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ABSTRACT. A wvertex cover of a graph G = (V,E) is a subset § C
V such that every edge is incident with at least one vertex in S,
and o(G) is the cardinality of a smallest vertex cover. Let 7 be
a collection of vertex covers, not necessarily minimum. We say 7
is closed if for every S € T and every e € E there is a one-to-one
function f : S — V such that (1) f(S) is a vertex cover, (2) for
some s in S, {s, f(s)} = e, (3) for each s in S, either s = f(s)
or s is adjacent to f(s), and (4) f(S) € 7. A set is an eternal
vertex cover if and only if it is a member of some closed family of
vertex covers. The cardinality of a smallest eternal vertex cover is
denoted a2(G). Eternal total vertex covers are defined similarly
with the restriction that the cover must also be a total dominating
set. The cardinality of a smallest eternal total vertex cover is denoted
a%,(G). These three vertex cover parameters satisfy the relation
a(G) € aR(G) £ a%4(G) £ 2a(G). We define a triple (p,q,7) of
positive integers such that p < ¢ £ 7 £ 2p to be feasible if there is a
connected graph G such that a(G) = p, a2 (G) = ¢, and a,(G) = r.
This paper shows all triples with the above restrictions are feasible if
P # gorr < 3p/2 and conjectures that there are no feasible triples of
the form (p, p, ) with r > 3p/2. The graphs with triple (p,p + 1, 2p)
are characterized and issues related to the conjecture are discussed.

Keywords: vertex cover, total vertex cover, eternal, edge protection, graph
characterization, domination, total domination.

1. INTRODUCTION

In this paper, we study graphs G = (V, E) without loops or multiple
edges. In some cases, to avoid ambiguity, we will use the notation V(G) for
V. A subset S C V is a dominating set if every vertex in V — S is adjacent
to a vertex in S; the set is a total dominating set if every vertex in V is
adjacent to a vertex in S. A vertez cover of a graph G is a subset S C V
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such that every edge is incident with at least one vertex in S. A total vertez
cover is a vertex cover that is also a total dominating set. The vertex cover
(total vertex cover) number of G, denoted a(G) (c:(G)), is the cardinality
of a smallest vertex cover (total vertex cover). A vertex cover (total vertex
cover) of size a(G) (a:(G)) is an a-set (ay-set).

The concept of “eternal” is relatively new and provides a dynamic aspect
to standard graph invariants. Goddard, Hedetniemi, and Hedetniemi [5]
introduced this idea by applying it to domination and Klostermeyer [9)
applied it to vertex covers and total vertex covers.

A (total) vertex cover S of G can bhe thought of as a collection of
“guards.” An attack is the selection of an edge in G. A defense to the
attack is a one-to-one function f : S — V, such that (1) f(S) is a (total)
vertex cover, (2) for some s in S, {s, f(s)} is the edge that was attacked,
and (3) for each s in S, either s = f(s) or s is adjacent to f(s) (informally,
we say that the guard on s defends the attacked edge by moving from s to
f(s)). If there is a collection T of (total) vertex covers so that, for every
8§ € T and for every attack, there is a defense f with f(S) in T, then we
say T is a closed family of (total) vertex covers and the (total) vertex covers
in T are eternal (total) vertez covers.

The eternal vertexr cover number and eternal total vertex cover number
of G, denoted a(G) and a3,(G), respectively, are the cardinalities of
a smallest eternal vertex cover and eternal total vertex cover. An eternal
vertex cover (total vertex cover) of size af?(G) (a3 (G)) is an a2-set (aS3,-
set). Work on eternal sets can be found in [1, 2, 4-15).

A connected vertex cover of graph G is a vertex cover that induces a
connected subgraph. Let a.(G) be the cardinality of a smallest connected
vertex cover, and let an ac-set be a connected vertex cover having a.(G)
vertices. The following lemma is an extension of a theorem proved by
Klostermeyer [9].

Lemma 1. For connected graph G, a%(G) < a.(G) + 1 < 2a(G).

Proof. To show the first inequality, let S be an a.-set of G, T= {SU {v} :
veV -8}, and T = SU {v} € T. Attack any edge v'w where w € S and
v/ ¢ T. The guard at vertex w of S can move along the attacked edge to
vertex v'. There is a path from v to w in T and guards can be moved along
that path creating a new connected set SU {v'} € T. Hence, T is a closed
family of total vertex covers which implies the first inequality.

