Embedding Graphs in Cylinder
and Torus Books

Shannon Overbay

Department of Mathematics
Gonzaga University, Spokane, WA, USA

overbay@gonzaga.edu

Abstract

In the classical book embedding problem a k-book is defined to
be a line L in 3-space (the spine) together with k half-planes (the
pages) joined together at L. We introduce two variations on the
classical book in which edges are allowed to wrap in either one or two
directions. The first is a cylindrical book where the spine is a line L
in 3-space and the pages are nested cylindrical shells joined together
at L. The second is a torus book where the spine is the inner equator
of a torus and the pages are nested torus shells joined together at
this equator. We give optimal edge bounds for embeddings of finite
simple graphs in cylinder and torus books and give best-possible
embeddings of K, in torus books. We also compare both books with
the classical book.

1 Introduction

Throughout this paper, let G denote a finite, simple graph. That is, G
consists of finite sets of vertices and edges and does not contain loops or
multiple edges. A classical k-page book is a line L in 3-space, called the
spine, along with k half-planes, called pages, joined together at L. To
embed a graph G in a classical k-book, the vertices of G are placed along
the spine and each edge of G is placed on a single page so that no two
edges cross each other or the spine. Such an embedding is called a book
embedding, or page embedding, of G. The book thickness, or pagenumber,
of G, denoted bt(G), is the smallest number k for which G has a k-book
embedding.
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Figure 1 Two-page book embedding of the 3-cube.

Figure 1 illustrates a two-page book embedding of the 3-cube. The
edges on the half-plane above the spine represent one page of the hook and
the edges on the half-plane below the spine represent the second page of
the book.

Since its introduction by Kainen [10] and Ollmann [13], the classical
book embedding problem has been studied by many [1, 2, 3, 4, 5, 6, 7, 8,
9, 11, 12, 14]. In their 1979 article, Bernhart and Kainen {1] provide many
useful foundational results about the book thickness of graphs, including
characterizations of one and two-page embeddable graphs. Selected results
for classical book embeddings will be discussed in Section 2. In general,
determining the book thickness of a graph is a difficult problem since both
the relative ordering of the vertices along the spine as well as the assignment
of edges to pages must be considered. Even with a fixed vertex ordering,
the task of finding the book thickness of an arbitrary graph is NP-Complete
[8]. Despite the general complexity of the book embedding problem, edge
bounds for n-vertex simple graphs in k-page books as well as the hook
thickness of many classes of graphs are known (1, 2, 3, 4, 5, 6, 8, 9, 10, 11,
12, 13, 14].

Books and their properties were originally studied before the recent
emergence of numerous practical applications. Book embeddings, also
called stack embeddings and stack layout, now have widely documented ap-
plications to parallel processing and VLSI chip design [2, 3, 4, 5, 9]. Chung,
Leighton, and Rosenberg [4, 5] developed the Diogenes method of designing
fault-tolerant VLSI processor arrays. This method involves a linear layout
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of processing elements (vertices) along the spine. Non-faulty processing
elements are connected by wires (edges) and bundles of non-crossing wires
correspond to layers or stacks (pages). Book embeddings also have applica-
tions to metrics for software complexity and vehicle traffic engineering [11].
In structural biology, book embeddings have been used for modeling RNA
folding energy states [7].

In the classical case, each edge may only extend into a single half-plane
page of the book before reconnecting to another vertex on the spine. Edges
may not cross the spine and they may not wrap around from the front
side of a page to the back side of a page before reconnecting to the spine.
A natural topological extension of this problem would be to allow edges
(wires) to wrap in either one or two directions before connecting back to
the spine, while preserving a linear layout of the vertices.

