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Abstract

Rado numbers are closely related to Ramsey numbers, but per-
taining to equations and integers instead of cliques within graphs.
For every integer m > 3 and every integer c, let the 2-color Rado
number r(m,c) be the least integer, if it exists, such that for every
2-coloring of the set {1,2,...,7(m,c)} there exists a monochromatic

1

m—

solution to the equation Z Zi + ¢ = Zm. The values of r(m, c) have

i=1
been determined previously for nonnegative values of ¢, as well as all
values of m and ¢ such that —-m+2 <c<O0andc < —(m—1)(m—2).
In this paper, we find r(m, c) for the remaining values of m and c.

JCMCC 91 (2014), pp. 239-255



1 Introduction and Definitions

For ease of the reader, let us denote the subset {a,a+1,a+2,...,b} of the
natural numbers N by [a, b] within this paper. A function A : A — [0,t—1]
is referred to as a t-coloring of the set A. Given a linear equation E and a
t-coloring A of some subset of N, a solution (z1,x2,...,Zn,) to E is said to
be monochromatic if and only if

Az)=A(zg) = = A(zm).

It was proved by Schur [12] in 1916 that for every positive integer t,
there exists a least integer n = S(t), such that for every t-coloring of [1,n],
say A : [1,n] — [0,¢ — 1], there exists a monochromatic solution to the
particular linear equation z; + 2 = z3. The values of these Schur numbers
S(t) are known exactly for only the first four values of t: t =1,2,3,4.

Seventeen years later, Schur’s student R. Rado generalized this notion
of Schur numbers to arbitrary systems of linear equations. He found nec-
essary and sufficient conditions to determine if such a given system adinits
a monochromatic solution under every t-coloring of the natural numbers
[7){8]{9]. And so, for a given system L of linear equations, we define the
t-color Rado number to be the least integer n, provided that it exists, such
that for every t-coloring of the set [1,7n] there exists a monochromatic solu-
tion to L. If such an integer n does not exist, then the t-color Rado number
for the system L is said to be infinite. The exact Rado numbers for several
families of equations have been found in recent years {2](3][4][6][11].

The focus of this paper is to find the 2-color Rado numbers for every
integer m > 3 and every integer c of the linear equation

m-—1
E Ti+C=ZTm,
i=1

denoted by L(m,c). We must begin with a definition.

Definition 1.1. The 2-color Rado number for L(m,c), denoted r(m,c),
is the least integer, provided it exists, such that for every 2-coloring A :
1,7(m,c)] = [0,1] there ezists a monochromatic solution to L(m,c). If
such an integer does not exist, we say that r(m,c) is infinite.

In 1982, Beutelspacher and Brestovansky [1] proved that r(m,0) = m?—
m—1 for m > 3. Schaal found in 1993 [10] that r(m, ¢) is infinite whenever
m is even and c is odd, achieved by the coloring that assigns color 0 to
the odd integers and color 1 to the even integers. Additionally, in the case
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when m is odd or ¢ is even, he showed that r(m,c) = m? + (c— 1)(m + 1)
for ¢ > 0.

In 2001, Schaal and Kosek [5] found r(m, ¢) for various combinations of
even values of m and negative even values of ¢. This paper finds 7(m,c)
for the remaining values of m and ¢. In order to describe these results, it is
helpful to represent c as a multiple of m—2 plus an appropriate “remainder.”
Specifically, we let ¢ = (m — 2)a+ 2w, forw € Nand 0 S w < "'—2'3 The
results of Schaal and Kosek are listed in rows 1, 5, and 7, while the proofs
of rows 2, 3, and 4 can be in Theorems 2.3, 2.1, and 2.2. Finally, row 6 is
proved in Theorems 2.5 and 2.6, respectively.

c=(m—2)a+2w r(m,c)
—a=1 0<w< 2= m? + (c—1)(m+1)

0 l<wem=2 _1 2w+2+d

—a= w< B2 .
- 2 2w+2+[%]

—o =2 w= 272 —1 m
2<-—a<m-1 w =10 —a
3<—a<m-1] 1<w<exm=2 —o + 2w
4<-a<m-1| ep=l <y < 22 {—a+1

—a

— 1_(m+1

—a>m-1 0<w< B2 e

2 Main Results

For this section, we assume m > 4 is an even integer, and ¢ £ —4 is also
an even number.