Let S be an a-set of G that induces a subgraph having N < a(G)
components. S can be transformed into a connected vertex cover by adding
at most NV — 1 vertices so a.(G) < 2a(G) — 1 and the second inequality is
established. O
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Since every a3,-set is an aP-set and every aZl-set is an a-set, Lemma
1 gives us the following theorem.

Theorem 2. For any graph G, o(G) < a2 (G) < a%4(G) £ 20(G).

This paper discusses which sets of three positive integers p, g, and r,
such that p < g < r < 2p, allow a connected graph G such that a(G) = p,
aR(G) = q, and a,(G) = r. If such a graph does exist for the triple
(p,q,7), the triple is termed feasible.

Since a total vertex cover must contain at least two vertices, the triple
p=g¢q=r =1 is not feasible. Section 2 shows that all other triples (p,q,7)
in the range given above such that (1) ¢ >p+1or (2) ¢g=pand r < 3p/2
are feasible. Section 3 characterizes the graphs corresponding to the triple
(p,p + 1,2p). Section 4 discusses the remaining open case (p,p,r) where
r > 3p/2 and Section 5 points to a direction for research into this case.

2. FEASIBLE TRIPLES

In this section we show that most triples satisfying the inequalities in
Theorem 2 are feasible. The result is expressed in the following theorem.

Theorem 3. Let p, q, and r be integers. Then
(1) (p,q,7) is a feasible triple for 1 <p< qg<r <2p and
(2) (p,p,7) is a feasible triple for 2 < p <t < 3p/2.
We obtain the proof by a series of lemmas. We deal with an extreme
case of Theorem 3 Statement 1 first.

Lemma 4. The triple (p,p + 1,2p) is feasible for p > 1.

Proof. For p,t > 1 and (p—1)+t > 2, consider the graph H,; consisting of
p—1 Cy4’s joined at a common vertex v, along with ¢ pendant edges incident
to v (see Figure 1). It is straightforward to see that the applicable triple
for Hp,: is (p,p +1,2p) for p > 1. O

FIGURE 1. Graph H,
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The next lemma finishes the proof of Theorem 3, Statement 1.

Lemma 5. Let p, q, and r be integers. Then
(1) (p,p+1,7) is a feasible triple for2<p<r <2p—1 and
(2) (p,q,7) is a feasible triple for2<pandp+2<q<r < 2p.

Proof. For p = 2, the only triple that satisfies the hypotheses of Statement
1is (p,q,7) =(2,3,3), and its feasibility is shown by a C3 with one vertex
having a pendant edge. The only triple with p = 2 that satisfies the hy-
potheses of Statement 2 is (p, q,7) = (2,4, 4), which is shown to he feasible
by a C4 with two pendant edges, one from each of two non-adjacent vertices
of the cycle.

For p > 2, consider the graph G constructed as follows (see Figure 2).
Start with a vertex v. Create m copies of C4 with vertices labeled in order
around the cycle by v, a;, b;, and ¢; for 1 < ¢ < m. On k of these,
0 < k € m, add a pendant edge b;d;. Finally create s > 0 copies of C3 with
vertices labeled v, e;, and f; for 1 < i < s. We restrict our attention to the
cases for which m > 1 and m + s > 2, that is, to graphs with at least one
four cycle and at least two cycles in total.

