Enumeration of walks in the square
lattice according to their areas

M. Mohammad-Noori !

Department of Mathematics, Statistics and Computer Science, University of Tehran,
P.O. Boz 14155-6455, Tehran, Iran

School of Computer Science, Institute for Research in FPundamental Sciences (IPM),
P.O. Boz: 19395-5746, Tehran, Iran

Emails: morteza@ipm.ir, mnoori@khayam.ut.ac.ir

Abstract

We study the area distribution of closed walks of length n, starting
and ending at the origin. The concept of algebraic area of a walk
in the square lattice is slightly modified and the usefulness of this
concept is demonstrated through a simple argument. The idea of
using a generating function of the form (z+z~!+y+y~!)" to study
these walks is then discussed from a special viewpoint. Based on this,
a polynomial time algorithm for calculating the exact distribution of
such walks for a given length, is concluded. The presented algorithm
takes advantage of the Chinese remainder theorem to overcome the
problem of arithmetic with large integers. Finally, the results of the
implementation are given for n = 32, 64, 128.
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1 Introduction

The problem of finding the area distribution of random walks of a given
length is an interesting problem which has many applications, for instance
in conformations of polymers and proteins (see [8, 1] and the references
there in). When n — oo this distribution was computed first by Lévy
using Brownian paths. In (3], techniques from non-commutative geometry
are applied to the Harper equation and the asymptotic distribution of the
area, enclosed by a random walk in the square lattice, is provided. This
approach is also studied in [2]. In [9] the authors used a more complicated
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and more informative method to derive the above asymptotic distribution.
They have used combinatorial arguments, in which, the enumeration of up-
down permutations and the exponential formula for cycles of permutations
play fundamental roles. The asymptotic formula in [3] is compared with
exact results obtained by computers: For this purpose, the closed walks of
lengthes n = 16,18 and 20 are enumerated according to their areas. These
computations are then extended in {1] to n = 28 by using algorithmic
techniques and a DSP processor. However, the algorithm used there, is
based on generating walks, and thus the required time grows exponentially
with respect to the length of walks.

It is well-known that the number of walks in Z2 of length n starting at
the origin and ending at (p,q) equals the coefficient of oP37 in (o + o~ +
B+ B~1)". We show that how a natural extension of this result leads to a
polynomial time algorithm for the previously mentioned problem (i.e. for
the enumeration of walks in Z?2 of a given length according to their areas).
As examples we present the results of implementation for n = 32,64, 128
in the appendix.

This paper is organized as follows: In Section 2, some preliminaries
and notation are discussed. In Section 3 a modification of the concept of
area for general walks in the square lattice and some of its properties are
discussed; Particularly, it is shown that how the area of composition of
two walks cane be found using the areas of these walks and coordinates of
the starting and ending points of them. In Section 4, a useful generating
function for counting the number of walks in Z?2 is discussed. In Section 5,
we see that using modified noncommutative multiplication, the generating
function of the previous section, can be applied to count the number of
walks according to their areas. Section 6 contains an efficient algorithm to
enumerate the number of walks in Z2. Finally, some results obtained from
the implementation are given in tables in the appendix.

2 Preliminaries and Notation

First we mention some formulas about area of a polygon in the plane (The
reader is referred to [9]). Let P be a polygon in in the plane with the vertex
sequence Ao, Aj, ..., An—1, Ag and coordinates A; = (z;,¥:),0<i<n-1
and let (z,,¥n) = (To,¥0). Moreover, for i =0,--- ,n—1let §; = ;41 —z;
and €; = y;41 — ¥i. It is known that the algebraic area enclosed by P can
be obtained by the following formula

S(P) = -12- Z (€0 — €503), (1)

0<j<i<n—1

[
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which is equivalent to

n—1

S(P) = % Z(-’Biyi+1 = Zip1Yi)- (2)
i=0

If moreover, the sides of the polygon P are parallel to the axes z or y, i.e.
if the equation d;¢; = 0 holds for i = 0,--- ,n — 1, then by applying

n-1 n-1 n—1
z 6,15_1 + E CjJi = Z €5 E 6 — E 6i¢; =0
0<j<ign—1 0<j<i<n—1 j=0 i=0 i=0

to (1), one obtains

SP)= > «d; 3)
0<j<ig<n—1
and
SP)y=- > &b, (4)
0<j<ci<n—~1

which respectively lead to

n—-1
S(P) = zi(yis1 — vs) (5)

i1=0

and .
S(P) = - Z Yi(Tis1 — ). (8)

i=0

The following notation from generating functions is useful in this pa-
per: For a polynomial (or more generally a formal power series) f(z) the
coefficient of z* in f(z) is denoted by [z]f(z). The values [z*y?]f(z,y) and
[ziy? z*)f (z, v, 2) are defined similarly.