Theorem 2.1. Let c = —m. Then r(m,c) = m.

Proof. We first show that r(m,c) < m. Let A: [1,m —1] = [0,1] be a 2-
coloring and assume, for a contradiction, that it admits no monochromatic
solution to L(m,c). Without loss of generality, let A(1) = 0. If m = 4,
then it is straightforward to verify that 7(4, —4) = 2 with maximal coloring
A(1) =0. If m = 6, then r(6,—6) = 5 with maximal coloring

v 0, ifx=1
A(z)=<1, if2<z<3
0, ifx=4.
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So for the remainder of this proof, we can assume that m > 8. To that
end,let z; = 1forl <i<m-4andz; =2form—3 <i<m. Then

m—1

Z T; + ¢ = 2 = z,,. Thus, we see that this choice of values for each z;
i=1

results in a solution to L(m,¢), which implies that A(2) # 0 else we have
a monochromatic solution. We may then assume that A(2) = 1.

Similarly, if z; = 1 for 1 < i < m -2, 1 = m, and z,,—1 = 3, then
this implies that A(3) # 0 else we have a monochromatic solution. Hence,
A(3)=1.

Next we see that if r; =2 for 1 <i<m -1 and z,, = m — 2, then this
implies that A(m — 2) # 1 and so A(m - 2) =0.

Now, ifz; =2for1 <i<m-3, z; =3form-2<i<m-1,
and z,, = m, then A(m) # 1 else we have a monochromatic solution to
L(m,c). Atthesame time, ifweletz; =1forl <i <m-2,z,_, =m, and
Z;, = m—2, then this implies that A(m) # 0 else we have a monochromatic
solution to L(m,c). And so, we have shown that an arbitrary 2-coloring
A : {1,m] — [0,1] must contain a monochromatic solution, which implies
r(m,c) < m.

Now it will be shown that r(m,c) > m by demonstrating a 2-coloring
A :[1,m—1] — [0,1] that avoids a monochromatic solution to L(m, c). Let
A be defined by

0, ifz=1
Alzy=(1, if2<z<m-3
0, fm—-2<z<m-1.

Let us first consider the situation when A(z;) = 0 for every 1 < ¢ < m.
This is equivalent to the statement z; € {1, m—2,m—1} for every i € [1,m].
The proofs of these three cases are straightforward and are left to the reader.
Thus we cannot create a monochromatic solution in color 0.

Let us now consider the second situation, when A (z;) = 1 for every
1 < ¢ < m. This is equivalent to the statement z; € [2,m — 3] for every
i € {1,m]. This implies that z,, > 2 (m — 1) = m = m — 2, implying
no solution can be formed in color 1. Thus, A avoids a monochromatic
solution to L(m,c), which in turn implies that r7(m,c) > m. We finally
conclude that 7(m,¢) = m. a

Although the Rado numbers for the following ¢ values of Theorem 2.2

were originally determined in [5], we provide the below proof since the way
¢ is described will be useful in subsequent proofs.
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Theorem 2.2. Suppose that ¢ € Z~ such that —(m - 2}{m~1)<c¢ <0
and (m — 2)|c. Let o € Z~ be such that ¢ = (m — 2)a. Then r(m,c) = —a.

Proof. To show r(m,c¢) < —a, let A be a 2-coloring and assume, for a
contradiction, that it admits no monochromatic solution to L{m, c¢). Indeed,

let A be such an arbitrary coloring. Notice that if z; = —a for every
m—1

1< i< m,then z z;+c¢ = —a(m—1)+(m—2)a = —a. And so, no matter

=1
the choice of color assignment for —a, we see that the above expression
would create a monochromatic solution to L{m,c). Hence, r(m,c) < —o.

To show that r(m, c) > —a, we will demonstrate a coloring A : (1, —a—
1] — [0,1] that avoids a monochromatic solution. Let A(x) = 0 for every x
in the domain. Notice that since —(m—2)(m—1) < ¢ < 0 and ¢ = (m—2)q,
we see that o = %5 and —a < m — 1. Therefore,

m—1
Zz,~+c < [(~ra—=1)-(m-1)]+ (m - 2)c

i=]1

= —a+l-m

< (m-1)4+1-m
= 0

< Ty

Hence, no solution can be formed from the elements of the domain, which
in turn implies that no monochromatic solution is possible. Therefore,
r(m,c) 2 —a, and we may conclude that r(m,c) = —a. a

The next theorem determines the Rado numbers for the ¢ values corre-
sponding to the special case when —a = 2.