FIGURE 2. Structure of graph G

Since a vertex cover must include guards on at least two vertices in each
Cs; and Cy, one of which can be shared by being placed on v, a(G) >
m+ s+ 1. Furthermore, S = {v}U{b;:1<i<m}uU{e;:1<i<s}isa
vertex cover, and so a(G) = m+s+1. Suppose for an a%-set B there exists
i < k such that |Bﬂ{ai, b,’,C,’,di}l =1. Of necessity, Bﬂ{ai,bi,ci,di} = bi,
so attacking b;d; will leave at least one of a;b; or ¢;b; unguarded. Hence,
for any aX-set each C4 with a pendant edge must have at least two guards
in addition to v.
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Thus, a®(G) > m + s + k + 1. However, m + s + k + 1 guards are
insufficient under the condition m > 1 and m+s > 2. If £ < m we consider
a C, without a pendant edge and with vertices {v, a;, b;, ¢;}. Either b; has
a guard or an attack on a;b; or ¢;b; can force one there. If there is no guard
on either a; or ¢;, then v must contain a guard and an attack on edge va;
forces two guards onto the Cj, neither of which is on v. The remaining
m+ s+ k — 1 guards are fewer thanthe m—1+k+s+1=m+k+s
guards required to be in the other m — 1 + s structures. If k = m, then
{v,a1,b1,¢1,d1} induces a Cy with a pendant edge. By attacking edges
bidy, a1by and/or va,, if necessary, at least three guards can be forced onto
{a1,b1,¢1,d1}. Again, the remaining m + s + k — 2 guards are fewer than
them—1+4k—1+s+1=m+k+s—1 guards required to be in the other
m — 1+ s structures. On the other hand, one more guard makes it possible
to respond to any attack by moving a guard to v from the structure with
the extra guard. Hence, aX(G) =m+s+k+2.

Similarly, an eternal total vertex cover requires two guards in each C3
and three in each Cj, where a guard on v can be shared by all the structures.
Thus, a2,(G) = 2m +s+1. If k =0, 2m + s + 1 guards are sufficient
since any attack can be handled entirely by the guards in the structure
containing the attacked edge, and a guard can always be returned to v. On
the other hand, an analysis similar to the above shows three guards can be
forced to vertices of a Cy with a pendant edge, none of which is on v. The
2m+ s — 2 remaining guards are too few to guard the rest of the structures,
but one more guard is sufficient.

Summarizing, we have

p=a(G)=m+s+1
g=a(G)=m+s+2+k

2m+s+1 ifk=0
2m+s+2 f1<k<m

r=on(G) = {

We solve for m, s, and k (if k # 0) in order to determine the specific graph
for the triple (p,q,7). We deal with two cases separately.

(1) If k =0 we see that g=p+1, m =7 —p, and s = 2p—r — 1. Here,

q is non-negative and p < ¢ < 7 implies m > 1. Also,¢g=p+1

restricts us to Statement 1 of the lemma,; hence, 7 < 2p — 1 and

s =2p—r—12>0. Furthermore, m+ s =p—1 > 2 since p > 2.

Thus, these values for m, k, and s also correspond to graphs that

satisfy the constraints of our construction, and Statement 1 holds.

@ Ifk>1wefindm=r—(p+1),k=q—(p+1),and s=2p—r.

Since p < ¢ < r < 2p, m, k, and s are nonnegative. Furthermore,

k > 1and k = g—(p+1) implies that ¢ > p+2. Hence, r > p+2, s0

279



m=r—(p+1) impliesm > 1. Also, m+s=2p—(p+1) > 2 since
p > 2. Hence, these values for m, k, and s correspond to graphs
that satisfy the constraints of our construction and Statement 2
holds.

a

The proofs to the next two lemmas employ the following proposition of
Klostermeyer and Mynhardt [12].

Proposition 6. If G has two disjoint minimum vertex covers and each
edge of G is contained in a mazimum matching, then aX(G) = o(G).

The first hypothesis of Proposition 6 implies that G is bipartite and, if
G is connected, that a(G) = n/2, where n is the number of vertices in G.
The next lemma deals with an extreme case of Theorem 3, Statement 2.

Lemma 7. The triple (p,p,3p/2) is feasible for any positive even integer
.

Proof. The triple (2,2, 3) is demonstrated by Cy. Let p = 2t > 4. Construct
a graph G, as follows. Start with a C, with the vertices labeled in order by
0,1,...,p — 1. For each edge {2{,2i + 1}, 0 < i <t — 1, create a Cy using
that edge and two new vertices. The graph Gg is shown in Figure 3.

FIGURE 3. A graph showing the triple (8,8, 12) is feasible

The graph G, is a bipartite graph with each partite set being a minimum
vertex cover and every edge in a maximum matching. Thus, by Proposition
6 and the comment following it, a3(G,) = a(G,) = 2t. Since each C4
requires three guards in any eternal total vertex cover, a3, > 3t and it is
easy to see that this is sufficient. |
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Note that Statement 2 of Theorem 3 cannot be extended to p = 1, since
in this case, r < 3p/2 implies o5, (G) = 1, which is impossible. Lemma 8
completes the proof of Theorem 3.