In Section 3, we modify the book to allow edges to wrap in one direction.
The resulting book has cylindrical pages, which allow edges to wrap over
the surface of a cylinder and reconnect to the spine. Our results include a
characterization of one-page cylinder hook embeddable graphs. The second
modification of the classical book, discussed in Section 4, connects the ends
of the eylindrical pages together to form torus pages. This turns the spine
into the inner equator of a torus, allowing edges to wrap in two directions
on the surface of the torus pages before reconnecting to the spine. For torus
books, we prove the optimal torus book thickness for complete graphs and
give best bounds for the number of edges that may be embedded in a -
page torus books for a graph with n vertices. The arguments used are
nice extensions of the results for classical books, so we include many of the
classical proofs in Section 4 as well. We conclude with a comparison of a
one-page torus book with a classical three-page book.

2 Results for Classical Book Embeddings

Bernhart and Kainen [1] note that the classical book embedding problem
can be viewed as a circular embedding problem. They observe that if the
vertices are lined up on the spine in the order v;, v, ..., v, that all edges of
the form {v;,vi41},7=1,2,...,n —1 can be placed near the spine on any
page without crossing. Finally, the edge {v;, v,} may be placed outside all
other edges on any page, without creating edge crossings. In Figure 1, this
cycle appears on the half-plane above the spine. Now it is clear that the
maximum number of edges that may be embedded in a one-page book for
an n-vertex graph is 2n — 3, corresponding to the n edges of this outer cycle
and n — 3 edges of a complete triangulation of the interior of this cycle.
Stretching this outer cycle into a circle, we see that embedding a graph
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G in a k-book is equivalent to placing the vertices of G in a circle and
coloring the edges, represented by chords of the circle, with &k colors so that
no two edges of the same color cross. A graph G is called outerplanar if
all the vertices of G can be placed in a circle in such a way that all edges of
G are non-crossing chords of the circle. This leads to the characterization
of one-page embeddable graphs given by Bernhart and Kainen [1].

Theorem 1. bi(G) <1 if and only if G is outerplanar.

Using this circular depiction of a book, one can see that a two-page
book would admit at most 3n — 6 edges; n for the outer cycle, and up to
2(n — 3) additional edges for two triangulations of the interior of the cycle.
We note that 3n — 6 also matches the edge bound for all simple planar
graphs with n vertices, which is not surprising since a two page book is a
planar structure formed by joining two half-planes.

A Hamiltonian cycle in a graph is simple cycle that includes every vertex
exactly once. A graph is called subhamiltonian if it is the subgraph of
a planar graph with a Hamiltonian cycle. Again, appealing to the circular
representation of a hook, it is clear that a two-page embeddable graph is
subhamiltonian. We may form the desired Hamiltonian cycle by proceeding
around the circle, adding missing cycle edges, as needed. Conversely, if
we begin with a subhamiltonian graph, we embed the graph in the plane
and use the Hamiltonian cycle ordering along the spine, again adding any
missing edges. Since we began with a planar embedding, the edges inside
and on the cycle will form one page of the book and the edges outside the
cycle will form the second page. The following theorem of Bernhart and
Kainen [1] is now clear.

Theorem 2. bt(G) < 2 if and only if G is subhamiltonian.

In Figure 1, the ordering along the spine corresponds to a Hamiltonian
cycle in the 3-cube. The cycle and the edges within the cycle are on one
page, while the edges outside the cycle lie on the other page. Determining
whether an arbitrary graph has a Hamiltonian cycle is NP-Complete. So,
although this characterization is simply stated, determining whether or not
a given planar graph is two-page embeddable is not an easy problem. There
are, however, large classes of planar graphs known to be subhamiltonian.
These include trees, square grids, X-trees, all planar graphs with 10 or
fewer vertices, and planar graphs without triangles (see {1, 4, 5, 6, 12]).

Although all two-page embeddable graphs are planar, there are exam-
ples of planar graphs that are not subhamiltonian, and hence, not two-page
embeddable. One such example is the 11-vertex graph St?(K3) (see Figure
2), formed by starting with a triangle, stellating the inner and outer faces
of the triangle, and then repeating that process.
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Figure 2 The stellation graph St*(K3).