For a finite sequence of symbols I, called alphabet, the free monoid over
¥, denoted as I*, is the set of all finite sequences (together with the empty
sequence) constructed using elements of ¥; Any such sequence is called a
word over X. For an element w € £* the length of this sequence is denoted
by |w} and for any i € X, the value jw|; is the number of occurrences of i
in w. For a nonnegative integer n, £™ denotes words of length n over the
alphabet .

The square lattice is a graph with vertex set Z? in which two vertices
(z1,¥1) and (z2,y2) are adjacent if and only if |z; —z2| +|y1 —y2| = 1. The
square lattice is usually denoted by Z2. Any walk in Z? can be determined
by its sequence of vertices. Alternatively, since in each step of such a walk,
is just moving to right, left, up or down, a walk of length n in Z2 is coded
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by the starting point (zo,y0) and a word w € £™*, where £ = {r,¢, u,d}.
For this reason, from now on in this manuscript, we fix this four element set
as out alphabet ¥. With the mentioned notation, a closed walk of length
n in Z2 corresponds to a polygon in the plane with integer coordinates in
which, the identity {d;,€;} = {0,£1} holds for i =0,--. ,n— 1.

We frequently use binomial coefficients and some of the identities sat-
isfied by them, particularly Vandermond’s identity. For a real number
a and a nonnegative integer m the value of (2) is defined as the ratio

gg“—_lum‘,'—_m—“l When a is a nonnegative integer, (as usually holds in this
paper), we have () = m—,(a“l—my When m is not a nonnegative integer,
the value of (2) is defined to be 0. If @, b and m are nonnegative integers,
the well-known Vandermond’s identity states

() - ()

For elementary concepts of algebra the reader in referred for instance
to [6]. Moreover, we need the following definition in Section 5 (See Section
25.3 of the same reference). Let G = {g;} be a multiplicative group and let
R be a commutative ring with unity. Then the set R(G) which consists of
all formal summations ), a;g;, with a; € R and g; € G and with finitely
many nonzero ag;'s is a ring, called the group ring of G over R. If instead
of R we have a field F, then F(G) is called the group algebra of G over F.

3 Area of walks in the square lattice

As mentioned before, a closed walk in the square lattice corresponds to a
polygon with integer coordinates such that for any 0 < i <n-1, {d;,&;} =
{0,£1}. Thus the area of such a walk, is defined as the algebraic area of
the corresponding polygon. A natural idea to define the concept of area for
a walk in Z? which is not necessarily closed, is to close it by a sequence of
horizontal and then vertical movements. Before following this idea, we fix
our notation by considering W as a given walk in Z? with vertex sequence
Ap, Ay, -+ ,Ap and coordinates A; = (z;,y;) for ¢ = 0,--- ,n. Moreover,
fori=0,--- ,n—1let § = z;41 —z; and €; = y;+1 —y;. The following two
concepts are associated to W:

Definition 1. The closure of W, denoted as W, is a closed walk of
length n + |20 — zn| + |yo — Yn| With vertex sequence

W, = [(xo, yO)’ (1‘1,1{1), ceey (.’l:n, yn)’ Tty (an yn)’ Tty (zo,yo)],

where the path (zn,yn)," - , (o, Yn) consists of all left movements (resp. all
right movements) if zo < z, (resp. if 0 > z,) and the path (zg,yn),--- ,
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(%0, yo) consists of all down movements (resp. all up movements) if yo < yn

(resp. if yo > yn).
Definition 2. The area of W is defined to be the area of W, that is

to say
n—1

S(W) =Y ziei + To(yo — yn)- ™)
1=0
It is easily proved that S(W) is independent from the starting point (zo, yo)

and depends only on the word w.
Two walks can simply be composed as follows:
Definition 3. Let

W= [(!L”o,yo), (1, 91) .y (zn,yn)],
W' = [(xéjvy(l))a (zll’ y;)v R (-T;m y:n)]
The composed walk, WW’, is defined as
WW' = [(z0,40),- - - (Tn,Yn), (Tas1,Ynt1)s - - - (Trdms Yn4m))s

where Zpii = 2p + 2, — 2 and Yynpi = Yn + ¥, —yp for 1 <i <m.
It is immediately seen that this composition corresponds to concatena-
tion of words w and w’. Now we have the following result.

Proposition 1. With the above notation for W and W', fori =0,1,--- ,n+
m—1 let €, = yi41 — yi. The area of WW’' then eguals

S(WW') = S(W) + S(W') + (zn — Zo)(Ym — ¥0)- (8)
Proof. We have
n+m-—1
SWW'y= 3" ziei +20(yo — Ynsm)
i=0

n—1 n4+m-—1

= z i€ + Z zi€&; + zo(yo — yn) + z0{Yn — Yn+m)
=0 i=n
n—1 nitm—1

=Y me+zolyo—yn)+ Y. we
i=0 i=n

+Zn(yn — Ynt+m) + (20 — Zn)(yn = Yn+m)
=S(W) + S(W') + (zn — Z0)(Un+m — yn)

which yields (8). (|

Let (:BOsyO) = (maiyé) = (010)’ (xnyyn) = (iaj)v (xm,ym) = (i,sj’),
S(W)=S and S(W') = S’. Then

S(WW') =S+ 8 +if'. (9)
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The geometric interpretation of this fact is demonstrated in Figure 1.