Lemma 8. The triple (p,p,7) is feasible for 2 < p < r < 3p/2.

Proof. The triple (p, p, p) is shown to be feasible by Kp4, for p > 2. Hence,
we may assume r > p. Furthermore, since p = 2 and r < 3p/2 implies
p=g=r=2, we also assume p > 3.

Construct the graph G (illustrated in Figure 4) by adding edges to
the disjoint union of a K, for s > 1 and m > 1 copies of Cy. Let
{a1,a2,...,a,} and {b1,bs,...,bs} be the two partite sets of K, (only
s edges of the K ; are shown in Figure 4). Label the vertices of each Cy in
order Gi1, di,l, ci2, and di,Z for 1 € i < m. Now add the edges ald,-,l and
biciy for 1 <i < m and the edges a;d1,; and b;c;; for 2 <i < s.

c12 dig cg2 d22 Cm2 dm2

FIGURE 4. Graph G demonstrating the feasible triple
(p,p,r) with p > 3 and r < 3p/2

Observe that the set of vertices with an “a” or “c” label and the set of
vertices with a “b” or “d” label are each minimum vertex covers, the two
sets are disjoint, and every edge is in a perfect matching. By Proposition 6
and the comment following it, a(G) = a(G) = 2m + s. Any eternal total
vertex cover must have three guards on vertices of each C; and s guards in
the K, ;. Hence, a3, > 3m + s. This number is sufficient since any attack
can still leave three guards in each C4 and in particular always maintain
guards on both ¢;; and di; for 1 < ¢ < m. Only s guards are needed to
cover the edges in the K; s, and since every guard in the K, is adjacent
to c11 or dy1, the cover is total. Thus, afd, = 3m + s.
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Setting p = a(G) = aP(G) = 2m + s and r = a3 (G) = 3Im + s, we
can solve for m = r — p and s = 3p — 2r. Since r > p, m > 1 and, since
r < 3p/2, s > 1. Hence these values for m and s correspond to graphs that

satisfy the lemma for p > 3.
a

3. THE TRIPLE (p,p + 1,2p)

Although completely characterizing feasible graphs for a particular triple
(p,q,7) appears difficult, it is possible for the triple (p,p + 1,2p). In this
section, we show every graph yielding a triple of this form is contained in
the collection illustrated in Figure 1.

Let H= {Hp,:p,t > 1,p+1t > 3}, the set of graphs defined in the proof
of Lemma 4, and let Q be the set of all graphs with the triple (p,p + 1, 2p)
for some p. Note that H C Q by the proof of Lemma 4. In Theorem 16
we will show that G corresponds to a triple of the form (p,p+ 1, 2p) if and
only if G € H, that is, we show H = Q.

Suppose G € Q. Let A be an a-set of G and B an a%-set of G. Using
the notation, X = V — X to represent the complement of X in V, we note
that the sets ANB,ANB, AN B, and AN B form a partition of the vertex
set V. The following lemma shows A is an independent set.

Lemma 9. For any graph G = (V,E), if a5(G) = 2a(G), then every
a-set of G is independent.

Proof. Suppose A C V is an a-set and N4 is the number of components
in the subgraph induced by A. A connected vertex cover can be obtained
by adding N4 — 1 vertices to A so, by Lemma 1, 2a(G) = a%,(G) <
|A|4+ Na—1+1=a(G)+ N4 < 2a(G) which implies N4 = a(G), that is,
A is an independent set of vertices. O

Since all vertices not in a vertex cover form an independent set, we see
that A, 4, and B are all independent sets of vertices. This means each edge
in G is between (1) ANBand ANB, (2) AnBand ANB, or (3) ANB
and AN B. We determine several structural properties of G.

Lemma 10. If G € Q — {P3}, then G has no cut vertez of degree two.

