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ABSTRACT. Introduced in 1947, the Wiener index (sum of distances
between all pairs of vertices) is one of the most studied chemical
indices. Extensive results regarding the extremal structure of the
Wiener index exist in the literature. More recently, the Gamma
index (also called the Terminal Wiener index) was introduced as the
sum of all distances between pairs of leaves. It is known that these
two indices coincide in their extremal structures and that a nice
functional relation exists for k-ary trees but not in general. In this
note, we consider two natural extensions of these concepts, namely
the sum of all distances between internal vertices (the Spinal index)
and the sum of all distances between internal vertices and leaves (the
Bartlett index). We first provide a characterization of the extremal
trees of the Spinal index under various constraints. Then, its relation
with the Wiener index and Gamma index is studied. The functional
relation for k-ary trees also implies a similar result on the Bartlett
index.

1. INTRODUCTION

Chemical indices have been introduced by chemists to correlate a chem-
ical compound’s structure (the “molecular graph”) with experimentally
gathered data of the compound’s physical-chemical properties such as boil-
ing point, surface pressure, etc. The Wiener index [12] of a graph G is one
of the most well studied such indices, defined as

W)= > duv)

{uw}EV(G)

where d(u,v) is the distance between two vertices « and v and the sum is
over all unordered pairs of vertices. See Figure 1 for an example.
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Ever since its introduction in 1947, the Wiener index has been exten-
sively studied by both chemists and mathematicians. In particular, the
extremal trees that maximize or minimize the Wiener index among gen-
eral trees [2], trees with a given maximum degree (3], and trees with given
degree sequence [14] have been characterized through various approaches.
Most recently, a general approach was presented dealing with functions of
distances between vertices [6].

The Gamma indez (8], also known as the terminal Wiener indez [5], was
introduced recently due to its applications in phylogenetic reconstruction
and biochemistry. For a tree T, the Gamma index is defined as

rm= > duv)
{u,v}CL(T)
where L(T) is the set of leaves of T'. It is not difficult to notice the similarity
between I'(T') and W(T') for a tree. Indeed, the star minimizes both indices
among trees of given order. Among trees of a given degree sequence, the
“greedy tree” (Definition 1) was shown to minimize both the Wiener index
(14] and the Gamma index [8]. In [9], a simple example shows that there is
no functional relation between these two indices in general. However, also
in [9), for two k-ary trees T and T”, the following is shown

2
—3) 0@ -1@). (1

As other variations of distance-based graph invariants such as W(T') or
I'(T), it is natural to consider the sum of the distances between internal
vertices and the distances between internal vertices and leaves. We define
the former as the Spinal indez

S(T) = > d(u,v)
{u,w}CV(T)-L(T)
and the latter as the Bartlett index

B(T) = > d(u,v).

ve€V(T)—-L(T),veL(T)

W(T) - W(T") = (

It is easy to notice that, for any tree T,
W(T)=I(T)+ S(T) + B(T). (2)

It is also clear that all these indices tend to be larger when T is sparse
(i.e. vertices are far from each other) and smaller when T is compact (i.e.
vertices are close to each other).

In this note, we first consider the extremal structures with respect to
S(T) in Section 2. As one may expect, these structures coincide with
what is known for W(T). Such coincidence motivates the study of the
relation between the classical Wiener index and S(T). In Section 3, simple
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examples show that there is no general functional relation between either
S(T) or B(T') and W(T). However, for k-ary trees, we can obtain results
analogous to (1) for S(T) and then for B(T) as a corollary. In Section 4,
we provide a brief summary and raise some questions.

2. SOME EXTREMAL RESULTS

The star and path are extremal among general trees of given order with
respect to numerous graph invariants, among which distance-based indices.
In particular, W(T') is maximized by a path and minimized by a star among
trees of given order.

Now consider the distances between internal vertices. It is important to
note that

S(T) = W(T") (3
where T" is the subtree of T induced by V(T') — L(T).

Any tree T that is not a star has at least two internal vertices and hence

S(T) > 0. Since S(T) = 0 for a star, we have the following observation.

Proposition 2.1. Among trees with given order, the star is the unique tree
that minimizes S(T).

Similarly, a tree T has at most |V(T)| — 2 internal vertices (with the
upper bound achieved if and only if T is a path) and S(T) = W(T") is
maximized when T is a path.

Proposition 2.2. Among trees with given order, the path is the unique
tree that maximizes S(T).

It is easy to see that the star has the largest number of leaves and largest
possible maximum degree while the path has the smallest possible number
of leaves and the smallest possible degrees. Then it is natural to consider
the extremal questions with restrictions on [L(T)| or the degrees. Indeed
such questions have been explored for many other indices including the
Wiener index. It is known (8, 14] that both W(T') and I'(T') are minimized
by the so called “greedy tree” (Definition 1) among trees of a given degree
sequence. We list the definition here for completeness.