IE) B'
B B+, 4

O

Figure 1

Remark 1. In definition 1 we have closed a walk by horizontal and then
vertical movements. One may ask what happens if we close a walk with
first vertical and then horizontal movements? In fact if one defines the
closure of a walk W by

Wc' = [(‘TanO)a(xl)yl)’ oo 7(xﬂ’yn)7 Tt ,(xn,yo),“ ' 1(3:0’1/0)]1

and let S(W) = S(W./) then it is easily obtained that the right side of (7)
is replaced by Z?;OI Zi€; + Tn(Yo — yn) and the right side of (9) is replaced
by S(W)+ S(W') —ij . If instead of replacing W by a closed walk in Z2,
we close it as soon as possible, which means if we define S(W) = S(Q.),
where Q. is the following polygon

Qc = [(xOv yO)a (xlyyl)3 ey (zn7yn)7 (1:0: yO)])

then the right side of equation (9) will be replaced by S(W) + S(W’) +
313" = 5).
2

4 A useful generating function

In this section we mention a useful generating function of the walks in Z2
starting at the origin with respect to coordinates of their endpoints (See
Section 9.1.1 of [7]) and some of its consequences. We begin by the following
known proposition.

Proposition 2. Let u = a+a~! + 3 + 87! and denote the number of
walks of length n in the square lattice which starts at the origin and ends

in (p,q) by an(p,q). Then
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(i) The number an(p,q) = [P B)u™.
(ii) We have an(p,q) = (.._t':m)(l:'éﬁ)

Proof. (i) Any walk of length n, from the origin to (p, g), is coded by
aword w € I"® with |w|, — |wl¢ = p and |w|, — |w|s = ¢. Replacing r,
¢, u and d respectively by a, a~!, 8 and B!, we conclude that any
such word corresponds to a term a?@3? in the expansion of u™; Thus
the coefficient of a?(37 equals the number of such walks.

(ii) We have

an(p,q) = [@PB%) @+ + B+ B71)"

=1y (7)o 57

=0

)
N ) G e
)

i=0 2 2

n ntptq n—p-
- z n 2 2
- ntptq ntq—1i —p+t

i=0 2 2 2

n n
n+p+q ntq—p J°
2 2

asrequired. Note that in the last step, Vandermond’s identity is used.
O

Remark 2. We remark that it is possible to prove Proposition 2(ii) by
a direct combinatorial argument, it is enough to project steps of a given
walk on the axes y = = and y = —z (This technique is already used, see
for instance Proposition 2.3 of [9]). For instance if we project walk steps
on the axis y = z, the steps to right and up are forward and the steps to
left and down are backward, so we obtain |w|, + |w|, — |w|e — |w|la =p+ ¢
which together with |w|, + |w|y + jw|e + [w]a = n yields

lwly + [we = E.gig
n — —
[wle + wla = ~—E2—1
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Similarly, by projection on the axis y = —z we obtain

fwl, + fwls = =21
n —
wle + ful, = 222

Now consider the mapping h, defined by h(u) = (a,a), h(d) = (b,b),
h(€) = (b,a) and h(r) = (a, b) (See page 451 of [7]). By applying this map-
ping to the letters of w = wow; - - - wp—; and setting h(w;) = (s;,¢;) for i =
0,1,--- ,n — 1, we obtain the words s = sg8;++-8p—~1 and t = fot; -+ - tnh_1
with s,t € {a,b}" and [s|o = 22+ and |t|, = 2=+, Conversely, it is
easily observed that given s,t € {a, b}", the word w is determined uniquely.
But there are (u':,i,) choices for s and (u;;;q) choices for t, which proves

Proposition 2(ii).

Although the following identities are concluded immediately from Propo-
sition 2(ii), based on symmetry, we need only part (i) of that proposition
to conclude the following.

Proposition 3. With the notation of the Proposition 2 we have
(i)
an(p,q) = an(£p, £9). (10)
(i)
a‘n(p7 q) = an(Q9p)' (11)

5 A noncommutative multiplication

In this section, based on a simple combinatorial argument, we present a
noncommutative extension of Proposition 2(i). Also we present an exten-
sion for Proposition 3. Let w,(%, 7, s) be the number of walks starting at
the origin and ending in (7, j) and having algebraic area s. Then by using
identity (9) we have the following enumerative identity:

wn-{»m(iajw S) = Zwn(ilajhsl)wm(i21j2’32)1 (12)

Tija

where I;;, consists of the set of pairs of integer triples (i1,j1,51) and
(2, j2, s2) which satisfy the following set of equations:

i1 +i2 =1, j1+Je=1J, s1+s2+i1j2 =s. (13)
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Equations (12) and (13) lead us to study the multiplication of two mono-
mials X = z'y7z® and X’ = z'y? 2° defined as

. 3 ot 1) ’ 3 .t < il ! il
ziyl2® gty 20 = gty HT et (14)

It is easy to check that the set of all monomials z'y’z* with this multipli-
cation construct a non-commutative group. Note that the element z'y’z*
is just a representation of an element of a group (which may also be repre-
sented just by the triple (4, 7, s)) and in general does not equal 2*.y?.2° (for
instance z.y.z = zyz2). This leads to construct a group ring with elements
3" a(i, j, s)z*y? 2° with finitely many nonzero coefficients which come from

a ring, say R.

