satisfy
(2), which contradicts the choice of S and . Which led to dg_s(z) <
glz)—1<b—-1lforanyz€eT.

Let ! be the number of the components of H' = G[T] which are isomor-
phic to K}, and let To = {z € V(H')|dg-s(z) = 0}. Let H be the subgraph
obtained from H' — Ty by deleting those ! components isomorphic to K.

If |V(H)| = 0, then we deduce |S| < ﬁlﬁl%!L’m by (2). Let S’ be set
of vertices such that it contains exactly b — 1 vertices in each component
of Ky in H'. Clearly, i(G—-SUS) > |To|+!>1. Ifi(G-SuS) >1,

SUS’ b(|To|+1)+bn+al(b—1 .
then I(G) < 1(C|,, tE L ' < 4 °|':()|",_;,Or.|'_"[‘)'( ) < 245 451, which

contradicts I(G) > -—"'—a—— Ifi(G-Sus)=1, then |To] + ¢ = 1. Hence
de-s(z) + 15| > de(z) > 6(G) > & + £ + b — 1. We have dg_s(z) >
ba—"+-""";—al)z+b—1—|5| > b +§-+b—1—ﬂ"aﬂ, which contradicts
dg-s(z) <b—1lforanyz e T.

Now, we consider |V(H)| > 1. Let H = H, U H, where H; is the
union of components of H which satisfies that dg_s(z) = b — 1 for every
vertex £ € V(H,) and Hy = H — H;. According to Lemma 4, there exist a
maximum independent set I} and the covering set Cy = V(H,) — I of H;
such that

i o) Y
[V(H)| <D (b—i+1)ID| - — (3)
i=1

and

b , )
il < 36— i) - T, 0

i=1
where I} = {z € I},dg,(z) =b—-i},1 <i<band z [T = |I|. Let
T; = {z € V(Hy)|ldg-s(z) =j} for 1 < j <b-1 Each component of
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H; has a vertex of degree at most b — 2 in G — S by the definitions of H
and Hy. From Lemma 3, H; has a maximal independent set I and the
covering set Cy = V(Hj) — I such that

Z(b je <Z(b 2)(b ~ 5)ij, (5)

j=1

where ¢; = |Co NT;| and 4; = [I; NT}| for every j = 1,...,b — 1. Set
W =V(G)—S-T and U = SUS'UCU(Ng(I1)NW))UCU(Ng(I2)NW).
We infer

b-1

Ul < Isl+l(b_1)+ICII+Z.7"'J+Z(7'_1 D (6)
i=1 i=1
and
b—1
i(G-U)2to+1+|h|+) i (M
Jj=1
where to = |Tg|. Then when (G — U) > 1, we yield
|U| = I(G)i(G - V). (8)

If i(G — U) =1 then G[T] is a clique with vertices number less than b. By
(2), we get

bn + b|T| — dg-s(T)
a
bn + b|T| - |T|(IT| - 1)
a

bn + b2l — (8EL) (2L — 1)

- a
n (b+1)?
bn  (p+1)
a da

15|

IA

b

and dg_s(z) > &2+ CH 1 p1-|§] >t 4 CH 4 p g (fmy G4
which contradicts dg_s(z) <b—1lforanyz € T.
In view of (6), (7) and (8), we get

b—1 b
IS|+1C1l 2 Y (1(G)=)is+ I (G) (to+1)+I(G) 11| =D _(i—- TP |-U(b-1).
j=1 i=1

(9)
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In terms of b|T| — dg_s(T) > a|S| — bn, we obtain

b—1 b—-1
bto + bl + [V(H1)| + Y _(b—3)is+ Y _(b—d)cj > alS| -
j=1 j=1

Combining with (9), we deduce

b-1
[V (H)|+ (b - 5)ej + alCi
i=1
b—-1
> Y (al(G) - aj — b+ j)ij + (aI(G) — b)(to +1) + aI(G) |14
i=1