Proof. Suppose G has a cut vertex v of degree two with neighbors « and w
which are, respectively, vertices in C, and C,,, the connected components
of G — {v}. Since G # P; we may assume without loss of generality that
degg(u) > 2, so there exists x € N(u)— {v}. Let B be an a®-set chosen to
minimize |B N (V(C,) U {v,w})|. By attacking the edges vw, uv, and zu,
if necessary, we may assume {u,v,w} C B. If deg(w) = 1 then B — {w}
is an o-set containing two adjacent vertices, contradicting Lemma 9. If
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deg(w) > 2 there exists y € N(w) — {v}. Since B — {v} is an a-set, Lemma
9 implies (N (w)—{v})NB = 0. Hence, attacking wy produces an ags-set B’
such that [B'N(V(Cy)U{v,w})| = |BN(V(Cy)U{v, w})|—1, contradicting
the choice of B. ]

Observation 11. Using the above notation, if G € Q then
(1) Bl =141 +1,
(2) ifz € A, then 1 < dega(z) £ 2,
(3) if x € A, then deg(z) > 2, and
(4) B induces either an independent set, a K> and a(G)—1 independent
vertices, two Ky's and a(G) — 3 independent vertices, or a P3 and
a(G) — 2 independent vertices.

Proof. We treat each item separately.

(1) Immediate since afy = o+ 1.

(2) If degg(x) > 3, then AU {z} induces at most a(G) — 2 components
and we get the contradiction 2a(G) = a5%(G) < a(G)+1+(a(G) -
9) = 2a(G) — 1.

(3) If G = P, then this holds. If not, then by Lemma 10, the neighbor
z of a degree-one vertex in G must have degree at least three.
However, by Lemma 9, £ must be in A, and so the degree of
is less than 3, by Statement 2. Thus, A can have no degree-one
vertices.

(4) Let N be the number of components in the subgraph induced
by B. By computations similar to the above, 2a(G) = af,(G) <
a®(G)+Ng < o(G)+1+aR(G) = 2a(G)+2, implying a(G) -1 <
Ng < a(G) + 1. The only possibilities are those listed.

O

Lemma 12. If G is a graph consisting of k > 2 internally disjoint paths
of even length with distinct common endpoints z and y, then G ¢ Q.

Proof. For 1 <i < k let P; be the path z,v;1,vi2...,im,,y Where m; is
a positive odd integer. Let A = {z,y} U {v;; : for which j is even}. It is
easy to see that A is an independent vertex cover. The independence of A
implies |E| = deg(z) +deg(y) +2(]A| —2). Since all the vertices in G except
z and y have degree two, no smaller set is a vertex cover. Therefore, A is
an a-set. Since the m;’s are odd, o(G) = |4| =2+ Z:.;l(-'m,f—l). Hence,
20(C) =4+ % (mi—1) =4—k+ X5 mi=4—k+(n-2) =n—k+2.
For 1 <i<kletS; = {v;1}U(V(G)— N(z)). Each of the S;’s is a total
vertex cover. An attack on zv;,; where j # 4 is met by moving the guard
from z to v;; and moving the guard from v;; to . An attack on v;,v;2
where j # i is met by moving the guards on the path from v;,; to v;,; which
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goes through y. Both responses result in S;. It follows that the collection
of S;’s is a closed family of total vertex covers, so each S; is an eternal
total vertex cover. Since |S;| =1+ |V(G)| — |N(z)| =1 + n — k, we have
o (GY<n-k+1<n—-k+2=20(G),s0G ¢ Q. O

Much of the structure of G € Q — H can be derived by consideri_x_lg the
subgraph G induced by (AN B) U (AN B). Note that if v € AN B then
dego(v) = degg(v).

Lemma 13. For any G € Q — H and vertez = of G, dege(z) < 2.

Proof. By Observation 11, Statement 2, vertices of A N B have degree at
most two in G; hence we need only show that vertices in ANB have degree at
most two in G. Let n; be the number of vertices of degree i in G, 0 < i < 4,
and nys be the number of degree at least five. Since A has no degree one
vertices and degg(v) = degg(v) for v € ANB, vertices in ANB have degree
at least two in G. The number of edges m in & is equal to the sum of the
degrees in G of the vertices in AN B and also the sum of the degrees of those
in ANB. Thus, m = Ong+1n;+2(JANB|-no—n;) = 2|ANB|—2np—n, and
m > 5nys5+4nga+3n3+2(|ANB|—nz—ng—nys) = 2|ANB|+n3+2n4+3n5s.
Simplifying, using |B| = |A| +1s0o [ANB| = |AnB| + 1, yields 2 >
2ng + n1 + n3 + 2n4 + 3n>s, implying n>5 = 0 and equality holds, that is,
2 = 2n9 4+ ny + ng + 2ng4.