Theorem 2.3. Suppose that c € Z~ and ¢ = —2(m — 2) + 2w for w € N
and 1l <w < ﬂz'—g — 1. Let n € N be the specific natural number for which

n2w+1)<m-1<(n+1)(2w+1)
andletd=(n+1)2w+1)~(m—1) andd = (m—1) —n{2w+1). Then
Qw+2+d  ifd< |L

rm )= 2w+2+[“;’] ifd> 4]

Proof. The case when w = ﬁ§3 — 1 corresponds to ¢ = —m, which was
done in Theorem 2.1. It should next be noted in this theorem that the
inequality

m—-1<(n+1)(2w+1)
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implies that d > 1. Let us first assume that d < [d—']. To show that

n

r(m,c) <2w+2+d, let A:[1,2w+2+d] — [0,1] be a 2-coloring and
assume, for a contradiction, that it admits no monochromatic solution to
L(m,c). Without loss of generality, suppose A(1) = 0. Then A(2) =1,
otherwise a monochromatic solution to L{(m,¢) can be formed by letting
z;=1for1<i<2wand z; =2 for 2w+ 1 < i < m. Similarly, A(3) =1
otherwise a solution can be formed by letting z; = 1 for 1 < i < % +w and
i=m,andzr;=3for F+w+1<i<m-1.

Now, AQw+2) =0elsez; =2for 1 <i<m-1and z,, = 2w+ 2
creates a solution. Now notice that if z; = 1 for1 < i <m -2 —n and
z;=2w+2form—1—n <i<m-1,then z,, = 2w+ 2+d. This implies
that AQw+2+d)#0. Butthenz; =2for1<i<m-1-dandz; =3
form—-d<i<m-1,sothat ,, = 2w + 2 + d and we have a forced
monochromatic solution, a contradiction.

To show that r(m, c) > 2w+2+d, still assuming the case that d < [%'-I ,

we will demonstrate a coloring A : [1,2w + 1+ d] — [0,1] that avoids a
monochromatic solution to L(m,c). Let such a function A be defined by

0, z=1
Alz)=<1, 2<zr<2w+1
0, 2w+2<z<2w+1+d.

We note that there can be no monochromatic solution in color 1 since if
z; € 2,2w+ 1] for 1 <i<m-—1, then T, > (m - 2)(2) + ¢ = 2w + 2,
which implies A (z,,) # 1. Now, to see that A also avoids a monochromatic
solution in color 0, suppose first that there exist precisely n values of i such
that z; € [2w+2, 2w+14d] (the same n as stated in the original hypothesis
of the theorem). Then z,, 2 (m—-1-n)+n2w+2)+c=d+1>1 and

(m—1-n)+nQw+1+d)+c
d+1+n(d—1)
d+1+nd—n+d -d
(d+d)+14+nd-n-d
Qw+1)+1+nd—n-d

= 2w+2+n<d—1—d—).

Tm

n

13
Now, since we have assumed d < — |, we can say that d < % + 1 so that

Zm < 2w + 2 meaning A (z,) # 0. Now assume that at least n + 1 values
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of z; are elements of the set [2w + 2,2w + 1 +d]. Then an easy calculation
gives £, > 2w +d + 2 s0 T, is not in the domain of A. Lastly, suppose
that at most n — 1 values of z; are elements of the set [2w +2,2w + 1 +d].
Then z,, < n(d — 1) — 2w + 1. By recalling that d < ['%'l, we see that

d< %' +1, so n(d — 1) < d'. It is also true that d’ < 2w since d' < 2w + 1.
Therefore,

Zm < n(d-1)-2w+1
< d-2w+1
< 2w-2w+1
= 1.

This shows that z,, is not in the domain of A, implying no monochromatic
solution exists in either color. We conclude that r(m,c) > 2w + 2 +d.