Proposition 4. Let v =z + 2~ +y+y~! and let wa(p,q,s) denote the
number of walks in Z? which start at the origin, end at (p,q) and have s

as their areas. Then we have
wn(p, g, 8) = [z7y?2°|w", (15)
where multiplication is as defined in (14).

Proof. For this note that by setting m =1 in (12) we provide
wn+1(p, ¢, 8) = wn(p—1,¢,8)+wa(p+1l,q, s)+wn(p,q—1,s—p)+wn(p, g+1, s+p) (16)

Now we use induction on n: The basis step, n = 0, is trivial. Presuming
the validity of (15) for a given integer n and all integers p, g, s, we have

ot =z 427y +y7h)

= (Z wn(p, q,s)x"y"z’) @+z ' +y+yh)

P,q,s

= Z wn(P' 9, 8)1p+lyqz’ + Z ‘wn(P, 9, ‘9):":?“111"2‘9
Piys P

£ wnlp, 0,925 2 + T wn(p, g, )Pyt 12077
P.q,s P:iqys

= z w"-(p -1,4q, 8)zpyqz’ + Z wn(P+ 1,q, S)Iquz’

Pyqys Pq,s

+ Y walpg— 1,5 - p)zPy?2" + 3 wn(p,q,s +p)aPy’z’
P\q,s Pq,s

= Z wu+l(p) g, s)zpyqz, (by USing (16)))
Pq,3

which concludes the validity of (15) for n + 1 and all integers p,q,s and
completes the induction. a
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Example 1. It is easily checked that

=+ byt Dtz b+
=z +14+zy+ z:y" +14+z7 24 z"y + z-ly'l
tryz+x lyz byl 1y 2 by o b L 4y R
=24zl 4y +y Pty zy by by
+ryz+z lyz" byl 4 2Ty
The terms of the form azyz® are zy and zyz. This means that there are
just two walks of length 2 which begin from the origin and end in (1,1):
one walk with area 0 and another one with area 1.

Example 2. Again consider the previous example. If we want to answer
the same question about walks of length 4, it is enough to calculate the
terms azyz® in w?. But using w* = (1v?)? and applying the above result,
these terms are as follows:

2 ly+rfx gz Py 4ty 2T + Aoy + 4oy

1 1,-1,2

dzy +zy tayl +rlya? 4 dryz a7y L2 oy ly

= zy(22% + 102 + 10+ 2z71).

Remark 3. Considering Remark 1, Proposition 4 remains still true if
we replace the right side of (14) either by zi+¥yi+i' zs+'~i'i o by
xitiyits o+s'+3G5 ~¥3)  Note that in the second case, our multiplication
would be similar to formula (1) in [3].

Proposition 5.
(@) . . . .
Wn (1,5, 8) = wn(—1,J, —8) = wn (i, —J, —s) = wa(—1, -5, 5).
(ii)
wn(%,J, $) = wn(j, 1, ).
(i)
Wn(%,J,8) = wn(t, 5,45 — s).

Proof. (i) To prove wn(%,J,s) = wn(—1,j, —s) for instance, let W be a

walk in Z?, coded by the word w € I and let w’ = h(w) where h is
the following morphism

r—{
-7
U—u

d—d
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and let W’ be the walks starting from the origin and coded by w’.
Clearly, W’ is the mirror image of W with respect to the y axis, so
its coordinates satisfy z; = —z; and y, = y; for i = 0,1,- -+, n, hence,
by (7), we have S(W') = —S(W). This correspondence is clearly a
bijection so we have wy (%, 7, 8) = wn(~1, j, —s). The other equations
are proved similarly. We remark that all the equations of part (i) can
be unified as

wn (i, 4, 8) = wn(€1t, €24, €1€28), (€1,€2) = (£1,£1)

and the proofs can be unified by using morphism

T —ar
Z—>€1£
U -~ €U
d—)ezd

heies

where by definition —r =4, ~{ =7, —u=d and —d = u.

(ii) Let the walk W is coded by w and let w’ be the word obtained
by reversing w and replacing r, ¢, u,d respectively by u,d,r,£. It is
proved that the walk W’ coded by w' has the same area as W. It is
easily concluded that wy(%, 4, s) = wa(j, 1, 5).