If ng =1 or n; = 2, the degree-zero vertex or the two degree-one vertices
must be in AN B. Also, the equality implies n3 = n4 = 0 and, since
degc(v) = degg(v) for all v in AN B, the lemma holds.

The only remaining possibilities are n3 = 2, ng = 1, and n3 = n; = 1.
We examine each of these cases. In the first two, all vertices in AN B are
degree two in both G and G, so there are no edges between A N B and
AN B. By connectivity, G =G so B=14 is an independent set of vertices
and |V(G)| = 2a(G) + 1.

(1) ng = 2. Here G = G consists of either two degree three vertices
joined by three vertex disjoint paths of even length or two even
cycles joined by an even length path. The first possibility is ex-
cluded by Lemma 12. For the second possibility, note that V{(G)
minus one degree-two vertex in each of the two cycles is an eternal
total vertex cover. Hence, o%,(G) < |V(G)| — 2 < 2a(G) implying
Gé¢ Q. -

(2) ng = 1. In this case, G = G is composed of two even cycles with
a common degree four vertex. The argument given in the previous
case for two even cycles joined by an even length path is valid for
this case as well.
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(3) n3 = n; = 1. Let u and v be the vertices with degrees 1 and 3,
respectively, in G. By Lemma 10, u (which has degree at most
2), is not adjacent to any vertex in AN B, since it would be a cut
vertex of degree 2. Hence, the degree of u in G is one and so, by
Lemma. 10, u is not adjacent to any vertex of degree two in G. It
follows that u is adjacent to v. Since every other vertex, besides
u and v, has degree two, G = G. Hence, G consists of the edge
uv and an even cycle C containing v. We know o(G) = k and
o (G) < [4k/3] + 1 since a,(Car) = [4k/3]. Therefore, k = 2
(since 2k < [4k/3] + 1 if and only if k < 2) and G = Hz; € H.

Thus, G ¢ Q —H.
Since the above cases have been eliminated, every vertex of G must have
degree at most two in G. O

Lemma 14. IfG € Q — H and degg(v) > 2, then for every a-set A and
every aX-set B,ve€ ANB and N(v)NB #0.

Proof. By Observation 11 Statement 2 and Lemma 13, v € AN B. If
N(v)N B = 0, then attacking an edge incident on v creates an a-set that
does not contain v. O

We now show that at most one vertex of G € @ — H has degree greater
than two.

Lemma 15. If G € @—H then G has at most one vertez with degree larger
than two.

Proof. Suppose vertices vy, ...,vx have degree at least three and k > 2.
Hence, G—{v, ..., v} is the disjoint union of even length paths. By Lemma
14 each of the v;’s must be in every a-set and in every a2-set. Thus, for an
a-set A and o,,-set B, there exists exactly one path, R, of G — {v, ..., vk}
such that |V(R) N B| = |V(R) N A| + 1. Also, since the paths all have even
length, the vertices from A and B in the other paths will be identical and
none of these vertices will be adjacent to a vertex in {vy, ..., v }. By Lemma
14, each v; is adjacent to a vertex in B. This implies £ = 2 and one end
vertex of R is adjacent to v; while the other end vertex of R is adjacent to
Ua.

Suppose P is a path in G — {v;, v2} that has no endpoint adjacent to vs.
Since G is connected some endpoint of P must be adjacent to v;. Obtain
a new a-set B’ by attacking an edge in P incident with v;. Since the
attack causes a guard to move from v; onto P, and since v; must be in B’
a guard must move from R to v;. This implies none of the paths which
connect to vy have an extra vertex. Hence, N(v) N B’ = §, contradicting
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Lemma 14. Therefore, G — {v;,v2} consists of at least three paths, each of

which has one endpoint adjacent to v; and one endpoint adjacent to vs.
By Lemma 12, G ¢ Q contradicting G € Q — H. a

The characterization of graphs with triple (p,p + 1,2p) is given in the
next theorem.

Theorem 16. A graph G corresponds to a triple (p,p + 1,2p) if and only
if G € H, that is, H = Q.