Let us now turn to the case when d > I-%] To begin, suppose that

A [1,2w +2+ [%]] — [0,1] is a coloring with A(1) = 0. Again, A(2) =
A(3) = 1 and A(2w + 2) = 0 by the same argument as above. Now, by

lettingxi=2for15i5m—[%'] andmi=3form—|-%'.|+1$i§

m — 1, we see that z,,, = 2w+ 1 + [%I.I, S0 A(2w+1+ [%‘--I) = 0 else
a monochromatic solution is formed. A solution can also be formed by
lettingz;, =1forl<i<m-1-n,z;=2w+1+ [%] form-n<i<
n([22]-1) - [“;'-],:1:,- =2w+2+ l.d;'-' for n([2=1]-1) - [%'] +1<
i1 <m-1,and z,, = 2w+ 2+ [%], implying A(2'w+2+ [%'D # 0.
At the same time, a solution can be formed by letting z; =2 for 1 <i <
m—-1-— I-i.I z; =3 form — d;’ <i<m-1,and z,, =2w+ 2 + [%'],

n 1

implying A (2w +2+ [%'-]) # 1. Hence r(m,¢) <2w+2+ [%’-] .

To prove that r(m,c) > 2w +2 4+ l-%'] for d > I-%'], we first assume

[%’] > 1. Consider the coloring A : [1,2w +1+ I-%:-” — [0, 1], defined by

0, z=1
Alz)=<1, 2<z<2w+1
0, 2w+2<z<2w+1+ (4],

Ifz; € 2,2w+1)for1 <i<m-—1,thenz,, > (m—-1)(2) +c=2w+2,
implying A (z,,) # 1. Hence, no monochromatic solution exists in color
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1. To see that no monochromatic solution exists in color 0 either, first
suppose that there exist precisely n values of ¢ € [1,m — 1] such that

xT; € [2w+2,2w+1+ [%H Then

Tm

and

IA

ITm

v

m-1-n)1)+n2w+2)+c
(n2w+1)—-(m-1))+2w+2
—d' +2w+2
—(Cw+1)+2w+2

1

vl

!

(m-1-n)1)+n2w+1+ [d;

[+e

I
—m+2nw+2w+n(%+1) +3

—((m=-1)=nw+1))+2w+2+d
—d +2w+2+d
2w + 2.

This shows that A (z,,) # 0. Suppose next that at least n + 1 values of ¢
exist such that z; € [Zw +2,2w+1+ [%’-” Then

v

Tm

m=-1-(n+1))()+m+1)(2w+2)-2m+4+ 2w
-m+n+2nw+ 4w+ 4
—d +4w+3

d—(d'+d)+4w+3

d—Qw+1)+4w+3

= d+2w+2

!
> 2w+2+[d],

n

implying that z,, is not in the domain of A. Lastly, suppose that at most
n + 1 values of i exist such that z; € [2w+2,2w+ 1+ [%'--” Then,

recalling the fact that n [d;'.l <d +mn -1, we have that
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Tm < (m—l—(n—l))(1)+(n—l)(2w+1+[d-,)—2m+4+2w

’
n
! dl
= -m+2nw+n[£]—[—]+3
n n
!

= —J+[%]Uv—n—n+2

4 4
= —d+ [%.’n— {%]—n+2

—d' +(d+n-1)- H{’

2]

< 0

Again, we see that z,, is not in the domain of A, implying that no monochro-
matic solution exists in color 0. Therefore, r(m,c) > 2w + 2 + d;'.l

Finally, in the case when d > ’.%] and |-d;-| = 0, we can easily show
that A : [1,2w + 1] — [0, 1], defined by

=1
A(z) = 0, =
1, 2<z<2w+1,

avoids a monochromatic solution. By the reasoning in the previous argu-
ment, there does not exist a monochromatic solution in color 1. Now, if
zi=1lforl1<i<m-1,thenz,, =m—-14+c=-m+2w+3 < -m+1<0.
Thus, there does not exist a monochromatic in color 0, and we conclude

that r(m,c) > 2w+ 2 + [%'] in all cases. ]

With the case of —a = 2 complete, we note that in [5], Schaal and
Kosek determined the Rado number for those values when 3 < —a<m-1
with 1 < w < 2+2=1 We state their theorem below.