(ili) Let W be walk starting at the origin and ending in (4,7) and let
W' be its mirror image with respect to the line y = z. It is simple
to prove that S(W’) = ij — S(W). An easy conclusion would be
wn(t, 7, 8) = wn(J, i, tj—s), thus using part(ii) we provide wn (3, j, s) =
wn (%, 7,15 — 5). )

O

Remark 4. If we set z = 1 in (14), the relation appears as a usual commu-
tative multiplication; Similarly, considering the result of Proposition 4 as
" =3 TPY? > wa(p, g, $)2° and setting z = 1 concludes just Propo-
sition 2(i) as a special case. Hence, Proposition 4 is a noncommutative
extension of Proposition 2(i). The absence of a computational result such
as part (ii) of Proposition 2 (or a weaker version of it) in the noncommu-
tative version is clear. We wonder whether the following matrix identities
[5] are helpful in this respect? Let

100 110 101
A=|lo 11|, B=lo 10}, z=]0 10
001 001 001
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Then

o 1 i s
ABZ°=[0 1 j 7)
00 1
hence
AIBiZ® AV BY 75 = AT+ B Zots i (18)

We mention that the last identity is important because it connects the
previous complicated multiplication rules to usual matrix multiplication.

6 An algorithm to enumerate walks

The results of the previous section naturally leads to an algorithm for cal-
culation of the coefficients wy (p, q, s)) which is much better than generating
the walks themselves (similar to the one used in [1]). In this section, we
study and analysis this algorithm. As in examples 1 and 2 one can com-
pute the expression ™ for given values of n to obtain values w,(3, 7, s).
Of course this can be done for any positive integer n (not only powers of
2,) by calculating expressions of form n™'.r0"™2 at most lg(n) times. To
analyze the provided algorithm, first note that if |i| + |j| >norifn+i+j

isodd or if [s] > Z 4 , then wy(4,7,5) = 0 (In fact if |s| > Mﬂ- then
wn(i,j,8) = 0). Thus the expression w™ has O(n?) nonzero terms and
computation of the expression r™ .10™ needs totally O(n;%ny?) multipli-
cations. Thus for calculating ™, the number of required integer multiplica-
tions is O(n®1g(n)). However, as n grows larger, the coefficients wy (i, , )
grow exponentially and should be considered as “large integers” (instead of
integers) and the integer multiplication should not be considered as a uni-
tary operation. (For computation with large integers, see for instance [4]).
This problem is resolved by using modular arithmetic as follows: Choose
k and distinct prime integers p;,-- - , px such that w,(i,7,8) < p;---pr (It
is enough to select these numbers such that p;---px > 4"). For any i,
1 <1 £k, calculate the coefficients of ™ mod p;. Finally for each s with
s < n?%/16 a sequence ¢y, - - - , tx with w,(0,0,s) = t; ( mod p;) is obtained.
Thus the values w,(0,0, s) can easily be reconstructed using Chinese re-
mainder theorem. Since k¥ = O(lg(n)), the complexity of our algorithm in
this case (i.e. when 4" is a large integer), is computed as O(n® Ig?(n)).

Let n = 2m be an even positive integer; By Proposition 5 (iii), the
sequence {wzm (0,0, )}, is symmetric with respect to the axxs s =0 and
it is easily seen that wpm(0,0,s) > 0 if and only if |s| < |- j We have
implemented our algorithm for n = 8,16, 32, 64; Furthermore we have ob-
tained the terms w;25(0, 0, s) in the expression o128 (As mentioned before,
since the coefficients are large for n = 64, 128, we have used some modular
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arithmetic to simplify the calculations). It is observed that the sequence
{w2m(0,0,5)}s is unimodal and takes its maximum at s = 0. The re-
sults of computations are briefly demonstrated in tables 1.1, 1.2, 2.1, 2.2
(Due to the symmetry, negative values of s are omitted from these tables).
Histograms of the number of closed walks with corresponding areas are
demonstrated in table 1.1 for n = 16, 32,64, 0 < s < 50 and in table 1.2 for
n =128,0 < s < 50. We have used sampling of areas to estimate the whole
distribution of walks with respect to their areas in table 2.1 for n = 32,64
and in table 2.2 for n = 128. Complete tables of values of w,(0,0,s) for
n = 32,64 and 128 can be found at [11]. We mention that it is possible to
improve the complexity of this algorithm to O(n®1g*(n)) by some modifi-
cations. However, we do not need to implement this modified version for
n < 128.
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Table 1.1. Histogram of the number of closed walks with given algebraic
area s for n = 16,32,64, 0 < s < 50.