Bernhart and Kainen originally conjectured that by repeating this pro-
cess n times, forming St™(K3), that the number of pages required to em-
bed this family of graphs would continue to grow as n increased. This was
part of a larger conjecture that the book thickness of planar graphs was
unbounded. Heath [8] was later able to embed this family of graphs in
three-page books and provide a bound of seven pages for the hook thick-
ness of all planar graphs. Yannakakis [14] improved upon this bound in the
following theorem.

Theorem 3. If G is a planar graph, then bt(G) < 4.
Proof. See Yannakakis [14]. O

The book thickness of non-planar graphs has also been studied, as well
as variations of the book embedding problem involving vertex-ordering re-
strictions. In the next two sections, we will examine book embeddings in
books with modified pages.

3 Cylinder Books

The first modified pages we consider are ones that bend and reconnect
at the spine. These cylinder pages can be viewed as the outer surfaces
of nested cylinders, connected together at the spine, a straight line in 3-
space. To embed a graph in a cylinder book, all vertices are placed on
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the spine and each edge is placed on a single cylinder page so that it crosses
neither the spine nor any other edge of the graph. We define the cylinder
thickness ct(G) to be the smallest number of cylinder pages needed to
embed the graph G in a cylinder book.

If we cut a one-page cylinder book at the spine and flatten it out, we
get a planar structure. This can be realized by making two parallel copies
of the spine in the plane. Then all edges that fit on a cylinder page can be
drawn in the space between the two copies of the spine. Figure 3 shows a
one-page cylinder book embedding of the stellation graph St?(K3).

T 8 9 T ‘u

Figure 3 One-page cylinder book embedding of St?(K3).

If there are no edges between the two copies of the spine, then we have
a classical two-page book. Thus, the set of graphs that are embeddable
in a one-page cylinder book includes all graphs that admit classical two-
page book embeddings. But, we know that St?(K3) is not subhamiltonian.
Hence, a one-page cylinder book allows embeddings of more planar graphs
than the classical two-page book. How much better is a one-page cylinder
book? The following theorem helps answer this question.

Theorem 4. Let G be a graph. Then ct(G) < 1 if and only if G is a
subgraph of a planar graph with a Hamiltonian path.

Proof. Suppose that ct(G) < 1. Then G can be embedded in a one-page
cylinder book with spine L, a line in 3-space. We realize this embedding in
the plane by cutting the cylinder page along the spine. Note that since G is
a finite graph, we may assume that the vertices of G appear on a segment
of L of finite length, L’. Laying the cylinder flat, the edges of G now lie in
the plane between two parallel copies of L’. We next bend the edges of G
and re-join the two copies of L’ together in the plane (see Figure 4). Now
we have a planar embedding of G so that every vertex of G lies along a line
segment. Add missing edges along this segment, as needed, to form the
desired Hamiltonian path.
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Figure 4 One-page cylinder book embedding with Hamiltonian path.

Conversely, suppose that G is a subgraph of a planar graph with a
Hamiltonian path. Then the vertices of G can be placed on a straight
horizontal line segment P in the plane so that every edge of G lies either
above P, below P, or wraps around an endpoint of P. Without violating
planarity, the edges that wrap around the endpoints of P can be arranged
so that they all wrap around the right endpoint of P. Now we reverse the
process and cut along P from left to right to make two copies of P. Rotate
the bottom copy of P counter-clockwise about its right endpoint until the
two copies of P are parallel in the plane. The edges of G now lie in the
plane between the copies of P (see Figure 4). We next form two horizontal
lines through the vertices on the two copies of path P and identify these
two lines to form the spine of the desired one-page cylinder book. Thus,
ct{(G) < 1. O

Any two-page embeddable graph can be embedded in a single-page
cylinder book. The graph depicted in Figures 2 and 3 shows that the
converse is not true. From Theorem 4, it is now clear that the set of
counter-examples consists of all graphs that are subgraphs of planar path-
Hamiltonian graphs, but are not subhamiltonian. Since all planar graphs
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with 10 or fewer vertices are subhamiltonian, then all counter-examples
must have at least 11 vertices. The stellation graph, St2(K3), in Figures 2
and 3, with 11 vertices is a minimal example of such a graph.