Theorem 2.4. Let m be an even number and let ¢ = (m — 2)a + 2w for
3<-a<m-1landl <w< 221 Then r(m,c) = —a + 2w with
mazimal coloring

Lz -a-1:
Alz) = 0 1<z<-a—-1;
1 —a<z<—-a+2w-1.
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It is left then to find the appropriate Rado number for L(m, ¢) when 4 <
—a < m—1 (Theorem 2.4 covers all cases when —a = 3) and 232=1 < w <
1"2;2. These remaining cases will be handled in two theorems, separated by
the assumption on w. The proof of the second case follows the proof of the
first with only minor modifications.

Theorem 2.5. Let4 < —a < m—1. When 22=1 < 4 < [ m—4 J (=%),

if mes
cemn{2e B0 oy (11
i [:'%—:1—'] 2 2 {I'I,‘_“lj +1
then r(m,c) = —a + 1. Otherwise, r(m,c) = —a.

Proof. Consider the case when w is less than the above min. To show that
r(m,¢) < —a+1, let A:[l,—a+ 1] = [0,1] be a 2-coloring and assume,
for a contradiction, that it admits no monochromatic solution to L(m,c).
We define e = —a—m +2w+1 > 1 and notice that letting z; = —a—1 for
1 €1 < m—1 forces z,, = ¢. This implies A(e) # A(—a — 1). Similarly,
letting z; = —a—1for1 < i< 2wand z; = —a for 2w+1 < i < mcreates a
solution, so A(—a—1) # A(—«), meaning A(e) = A(—a). Again, a solution
can be created by choosing r; = ~a—1for1 <i < Ft+wand z; = —a+1
for  +w+1 < i < m. This implies that A(-a + 1) # A(-a - 1),
meaning A(—a + 1) = A(—a) = A(¢). Now, to show that a solution to
L(m, c) exists using values of z; in the set {¢, —a, —a+1}, and thus forcing
r(m,c) £ —a+1, we will establish the existence of a positive integer k with
the following two properties: (1) letting z; =efor1 < i<k and z; = —~a
for k4+1 < i <m-—1 forces z,, < —a + 1, and (2) letting z; = € for
1<i<kandz;=—-a+1lfork+1<i<m-1forces z,, > —a+1. Such
a value of k satisfying these two statements simultaneously means that the
m—1—k values of z; that are not equal to € can be allocated appropriately
(some equalling —a and the rest equalling —a + 1) to force 2, = —a + 1.
And so, we first claim that
2w—-1 2w+m-—2

- <
m—2w-1 k< m — 2w

Note that since w < "‘T'z, we have that m — 2w — 2 > 0, which can be used

2w—1 2wtm-—2 s :
to show that —£8="— <« 22I0== To ensure that an integer value exists

between these two fractions, it suffices to show that their difference exceeds
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1. To that end,

2w+m—2 2w —1 m? - 2wm —m + 2
m? — dwm — m + 4dw? + 2w
m2 — 2um—m+ 2

m? — 2um —m + 2

= 1,

m-2w  m-—2w-1

using the fact that 4w? 4 2w — 2wm — 2 = 2w(—m + 2w+ 2) — 2 is negative.
Hence, letting k be any such integer allows the creation of a monochromatic
solution to L(m, c) using values of z; in {¢, —a, —a+1}. Therefore A must
contain a monochromatic solution to L(m, ¢), implying r7(m,¢) < —a + 1.

Now it will be shown that r(m,¢) > —a + 1 by exhibiting a coloring of
(1, —a] that avoids a monochromatic solution to L(m,c). Let A : [1,—a] =
[0,1] be

0, 1<z<e
A(z)=<1, e+l1<z<~-a-1
0, z=—-a.

There is no monochromatic solution in color 1 since letting z; € [e+1, —a—
l)for1 <i<m-—1forces zy, < (Mm—1)(—a—-1)+c=-a-—m+2w+l=¢

Now, to show that A also avoids a monochromatic solution in color 0, we
will assume A (z;) =0for 1 <i <m — 1. If at most [:—':;Tll] — 2 values of

z; are in the set [1,¢], then

Tm 2 (m—l'([l—_ll-l‘2))(-a)+<[z:11]_2)(1)+c
B ([1_—11-’)(“+1)—3a+2w_2
(:';_—11 “) (@+1)-3a+2w—2
= —ote—1
> -a

implying z,, is not in the domain of A. If exactly I-f:;_ll] — 1 values of ¢
exist such that z; is in the set [1,¢€], then
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w5 (o[-0 (B2 )
= 2w[_";__11-l+[1—_11 (-m+1)-a+m-1
< (S [ -esney
_ mon (i [=ny] - [ask])
) mt ] +1 )
< o
and
(=1 B (SN (E=S IO

m_ll](a+l)—20+2w—1

m—o—2
= [ﬁ—ll(a+1)—2a+2w—l

m-—a-—2
> —(——Q_Ti_) (ra-1)-2a+2w-1

-m+a+2-2a+2w-1
€.