Definition 1 (Greedy trees). With given vertez degrees, the greedy tree is
achieved through the following “greedy algorithm?”:

i) Label the verter with the largest degree as v (the root);

it) Label the neighbors of v as vy, va, ..., assign the largest degrees
available to them such that deg(v;) = deg(v2) > -+ ;

i1i) Label the neighbors of v, (except v) as v1y, vi2, ... such that they
take all the largest degrees available and that deg(vy;) > deg(viz) = ---,
then do the same for vq, vs, ...;
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iv) Repeat (iii) for all the newly labeled vertices, always start with the
neighbors of the labeled vertex with largest degree whose neighbors are not
labeled yet.

For example, Figure 2 displays a greedy tree with degree sequence
(4,4,4,3,3,3,3,3,3,3,2,2,1,...,1).

Vg2

FIGURE 2. A greedy tree.

It immediately follows from (3) that S(T) must be minimized by a tree
T if T' is a greedy tree. Before getting to further conclusions, we first
introduce the concept of “majorization” and a technical result similar to
one in [15].

Consider two nonincreasing sequences ©# = (dp,++- ,dp—1) and # =
(d67 Tt d;;—l)a if

k k
> odi<d d;
=0 =
for k=0,--- ,n—2 and ’
n-1 n-1
> di=>d,
=0 =0

then n' is said to majorize the sequence m, denoted by
man'.
Note that n’ > = in the lexical ordering.

Lemma 2.3. [11] Let 7 = (do,--dn—1) and © = (dg,--- ,d},_,) be two
nonincreasing graphic degree sequences. If man’, then there exists a series
of graphic degree sequences Ty, -+ ,Tm Such that mam 4 - - A7, 47, where
7; and iy differ at ezactly two entries, say d; (d;) and di (d}) of m
(mi41), with d;- =dj+1,d,=dy—1andj<k.
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With Lemma 2.3, the following can be shown in a way similar to Theo-
rem 2.4 in [15]. The proof is outlined for completeness.

Proposition 2.4. For two different degree sequences ® and #', if m a#’,
then

W(Tz) > W(Ty)
where Ty and T, are the greedy trees with degree sequences m and 7' re-
spectively.
Proof. By Lemma 2.3, it is sufficient to show the statement for degree

sequences
7= (do,* - dn-1)<(dp, -+ ,dp_y) =7’
that differ only at the j** and k** entries with dj = d; +1, dj, =di —1 for
some j < k.
Let T, be the tree constructed from T by removing the edge vw and
adding an edge uw, where u and v are the vertices corresponding to d; and
dy respectively and w is a child of v (Figure 3).

W\ W\
w
T T

™ L

FIGURE 3. = = (4,4,3,3,3,3,2,2,1,...,1) and 7' = (4,4,4,3,3,2,2,2,1,...,1)

Let 7" be the tree obtained from T after removing w and its descen-
dants. Then the next claim follows from the structure of the greedy tree
T; (see, for instance, (10, 14, 15]).

Claim 2.5. Let the path from u to v be uujus ... ux(w)vk ... vov1v where
the ezistence of w depends on the parity of d(u,v). Let U, U;, V, V; denote
the component containing u, u;, v, v; respectively after removing the edges
on this path from T’'. Then we have

[U| = V| and |U;| > Vi
foranyl1l<i<k.
Now a simple calculation shows that (see, for instance, [10])
W(T7) < W(Tp) < W(T7).
[}

Now we are ready to consider the extremal trees with respect to S(T)
under additional conditions. The following results are almost immediate.
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Theorem 2.6. Among trees with given order and number of leaves, S(T')
is mazimized by a caterpillar.

Proof. By (3), we have
V(T =1V(T)| - IL(T)|

and W(T") is maximized by the path Py (r)—|L(7)- Hence, the conclusion
follows. ]

Theorem 2.7. Among trees with given order and number of leaves, S(T') is

minimized by a greedy tree with degree sequence | |L(T)|,2,...,2, 1,...,1
S —

(M) 1’s
Such a tree is often called a “star-like tree” (Figure 4).

Proof. In this case, W(T") is minimized by a greedy tree with |V(T)| —
|L(T)| vertices and at most |L(T')| leaves (since each of the leaves in T” has
at least one vertex in L(T') as a neighbor in T).

Among the degree sequences of such trees, it is easy to see that

|L(T)|, 2,...,2, 1,...,1
N’ N e’
IV(T)|-2IL(T)|-1 2’s |L(T)| 1’s

majorizes all other degree sequences. After all the leaves of T is added, we
obtain a greedy tree with degree sequence

|L(T)], 2,...,2, 1,...,1
N N’
V(T)-IL(T)-1 2's |L(T)| 1's
Hence, the conclusion follows. ]

FIGURE 4. A star-like tree with |V/(T')| =11 and |L(T)| =4

Next we consider trees with given degree sequence. It is known that
W (T) is maximized by a caterpillar {7] (however, to determine the extremal
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caterpillar with a specific degree sequence is difficult [1, 13]) and minimized
by the greedy tree. The following is rather obvious.