Proof. The first paragraph of this section shows # C Q. Suppose there is
a graph G in @ — H. By Lemma 15, G has at most one vertex of degree
greater than two.

If G has no vertex of degree greater than two then, by connectivity, G
is either an even cycle Cyr with k > 2 or a path P, with n > 3. The
former is impossible since a3, (Cax) = [4k/3] < 2k = 2a(C2) for all
k > 2. By Lemma 10, the only path satisfying the triple requirements is
Ps=H 12 € H.

Therefore, we may assume G has exactly one vertex v of degree at least
three. By Lemma 10, every vertex of degree one must be adjacent to v.
Since G is connected and bipartite, G must be composed of even cycles
all sharing v and pendent vertices all adjacent to v. Thus the components
of G — v consist of r isolated vertices and s even length paths containing
¢; vertices for 1 < i < s (if s > 0). A minimum vertex cover can be
formed from v and (¢; — 1)/2 vertices from the s paths; hence a(G) =
1 + Z:=l(ci - 1)/2‘

Since a3,(Cr) = [2n/3], a not necessarily minimum eternal total vertex
cover can be formed using v, [2(¢c; + 1)/3] — 1 vertices from the it* cycle,
and, if 7 > 1, an additional vertex to handle the case when the guard at v
moves to a degree one vertex.

When r > 1, we have

206(G) =2+ (e —1) = a3%(G) <2+ Y ([2(c;i +1)/3] - 1)
i=1 i=1
which implies

Y (e —[2(e +1)/31) =D (e —2)/3) < 0.
i=1

i=1

For each i, ¢; is odd and ¢; # 1 since G has no multiple edges, so ¢; > 3.

Therefore, the last inequality implies ¢; = 3 for all i, that is, all cycles have
four vertices.
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When r = 0, the extra vertex is not required in a total eternal vertex
cover, so

2(G) =2+ (e~ 1) = a%(G) <143 ([2es +1)/3] ~ 1)

i=1 i=1

implying

> (e = [2(ei +1)/3]) < -1,
i=1

an impossibility that shows » > 1.

When s = 0 and r = 1, the graph is K3 which does not have the required
triple assignment. Thus 7 + s > 2 and G = Hy4,,r € H. We conclude that
Q —H =0, that is, @ C H implying @ = H. O

4. TRIPLES (p,p,7) WITH > 3p/2

The triple for K is (1,1,2). No other graphs have been found to show
the feasibility of triples (p, p,r) with r > 3p/2. This suggests the following
conjecture.

Conjecture 17. If a(G) = aP(G) 2 2, then a3 (G) < 3a(G)/2.

There is some evidence in support of the conjecture. Klostermeyer [9]
has shown that the triple (p, p, 2p) is not feasible if p > 2. Also, the largest
T to p ratio for cycles occurs with Cy4’s and is 3/2. Interestingly, no graphs
have been uncovered which contradict the following related conjecture.

Conjecture 18. If a(G) = a2(G), then a(G) = a5,(G).

In the next section, we show that a;(G) < 3a(G)/2, when G is con-
nected, n > 3, and a(G) = aR(G).

5. AN UPPER BOUND ON a;(G) WHEN a(G) = a2 (G)

One of the problems encountered in dealing with (p,p,r), where r >
3p/2, is that there is no known characterization for graphs G satisfying
o(G) = a2 (G). This condition does imply that every vertex appears in at
least one a-set of G. We call graphs with this property a-complete. These
concepts are not the same. For example, a path P, on an even number
of vertices is a-complete, but a(P,) # a3S(P,) if n > 3. The property of
being a-complete is all that is needed to show the results of this section.

Definition 19. Let G = (V, E) be a graph.
(1) A= {A1,A2,...,An} is the collection of all a-sets of G.

(2) A* C A is exhaustive if every vertex of Vappears in at least one
a-set of A*.
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(3) For any vertezveV, A, = {A; € A:v e A}

With this definition, a graph is a-complete if and only if the collection
of all its a-sets is exhaustive. The next lemma establishes facts needed for
the induction argument in Theorem 22.