—aZ(z DID| = bn - la(d —1). (10)

y (3) and (4), we have

b
. I
V(H)| +a|C1| <) (ab—ai+b—i+1)|ID] - (“ngu (11)
i=1
Using (5), (10) and (11), we get
b-1 b
D (b—2)(b—j)i; + Y (ab—ai+b—i+1)[[P)
ij=1 i=1
= (a + 1)1V
> > (al(G) —aj —b+j)i; +al(G)| 1] + —

j=1

b
—a) (i = D)D) + (@I(G) = b)(to +1) — bn — la(b—1). (12)
i=1
The following proof splits into two cases according to the value of ¢y +1.
Case 1. ty +! > 1. By al(G) > b% + bn — 1, we have (al(G) — b)(to +
l)y—bn—la(b—1)>0byb>a+1 and b > 2. Thus, (12) becomes

Z(b 2)(b - J)z,+2ab ai+b—i+ 1) 1D

=1

-~ )
> S (al(G) - aj — b+ 5)i; +al(G)| 1] + (a+ DY} 12)” |

i=1

b
—ay (i -9
i=1
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Therefore, at least one of the following two cases must hold.
Subcase 1. There is at least one j such that

(b—2)(b—j) > al(G) —aj — b+,
which implies

bb—2)+(a—b+1)j+b
bb—2)+(a—-b+1)+b
(b2 -1)+(a—b)+(2-b)
b —1,

al(G)

A A

A

which contradicts [(G) > ¥=itbn
Subcase 2.

b
> (ab—ai+b—i+ )TV

i=1

68} b ,
> al(G)|| + (3_+_12)j_| —a) (i— 1|9

i=]
b

(6% +bn — 1) 11| + (—‘li—lz)ﬁ)—' —a) (-1

v

i=1
b
2 _ (a+1IY] T O
> (O -Dihl+—5— ai§=l(z DL
This implies,

b
D (ab+b—a—i+2—b)ID|+ (ab+b- ga - b+ —;—)II“)I > 0.
=2
Let 3 )
hl(b) = —'b2 + (a+ l)b — §a+ 5.

From b > a + 1, we get

32 1
max{h1(B)} = hi(a+1) = - + 5 <0.
On the other hand, ab+b~a—i+2-b? < —b*+(a+1)b—a duetoi > 2.
Let
ho(b) = —b% + (@ + 1)b —a.
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We infer
max{ha(b)} = ha(a+1)=-a <0

by b > a + 1. This is a contradiction.
Case 2. to + ! = 0. In this case, (12) becomes

b—-1

b
D (b-2)(b-j)i; + Y (ab—ai+b—i+1)[ID)

j=1 i=1

b—1
1)1V
> Y (al(G) —aj = b+ j)i; +al(G)| 11| + “”T)"
j=1

b
—a ) (i—1)ID]| - bn.
i=1

b-1
From what we have discussed in Subcase 1, we get > (b — 2)(b — j)i; <
j=1
b=1
Y (at —aj — b+ 7)i;. If [I;| > 0, we deduce
j=1

b
> (ab—ai+b—i+1)I9)

i=1

(a+ 1) ID)] Ny i
> (@)L +——— - ay (i-1ID|-bn

i=1

> (B2 +bn— 1))+ EH DI ““)'I Z(z JIO| = b

> (@2 - 1)+ SO Z(z IO,

The result follows from what we dlscussed in Subcase 2 above
The last situation is |I;} = 0 and z (b—=2)(b—13); > Z(aI G)—aj—

b+ j)i; —bn. Let hg = (b—2)(b— ]) (aI(G)—aJ—b+])+b'n By
b>a+1, we infer

hs = b(b—2)+(a—b+1)j+b—al(G)+bn
< bb—2)+(a—b+1)+b— (B2 +bn—1)+bn

-2(b—-1)+a <0,

a contradiction.
Therefore, we can conclude that Theorem 2 holds. o
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