Theorem 2.8. Among trees with given order and degree sequence, S(T) is
mazimized by a caterpillar and minimized by the greedy tree.

Proof. First note that with given degree sequence, |L(T’)| is determined.

To maximize S(T), we once again consider T” as in (3). Since W(T") is
maximized by a path, S(T) is maximized by a caterpillar with the given
degree sequence.

To minimize S(T'), note that W(T") is minimized by a greedy tree with
the degree sequence of T”. Let the degree sequence of T be (d;,dy,...).
Then the degree sequence of T” is (dy — kj,ds — ko,...) where k; > 0 is
the number of leaf-neighbors of the vertex corresponding to the degree d;.
The degree sequence (of T”) of this form that majorizes all others is when
ki = kg = ...k; = 0 for i as large as possible. Note that this is the case
only when all the vertices (in T) of large degrees have no leaf-neighbors,
or in other words, the leaves of T' are adjacent only to (as few as possible)
internal vertices of the smallest degrees in T. This happens only if T was
the greedy tree. Thus the conclusion follows from Proposition 2.4. ]

The complete k-ary tree with a given maximum degree k (also called
the “good tree” or “Volkmann tree” [4]) is defined in a similar way as the
greedy tree, except that the vertices v, v, ... take the maximum degree k
until there are not enough vertices (Figure 5). As a result, the complete
k-ary tree has degree sequence (k, k,...,k,m,1,...,1) forsome 1 < m < k.

FIGURE 5. A complete 4-ary tree

For trees with given order and maximum degree, the path still maximize
S(T'). The extremality of the complete k-ary tree follows in the same way
as previous arguments, we skip the proof here.

Theorem 2.9. Among trees with given order and mazimum degree k, S(T)
is minimized by the complete k-ary tree.
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3. THE RELATIONS BETWEEN SOME DISTANCE-BASED INVARIANTS

When the extremal structures that maximize (minimize) different indices
coincide, it is natural to ask for the existence of a nice functional relation.
This is not the case in general. For example, there are trees T and T" with

W(T) > W(T') and I'(T) < I'(T")

as shown in [9].
Between W(T) and S(T'), Figure 6 shows two trees T and T such that

W (T») > W(T1) and S(T3) < S(Th).

7N

T1 T2

FIGURE 6. The trees T; and T,

Similarly, Figure 7 shows two trees S} and S» such that
W(Ss2) > W(S51) and B(S2) < B(S1).

S1 Sa
FIGURE 7. The trees S; and S,

Regardless of the above examples, it is evident that S(T') and B(T') are
closely related to W(T) and I'(T") in some sense. As an effort to provide
some insights of this problem, the following result analogous to (1) is pro-
vided below. The proof (essentially the same as the corresponding proof in
[9]) is outlined below and illustrated with a binary tree in the figure below.

Proposition 3.1. Given any two k-ary trees T\ and T», we have
1 k-2

S(Ty) - S(T2) = k—(F(T1) -I'(Ty)) = k=12

— (W (T3) - W(T2)).
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Proof. We consider the difference S(T3) — S(Ty) for k-ary trees where T
is obtained from 77 by moving the leaf-neighbors of v to u. Denote by
uu g ... vavyv the path connecting v and v in 7). Let U; and V; denote
the corresponding components after removing this path.

21

22

In the operation from T to T3, we lose one internal vertex v and obtain
one internal vertex u. The difference S(T3)—S(T1) is then only contributed
by the distances from u to other internal vertices minus the distances from
v to these vertices. Choose, for instance, a non-leaf vertex z € V; and
consider the distance from v to z in T} and u to z in T, (illustrated with
dotted lines above). Notice that the distances from v; to z cancel out in
the difference and the same can be said for any non-leaf vertex y € Uj, etc.
Let D; = d(u,v;) — d(v, v;).

5(T2) - 8(Th)
= ZD,- ((Jinternal vert. of U;] + 1) — (|internal vert. of V;| + 1))

-y D,.klfzuL(Ui)l —|LVA))

Comparing this to a similar expression for the difference in I and the
expression for W from Lemma 3 of [9], the proof is finished by noting that
any two different k-ary trees can be obtained from one another through a

sequence of such operations.
a

We believe that a similar assertion can be proved following the same
approach. In this situation, it is easier to make use of (2) and we have the
following.

Corollary 3.2. Given any two k-ary trees T) and Tz, we have

B(h) - B(Tz) = (: 2)2(F(TI) I(T2)) = = W(Th) - W(T2)).
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4. SUMMARY

Two natural distance-based graph invariants are introduced for trees.
For the Spinal index, we provide a number of extremal results following
some of the known techniques. For the Bartlett index, it seems that tra-
ditional approaches do not have a direct application. The characterization
of extremal structures with respect to B(T) seems interesting.

Proposition 3.1 and Corollary 3.2 imply a “nice” functional relation for
k-ary trees between any two of the four indices under consideration. It is
reasonable to consider the same question for other indices (not necessarily
distance-based) among k-ary trees.
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