This implies that no solution exists in color 0. Lastly, if there exist at least

[1’(‘;_11] values of z; in the set [1,¢], then

Tm < (m_l_[Zz——ll‘l)(-a)+[i—_ll.|(€)+c
= v (4S5 oo [ 55
< —a+2 (1+a;[£l_ll]-:7:—l)) (1+ [:’;—_11")

1
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which implies z,, is not in the domain of A. Therefore, no monochromatic
solution exists, which implies r(m,c) > —a + 1. We may now conclude in
this case that r(m,c) = —a + 1.

m=4

) . 1tet[ 2L (m-1) (m-1)| 22
Now consider the case w > min 2] ==k |+2 =T To

show that 7(m, c) < —a, let A be a 2-coloring of the set [1, —a] and assume,
for a contradiction, that it admits no monochromatic solution. Since letting
z; = —a—1for 1 < i< m-—1forces z,, = ¢, we see that A(e) # A(—a—1).
Without loss of generality, we can assume A(e) = 0. Similarly, letting
;= —a—-1for1 <i<2wand z; = —a for 2w+ 1 < i < m creates
a solution, so A(—a — 1) # A(—a), meaning A(¢) = A(—a). Now, if
A(e) = A(—a—2), then a monochromatic solution can be formed by letting
z;=—-a—-2forl<i<w4+landi=mandz; = —aforw+2<i<m-1.
Hence, A(€) # A(—a — 2), implying A(—a — 2) = A(—a — 1). Note that
using combinations of z; € [~a—2,—a—1] for 1 < i < m—1 forces z,, <,
which implies that

A(l) = = Ae) = A(—a).

It will be shown that this string of equalities, along with our initial assump-
- - m—4

tion that w > min { o +[[ ‘°'I]]_,(_7: 2 ) (r;l .l..)_("' } , implies a monochro-

—-—a=-1 —a=-1

1
matic solution in color 0 cannot be avoided. If w > Ha:[[“"‘]]f: ), then
1

-|+1<z<m 1

letting z; = efor1 <i < [ ”"__111 and T; = —o for '-
forces
2| €.

where the upper bound follows from the fact that [ ] (a+1) < —m+1.
Note that exchanging a particular z; = € for z; € [l,e — 1] amounts to
decreasing z,, by at most € — 1. Since there are [_":;_’1 such values of z;,
an appropriate allocation of values of z; for 1 < 7 < ""_11] from the set

[1,€] will achieve a value of z, € [1,€¢]. Hence, a monochromatic solution
in color 0 exists. On the other hand, if

1<xm5€+[

1+a+" ](m—1)>w2(m—1)|.m—4J,
2[_a_l]+2 2| ==t | +2

then consider the solution created by letting z; = e for 1 < i < I_I:'-41J
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[+

=T ES

= lm__41J (a+¢€) - a+2w.

and r; = —a for I_j"‘__41J+15igm—1:

L@

—Q

Using the upper bound on w yields

Tym < lm_4J(a+e)—-a+2(

1+a+[

[ -1

—a-1

]@n—n)

v—lr-

BN ESTTPNE -

== [n;,—l]ﬂ
< —a+| 2230,

and using the lower bound on w yields z,, > —a. By the same argument

as before, an appropriate allocation of z; € {1,¢] for 1 < i < t%J will
achieve z,, = —a, implying a monochromatic solution in color 0 exists.
Hence, r(m,c) < —a.