In the proof of Theorem 4, it is clear that a single page of a cylinder
book is a planar structure. Hence, any graph that is embeddable on a single
cylinder page must satisfy the 3n — 6 edge bound for simple planar graphs
with n vertices. That is the same bound as the number of edges allowed
in a classical two-page book. So, while a cylinder page accommodates a
slightly larger class of graphs, it does not allow a greater number of edges
than a classical two-page book. In either case, the total number of edges
allowed is limited by the planarity of the structure. In the next section, we
look at a modification of our cylinder page to that of a torus page in hopes
that the increase in genus will allow the embedding of more edges for an
n-vertex graph.

4 Torus Books

What if we allow edges to wrap in two directions? The second page mod-
ification we consider is a torus page, formed by connecting the two ends
of a cylinder page. The spine of a torus book may now be represented
by the inner equator of the torus. Multiple nested torus pages are joined
together at this common spine. Again, when embedding a graph in a torus
book, the vertices are placed on the spine and the edges on the torus pages
without crossing each other or the spine. The torus thickness t(G) of a
graph G is the least number of torus pages needed to embed G in a torus
book.

We also have a simple way of realizing a torus page. As we did for
the cylinder page, we draw two parallel copies of the spine in the plane
forming the top and bottom sides of a rectangle. This cylinder page is
then transformed into a torus page by identifying the two vertical sides of
this rectangle (see Figure 5). Edges may pass through a vertical side of
the rectangle and re-enter at the same point on the opposite side. This
horizontal wrapping of edges allows the embedding of many graphs in a
one-page torus book that do not admit embeddings in a one-page cylinder
book. Figure 5 shows a one-page torus book embedding of the complete
graph K.
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Figure 5 One-page torus book embedding of K.

The graph K7 is a non-planar graph, thus, it cannot he embedded ei-
ther on a one-page cylinder book or on a classical two-page hook. By the
construction of a torus book it is clear that any graph embeddable on a
one-page cylinder book or a classical two-page book is also embeddable in
a one-page torus book. How much better is the torus page? To help answer
this question, we will examine the number of edges allowed in a one-page
torus book embedding of a graph with n vertices.

Our proof of the edge bound for torus books parallels Bernhart and
Kainen’s proof of the edge bound for the classical k-book given in [1], so
we present their argument here. Recall that an n-vertex graph embeddable
in a classical two-page book has at most n + 2(n — 3) = 3n — 6 edges.
Similarly, a k-page embeddable graph with n vertices can have at most
n+ k(n -~ 3) distinct edges. We again may have up to n edges on the outer
cycle and up to n — 3 non-cycle edges on each of the k pages, corresponding
to triangulations of the outer n-cycle. Solving for k produces the following
bound on the book thickness given by Bernhart and Kainen [1].

Theorem 5. Let G be a graph with n > 4 vertices and g edges. Then

b(G) >

g-n
n—3"

We can find bounds for the torus thickness of a graph in terms of the
numbers of vertices and edges in a similar way.

Theorem 6. Let G be a graph with n vertices and q edges. Then

q—n
2n

¢(G) 2
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Proof. Suppose that G is a graph with n vertices and q edges. Consider
an embedding of G in a k = t(G)-page torus book. The n edges between
consecutive vertices of G on the spine can be added on any torus page. So,
G can have up to n edges along the spine. Using the representation of a
torus page depicted in Figures 5 and 6, we have two possibilities. Either
no edge extends from the upper copy of the spine to the lower copy of the
spine, or there is at least one edge connecting the upper and lower copies
of the spine.