Area s | w16(0,0,9) w320, 0, 3) we4 (0,0, 3)
0 33820044 | 3581600, 0974343308 | 165545, 3003286874, 5794673311, 4483378060 |
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2 18569808 [ 3073077, 4567275040 | 159289, 6955895232, 9652405885, 9706370944
3 10127744 | 2565083, 0257093008 | 151905, 3681689474, 6366542956, 7889122560
4 5015108 | 2025070, 2695492528 | 142312, 9428052661, 5202704645, 6952968352
5 2289760 | 1529170, 0875844800 | 131125, 1853389455, 8748104447, 7490274432
6 1036368 | 1116254, 1356438464 | 118976, 8131598077, 3546151378, 9923455744
7 435040 | 794324, 3235665408 | 106459, 4734512548, 5432356922, 6277637888
8 184104 554823, 8812436036 | 94076, 4049114445, 2830982857, 7473179632
9 73056 | 382197,6073766784 | 82219,0388885868, 0062962560, 1052407296

10 28064 260613, 1312522976 | 71162, 7986902081, 4394878378, 0740454720
1 10336 176316, 8848622336 | 61076, 6841799750, 4289859727, 5624957312
12 3760 118576, 4173049648 | 52040, 7460865277, 2477622381, 7129090240
13 1088 79335, 0438261504 | 44066, 4566930747, 9914521591, 0107701504
14 352 52859, 9386326560 | 37116, 4869321275, 0343143165, 4198093312
15 96 35083, 2035517248 | 31121, 8811662498, 3702411709, 7801894016
16 16 23202, 5420494728 | 25995, 8037652707, 6596386739, 4450277316
17 0 15290, 8309279936 | 21643, 8097824910, 3762445371, 2586987264
18 0 10044, 4272588768 17971, 0315275440, 8547703288, 0937254400
19 (] 6574, 8927845440 14886, 8517633991, 1765417370, 3945559808
20 (] 4289, 6632260736 12307, 6599368221, 5520959165, 4379143840
21 0 2788, 4857169280 10158, 2235010504, 6499042413, 6544733440
22 0 1806, 4537994848 8372, 1122544237, 1269186309, 3162306688
23 0 1165, 8943874752 6891, 5113696382, 9340030299, 8512645376
24 0 749, 7160572048 5666, 6701469563, 7412442711, 0537836464
25 0 480, 1211445312 4655, 1587087675, 5085653450, 8420517888
26 0 306, 2945599680 3821, 0488492849, 7035370375, 8706331264
27 0 194, 5755843520 3134, 0926012667, 5420527449, 4192796416
28 0 123, 0912937696 2568, 9430707074, 7787699462, 7648267040
29 0 77, 5044394624 2104, 4412234929, 2181969190, 3419356416
30 0 48, 5883898144 1722, 9792841968, 7831969876, 7886027968
31 0 30, 3067180160 1409, 9425700569, 3405222424, 1279150592
32 0 18, 8158770672 1153, 2267976836, 0220074562, 9419251848
33 0 11, 6190755520 042, 8248707710, 9783233726, 8937696128
34 0 7, 1372120768 770, 4760703796, 4923852241, 8443915072
35 0 4, 3588560640 629, 3700506407, 3095007510, 8661437568
36 0 2, 6468754368 513, 8983895305, 2165176788, 5718002464
37 0 1, 5971326400 419, 4468635943, 1128763468, 3935688320
38 0 9580227072 342, 2223782721, 8792023636, 1272721856
39 0 5704976448 279, 1091340556, 7526383551, 8177452288
40 0 3374362720 227, 5493796993, 4261990343, 2651390528
41 0 1979897600 185, 4447127237, 3591685480, 3318881920
42 0 1153531776 151, 0745274528, 2500466045, 4542766592
43 0 665930496 123, 0287071199, 9349261843, 0645507456
44 0 381403552 100, 1521446247, 9515175280, 4221836704
45 0 216272192 81, 4990481851, 9987650971, 6280904448
46 0 121397120 66, 2953446385, 4157940925, 1272815296
47 0 67391168 53, 9077623054, 4736632512, 9024635136
48 0 37007392 43, 8184278757, 0688296731, 2469700240
49 0 20046912 35, 6040025857, 9755520652, 8140275072
50 0 10730048 28, 9185589829, 9232653138, 8592603584
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Table 1.2. Histogram of the number of closed walks with given algebraic
area s for n =128, 0 < s < 50.

Area s w]128(0,0,s)