It can be shown that r(m,c) > —a by using reasoning similar to that
of the previous case to verify that the coloring

<z <
Alz) = 0, 1<z<¢
l, e+1<z<L~-a-1

avoids a monochromatic solution in color 1. Letting A (z;) =0for 1 <i <
m — 1 forces z,, < 0 which implies there is no monochromatic solution in

color 0 as well. Hence, r(m,c) = —a. a

Theorem 2.6. For4 < —a<m-—1 and (.'7'”—‘41J (_ag_l

[+

. 1+a+[_,,_](m 1) tm-1 e
w<m1n{ 2|-1’;_-1‘|+2 ’( 2 )( e

then r(m,c) = —a + 1. Otherwise, r(m,c) = —a.
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Proof. Consider the case when w is less than the above min. To show that
r(m,c) £ —a + 1, we can appeal to the argument made in Theorem 2.5.
To show that r(m,¢) > —a + 1, we will also use the same coloring of the
previous theorem. The fact that the coloring avoids a monochromatic solu-
tion in color 1 follows identically. To show that there is no monochromatic
solution in color 0 however, requires us to break this argument into two

parts: when [_{';—_41J = [%1 — 1 and when l_n;-flJ - [-T;_ ‘l _o.

(These are the only two possible values given the bounds on —a).

First note that when [1:%_' = [ f;‘_ll] — 2, we can mimic the proof

of Theorem 2.5 by showing that when at most l- ——] 2 values of z; are

from the set [1, €], then z,, > —a; when exactly [——] —1 values of z; are

from the set [1,¢|, then € < z,, < —a; and finally, when at least [ e ll]

values of z; are from the set [1, ], then z,,, < 1. Therefore, there can be no
monochromatic solution in color 0 in this case, and hence r(m,c) > —a+1.

For the case when [ m=4 J = [ﬂ‘—1 1, we still have that if at least

—a-—1 a-1

—a=—1

ﬂ;‘-] values of z; are from the set [1,¢], then z,, < 1. Notice however

that in this case, if at most I- f;‘_‘l-' — 1 values of z; are from the set [1, €],

T ()] o

] )(a+1)+2w
(

Zm

v
—
3

a+1)+2w

(a+1)+2 [:’;‘_iJ (“az_ 1)

again implying z,, is not in the domain of A. Hence no monochromatic
solution exists in color 0, and we have thus shown that r(m,c) > —a + 1.
We conclude that r(m,¢) = —a + 1.

Now let us turn to the case when w is greater than or equal to the

m-—1 -
minitnum in the theorem. If w > 1+a;[[ ,,.‘S‘]]f: ) , then the proof follows
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identically to that of the proof of Theorem 2.5. On the other hand, if

1+a+ |2 1](m—1)>w2(m_1) (_[-c,_ J+1)’

=1 ] +2 2 | 2=t +2

2[_”;

then we must again break this argument up into the cases when I_f;‘_"lj

["“ ] — 2 and I_-ﬂ- J = [”“' ] — 1. Suppose first that l'"“‘lJ

—a—1 —a-1

[f;‘ -|—2 Then letting z; = e for 1 < i < l_";“J-i—l and ; = —
for[m4J+2<z<m—1yleldsxm=—a+(|- J+1)(e—1)+
) + 2w. Using the upper and lower bounds on w and

It

a-—1

(c+1) ([ 28
simplifying results in:

T < —a+(lm_4J+1)(f“‘1)+[

—a-—1

- con((EE )

and z,, > —a. Hence, a monochromatic solution in color 0 cannot be

m=L ] (m -1+ (m - 1)(-1))

B

a—1 —a—1
monochromatic solution in color 0 cannot be avoided by letting z; = ¢

J+1<z<m—1

avoided. Now we turn to the case when l:""“J = ["“ ] -1 A

for1<i< l_"‘;‘_“lJ and ; = —a for l_

m
Ty = l~a_1J(a+e) o+ 2w
-1
= ([m ]—1)(—m+2w+1)—a+2w
—a—1
m—1
> -
> a+[m_1]+1
—a-—-1
> -«

and z,, < -+ [ 7| (—€ — 1) by the same reasoning as the previous

theorem. Hence, 'r(m, c) < —a.

It can be shown that r(m,c) > —a by applying the same reasoning as
in the previous case that no monochromatic solution exists in color 1, as
well as verifying that letting A(z;) =0 for 1 < i < m — 1 forces z,, < 0.
Hence, r(m, ¢) = —a.
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