Case 1: Suppose there are no edges extending between the two copies
of the spine. Then we have a spine with each edge appearing on only one
of the two sides of the spine. This structure is equivalent to a classical
two-page book. Hence, if no edge has its ends on opposite sides of the
spine, then there are 2(n — 3) = 2n — 6 edges that can be added to any
torus page in addition to the n for the spine. Thus, there are at most
n + 2k(n — 3) possible edges in an n-vertex graph that admits a k-page
torus book embedding with the restriction that no edges extend from one
side of the spine to the other.

Case 2: Suppose that an edge e has ends on opposite sides of the
spine on a torus page in a torus book embedding of G. We now use the
previous representation of a page of a torus book with two parallel copies
of the spine. Label the vertices of G in the order v;,vs,...,v, along the
spine. The edge e joins vertex v; from the top copy of the spine and vertex
v; from the bottom copy of the spine (see Figure 6).

U2z Uy 0

1 2 3
“ 4 L Uz lpey 0,

Figure 6 Edge e joins oppisite sides of the spine.

Any edge that can be placed on this page is either one of
the n cycle edges along the spine, the edge e, or lies within the
2n + 2 closed walk formed by the two copies of the spine and
e. Following the arrowed edges of Figure 6, this walk is given
by Uiy Vigly ooy Uny V1, U2y -« 3 Vi1 Vg, U5y Vjm1y o - -y U2, V1, Uny -2 Vg1, Vg, Vs
There are (2n +2) — 3 = 2n— 1 possible edges that can be drawn in a com-
plete triangulation of the interior of this 2n + 2-walk. Hence, on a single
torus page we may embed up to n + 1 + (2n — 1) = 3n edges if there is at
least one edge joining opposite sides of the spine. The n edges along the
spine may he added to any page, but will only count once toward the edge
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total. However, the edge extending between the two copies of the spine
may be different on different pages. This allows for a possible maximum of
1+ (2n — 1) = 2n non-cycle edges on each torus page. Thus, in a k-page
book, there are at most n + 2kn = (2k + 1)n edges for an n-vertex graph if
edges wrap from one side of the spine to the other.

We see that more edges may be embedded on a torus page if edges wrap
around the spine as in Case 2. Hence, if G is a graph with n vertices and
q edges embedded in a k-page torus book, it follows that ¢ < (2k + 1)n.
Thus, k = bt(G) > &=, g

In the proof of Theorem 6, we noted that a one-page torus hook can
accommodate up to 3n edges. This result is not surprising since it is also
the edge bound for any n-vertex graph embedded in a torus, achieved by
a complete triangulation of the surface of the torus. Not all such toroidal
triangulation graphs have a Hamiltonian cycle. Consequently, the class of
one-page torus book embeddable graphs does not include all toroidal graphs
since the absence of a Hamiltonian cycle prevents the inclusion of all n cycle
edges in the edge count, regardless of the ordering of the vertices along the
inner equator. As in the classical book, the restriction of the vertices to
the spine does not reduce the total possible number of edges that may be
embedded in a one-page hook. However, to achieve the maximum, the
graph must contain a Hamiltonian cycle and every face must be a triangle
on the page.

Theorems 5 and 6 provide theoretical lower bounds for classic hook
thickness and torus book thickness in terms of the numbers of edges and
vertices. In the next two theorems, we will show that for hoth types of
books, these lower bounds for book thickness are the best possible hounds.
In particular, we will use the results of Theorems 5 and 6 to prove the
optimal book thickness and torus book thickness for the complete graph
K,. Again, the result for torus hooks extends nicely from the proof for
classical books so we include both here.

Theorem 7. Ifn > 4, then bt(K,) = [n/2].

Proof. (Adapted from Bernhart and Kainen [1].) Let n > 4. First, we
show that bt(K,) > [n/2]. The graph K, has n vertices and (3) edges.
Now by Theorem 5, we have that

’2‘)~—n_n(n—1)/2—n _
n—-3 n—3 -

bt(Kn) 2 ( n/2.
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Since the book thickness of a graph must be an integer, it follows that
bt(Kn) > [n/2].