Lemma 20. Let G = (V, E) be an a-complete graph.
(1) If there is a vertez v € V such that A, is ezhaustive, then a(G —
v) = a(G) — 1 and G — v is a-complete.
(2) If there are vertices v,w € V such that A,N A, =0 and A, U A,
is ezhaustive, then a(G — {v,w}) = a(G) — 1 and G — {v,w} is
a-complete.

Proof. We treat each statement separately.

(1) If A is an o-set of G — v, then AU {v} is a vertex cover of G so
a(G-v) 2 o(G)—1. Also, if A; € A, then A;—{v} is a vertex cover
of G —v implying a(G —v) < o(G)—1. Hence, a(G—-v) = a(G) -1
and A} = {A; — {v} : A; € A,} is a collection of a-sets of G — v.
Since A, is exhaustive in G, A}, is exhaustive in G - v.

(2) If A is an a-set of G — {v,w}, then AU {v,w} is a vertex cover
of G. Since A, N Ay = @, no a-set of G contains both v and w,
so |A U {v,w}| is not a minimum vertex cover of G. Therefore,
|AU {v,w}] > a(G) + 1 which implies a(G — {v,w}) = |A| >
ao(G) — 1. Also, if A; € A, U A, then A; — {v,w} is a vertex cover
of G — {v,w} of size a(G) — 1. Hence, a(G — {v,w}) = a(G) -1
and A}, = {A; — {v,w}: 4; € A, UA,} is a collection of a-sets
of G — {v,w}. Here again, since A, U A,, is exhaustive, A%, is
exhaustive.

O

The next lemma is a useful structural one and it is followed by the
establishment of a lower bound for a(G).

Lemma 21. For an arbitrary collection of a-sets of a graph, let X be the
vertices appearing in every set of the collection and'Y the vertices appearing
in no set of the collection. Then, for everyveY, N(v) C X.

Proof. Suppose it is not true for some vertex v € Y, so v has a neighbor w
that is not a member of at least one a-set, say A;, of the collection. Then v
and w are adjacent vertices, neither of which is in A;, so A; is not a vertex
cover, a contradiction. -0

Theorem 22. If G = (V, E) is an a-complete graph, then a(G) > n/2.

Proof. We induct on the number of vertices of G. The only a-complete
graph on at most two vertices is P, and the result holds for it. Let n > 3
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and assume the result is true for a-complete graphs having n—1 vertices. If
G has a vertex v such that A, is exhaustive then, by Lemma 20 Statement
1, G — v is a-complete and a(G — v) = a(G) — 1. Employing the inductive
hypothesis yields o(G) = a(G—-v)+12>(n—-1)/2+1 > n/2.

Now assume .4, is not exhaustive for any v € V. Select a vertex v such
that |4,| > | A, | for any w € V. Let X be the intersection of all the a-sets
of A, and Y be the set of vertices not appearing in any set in A,. The
set X is nonempty since it contains v, and Y is nonempty since A, is not
exhaustive. Let y € Y. By Lemma 21, y is adjacent to a vertex x € X.
The definition of X implies every a-set in A, is in A;, so the choice of v
implies A, = A,. Since the edge zy must have at least one end vertex in
every a-set, y is in every set of A - A;.

Thus, A; N A, =0 and A; U Ay = A is exhaustive.

By Lemma 20 Statement 2, G — {z, y} is a-complete and a(G — {z,y}) =
a(G)—1. Again using the inductive hypothesis, a(G) = a(G—{z,y})+1 >
(n-2)/2+1=mn/2. O

Dutton [3] has established the following upper bound.
Theorem 23. For connected graphs G with n > 3, a4(G) < (n+a(G))/2.
Our final theorem follows immediately from Theorems 22 and 23.

Theorem 24. If G is connected, n > 3, and a(G) = aR(G), then a:(G) <
3a(G)/2.

Notice that Theorem 24 along with Conjecture 18 would imply Conjec-
ture 17.

6. OPEN QUESTIONS

The following open questions are of interest:

(1) Is the triple (p,p,r) feasible when r > 3p/2?

(2) Is Conjecture 18 true?

(3) Characterize graphs which correspond to any particular feasible
triple (p, gq,r). For example, are the graphs of the type illustrated
in Figure 3 the only ones for (p,p, 3p/2)?

(4) Characterize graphs G, where a(G) = a53(G).
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