1410, 7033892003, 4556275957, 3855536443, 1713372583, 87455606276, 6835946782, B6D065G588
1407, 3024540489, 7561178225, 1492421016, 5903644384, 0838340709 2111460482, 4937387520
1397, 1649733707, 8547470736, 0499774263, 35 31633182285, 4162311040
1380, 4842678848, 7302789379, 1645965215, 5579137301, 3499661185, 3647061656, 3763726848
1357, 5738773060, 9946518605, 0585703091, 4103655038, 8810690309, 8680556206, 4476333696
1328, 8551923721, 7677597822, 7209730464, 4139815783, 0161065810, 1704581134, 1916138496
1294, 8413214797, 3192840866, 6424244840, 7914453824, 1990913897, 2602303118, 5542646784
1256, 1182279806, 0973554574, 6222544230, 8237684539, 6052335327, 6433750005, 5423763456
1213, 3242855140, 0028030693, 5376370181, 6590699200, 7160036130, 3615131804, 7547629472
1167, 1294078548, 3705036097, 4700188169, 9134665437, 9964875422, 2126644178, 1188844032
10 1118, 2148257931, 4876464340, 5178198327, 6272565882, 5003428615, 7423056334, 4507678592
11 1067, 2544253010, 0491533514, 7894490482, 6439471597, 5277883548, 2780506254, 9148335104
12 1014, 8983533104, 4634867110, 1206819214, 1193382594, 8253734997, 0143386378, 9088034176
13 961, 7593661773, 7189043046, 3337315981, 8652756444, 2697345733, 0322031818, 4291592704
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14 908, 4021657996, 3631929848, 5392789504, 0553785827, 1399264505, 9083287686, 8407903488
15 855, 3357502722, 7904570583, 4071833016, 3005561629, 6188755045, 2681666035, 3268214784
16 803, 0087037290, 4609496133, 5353158915, 5592171685, 1608553021, 1235191565, 6504449136
17 751, 8069661057, 2813072696, 6620583064, 1148708036, 7436477079, 4895846268, 6542646784
18 702, 0540396862, 5146881526, 9860430186, 5491459006, 2468812491, 6045345873, 6116161536
19 654, 0120126309, 4424638675, 1120960649, 6515635171, 2836056527, 8268318381, 3914975488
20 607, 8894723270, 7517045571, 1069505624, 9654909825, 9691568380, 4579410665, 3886321856

21 563, 8369457848, 1328023268, 0251406724, 5624510978, 4465364091, 8338626540, 2448514048
22 521, 9610124403, 1971690875, 7285266312, 1361048967, 8464554560, 1550600804, 2947782528
23 482, 3252741185, 5977063374, 9204570737, 0096681055, 7! 14, 3, 6273 44
24 444, 9568211123, 2677528406, 7913521050, 2168637496, 3514310616, 1020629339, 0696154560
25 409, 8516882597, 8820945433, 0086445538, 6875648834, 3075383182, 7515093856, 2496782336
26 376, 9800468596, 7878523294, 6468408515, 6838053818, 2117951574, 8956155126, 1898202880
27 346, 2910248525, 7910212051, 9918713267, 6285219824, 3417736320, 7150365881, 6662952192

28 317, 7170876122, 6649370409, 8769310919, 3372955110, 9885406167, 7375795751, 0850541184
29 291, 1779444806, 8780735863, 2682558550, 3943314167, 7209990195, 1784320302, 7017344000
30 266, 5839720083, 3217144183, 2330534321, 5631455053, 9593549729, 2039952449, 8739436928
31 243, 8391642983, 0152229604, 1800095915, 7149399101, 9378288422, 7765033861, 2981857280
32 222, 8436346973, 8653725051, 1841404543, 0931745709, 4233102150, 3754802180, 2932444612
a3 203, 4057022281, 8650274258, 8409511283, 0795000912, 6351287804, 8241811701, 0044212480
4 185, 6936015120, 1442388100, 3756227758, 1997286304, 1641800578, 0316304872, 5931503104

35 169, 3368573323, 1966937758, 8587669558, 1677928523, 5336728042, 7009350227, 8754297344
36 154, 3273651764, 1673709820, 8254120503, 0091312669, 4620532769, 1964334067, 6582675712
37 140, 5702177017, 1811870033, 4744950358, 1126325851, 8097400944, 1897482027, 1138028544

38 127, 9743146199, 7216121242, 6590547944, 5795670103, 3517158052, 5703219655, 5346880768
39 116, 4527903905, 2565093234, 5991490752, 6931680721, 8392377764, 6639015944, 4253611008
40 105, 9232906770, 0813934257, 9389349588, 9826312713, 6299361111, 8150382831, 9241859104
41 86, 3081249848, 4003726572, 9985651294, 9767291595, 5105092725, 2887050944, 2661204480
42 87,5343194257, 0689809870, 9084153396, 1633523208, 5765141173, 2063363894, 5553767168
43 79, 5335902615, 1001088786, 2229069228, 4944928161, 2471305895, 5160229025, 3471878400
44 72,2422558339, 9992080512, 9735364612, 5415047397, 5072102242, 8523062539, 9947401984
45 65, 6011017251, 4946008123, 3635319649, 9707716860, 2623541436, 0238379304, 1379316736
46 59, 5552115318, 2629696048, 9600650535, 3649769161, 7005888983, 0456617439, 1624406784
a7 54, 0537734745, 4545929513, 5620500429, 2190688647, 1817158178, 7000139728, 0834058496
48 49, 0498711810, 5005814800, 2302396044, 8526299819, 6640254673, 3055286303, 8011851696
49 44, 5002653713, 1010783245, 2854022296, 7683798570, 5477576649, 4078144220, 8843469312
50 40, 3651717975, 4268071940, 8275974742, 9828479525, 6161271917, 9464626860, 0827549440
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Table 2.1. Values of w32(0, 0, 2k) and we4(0, 0, 8%)

Area s w32(0,0,3) | Area s we4(0,0, s)
0 | 35816909974343308 4] 165545, 3003285874, 5794673311, 4483378060
2 | 30730774567275040 8 94076, 4049114445, 2830982857, 7473179632
4 | 20250702695492528 16 25995, 8037652707, 6596386739, 4450277316
6 11162541356438464 24 5666, 6701469563, 7412442711, 0537836464
8 5548238812436036 32 1153, 2267976836, 0220074562, 9419251848

10 2606131312522976 40 227,5493796993, 4261990343, 2651390528
12 1185764173049648 48 43,8184278757, 0688296731, 2469700240
14 528599386326560 56 8, 2365472231, 4016874589, 9460134624
16 232025420494728 64 1, 5096688485, 6768973162, 6864590576
18 100444272588768 72 2694437402, 9152872362, 8592916864
20 42896632260736 80 467552007, 4041838163, 0604620576
22 18064537994848 88 78744016, 9083977884, 8133019296
24 7497160572048 96 12846824, 7250409523, 5350912480
26 3062945599680 104 2025952, 5183890308, 8567109088
28 1230912937696 112 308080, 5223088698, 5702239872
30 485883898144 120 45051, 1484837085, 3522061280
32 188158770672 128 6315, 2306732457, 4256973920
34 71372120768 136 845, 5556839591, 3528941504
36 26468754368 144 107, 6805280447, 7651259776
38 9580227072 152 12, 9785607608, 7995391104
40 3374362720 160 1,4718233876, 4286499776
42 1153531776 168 1559345348, 1572357568
44 381403552 176 153004502, 2583865088
46 121397120 184 13753291, 0981167232
48 37007392 192 1116802, 6179713536
50 10730048 200 80423, 8839635904
52 2932896 208 5007, 3152157248
54 743168 216 259, 8435002240
56 172224 224 10, 6187399552
58 35392 232 3102345664
60 5984 240 53445952
62 704 248 337280
64 32 256 64
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Table 2.2. Values of wy25(0, 0, 32k)

Arca 2 wy28(0,0, 5)
0 | 1410, 7033892003, 4556276957, 3855536443, 1713372583, 8745556276, 5835046782, 8699650568
32 222, 8436346973, 8653725051, 1841404543, 0931745709, 4233102150, 3754802180, 2032444612
64 10, 1648073494, 4923419172, 3106847671, 7720107384, 7236429835, 9359307733, 6892311304
26 4138093608, 0697485547, 8360086674, 4923420517, 9089245541, 4042051861, 9613801232
128 161039050, 5304195851, 5419275033, 5083133903, 1254858120, 1415241780, 7554992752
160 5990655, 6605275424, 0970303298, 7170340389, 5743855708, 8743098925, 7949721120
192 212607, 0814985186, 59581934575, 3508563447, 3878472768, 9106908764, 3180434272
224 7180, 6854685731, 4031517786, 4997582279, 9706234195, 6090873096, 6015209584
256 230, 1750942525, 0140859435, 7574600133, 2584273010, 4614639804, 3043516640
288 6. 9816042224, 1138277250, 0582452617, 1692631908, 7011142507, 9215100160
320 1997100758, 6553543300, 5729674881, 2193385181, 4767886062, 4658510144
352 53685272, 9803391380, 6122089350, 6109205977, 4658578703, 0650130264
384 1350455, 5535411518, 0818176830, 9757666811, 6769796180, 3565932544
416 31644, 2527945050, 2410030323, 1585016453, 7594319542, 2645555776
448 687, 1315164172, 5008635859, 1036569312, 0498550867, 2721950208
480 13, 7450595212, 7015217478, 1001307692, 8900430481, 5008168896
512 2515774906, 7368382551, 6728163527, 5448943450, 0831010624
544 41803611, 2117105753, 97356832910, 5539623620, 6960007680
576 624889, 6425097710, 2464041926, 3546679600, 4985488768
608 8312, 9826788959, 9447485149, 7366840822, 7746173056
640 97, 1577615205, 3500138500, 6650886012, 5226822016
672 0821475660, 0178800451, 7922679241, 8657940480
704 84231795, 4751454140, 9292439100, 2628166000
736 598159, 1733186708, 6431903566, 6217660160
768 3408, 4164367454, 1023022248, 2423726336
800 14, 9447433526, 3720269236, 4107405952
832 475760748, 0371846789, 7834797824
864 1010220, 8082355332, 7727527680
896 1253, 0843615061, 8578411264
928 7227374040, 4149925760
960 1233125, 5335552890
292 19, 8894005504
1024 128
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