To obtain the other inequality, we will assume that n is even. Suppose
that n = 2m. We will show that bt(Ksn) < 2m/2 = m. The result for odd
n will follow from the fact that Ks,,_; is a subgraph of Kj,,. The m pages
of the book are formed by rotating the triangulated 2m-cycle of Figure 7
through m successive positions.

Prmcanmcasacenad

Figure 7 Triangulation of the 2m-cycle.

A triangulation of the 2m-cycle has 2m — 3 edges. It is easy to see that
each inner diagonal of this 2m-cycle cannot appear in more than one of the
m rotations. We get 2m edges for the outer cycle and m(2m — 3) edges for
the m triangulations for a total of 2m + m(2m — 3) = 2m? —m = (%)
distinct edges. Hence, all (2;") edges of K5,, are accounted for and we have
the desired result. a

Theorem 7 gives the optimal book thickness of K,,. Further, whenn > 4
is even, the embedding is as tightly packed as possible since the maximum
edge bound of n — 3 non-cycle edges per page is reached. The next theorem
gives the optimal torus hook thickness of K,, for all n > 1. We note that
when n = 4m + 3, we achieve the maximal torus book edge bound of 2n
non-cycle edges per page.

Theorem 8. Ifn > 1, then t(K,) = |n/4].

Proof. Let n > 1. We apply Theorem 6 with n vertices and (3) edges. This
gives us that

(9'"=m-mm.

>
t(Kn) 2 22
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Since t(K) is an integer, it follows that t(K,) > |n/4)].

To show that t(K,) < [n/4], we will assume that n = 4m + 3. Since
Kim, Kam41, and Kgpmyo are all subgraphs of Kym 43, the result will hold
for these graphs as well. Label the vertices vy, v2,...,vn—1,vn along the
spine. The n edges {vi,vi41},i = 1,2,...,n — 1 and {vn,v1} can all be
placed along the spine on any page of the torus book. We will show how
to embed the rest of the

(4m+3

9 )—(4m+3)=2m(4m+3)

edges of K4m+3 on m pages to obtain the desired result.

Consider the cycle C = {v1,v2,...,vn}. We say that vertices v; and v;
are at distance k < n — 1 along C if there is a clockwise simple path of
length k in C between v; and v;. For example, v; and v, are at distance
one along C and v; and v, are at distance n — 1 along C. To cover every
edge of K, we need to ensure that each of the edges joining each vertex v;,
where 1 < i < n, to the vertices at distances 1,2,...,n — 1 from v; along
C appears on a page of the m-page torus book. The edges joining vertices
at distances 1 and n — 1 are included in the cycle along the spine. Next,
we embed the remaining 2m(4m + 3) edges between vertices at distances
2,3,...,m — 2 onto m pages as follows: edges joining vertices at distance
2k,2k+1,n—2k -1, and n—2k are embedded on page k for k = 1,2,...,m.
As k ranges over the integers 1,2,...,m; 2k and 2k + 1 take on the values
2,3,...,2m, and 2m+1. Similarly, n—2k —1 and n — 2k take on the values
2m+2,2m+3,...,4m, and 4m+1 = n—2. Hence, all edges for vertices at
distances in the range 2,3,...,n — 2 appear on the m pages. The edges on
page k do not cross as shown by the one-page embedding of K in Figure
5.

Each of the n = 4m + 3 vertices has degree four on each page (not
including the edges of the n-cycle along the spine). Since each edge has two
distinct end vertices, there are a total of 4(4m + 3)/2 = 2(4m + 3) edges on
each of the m pages. Along with the n = 4m + 3 vertices along the spine,
we have accounted for all
2

n+2mn = (2m+ 1)(4m +3) = (4’” +3)

edges of K4m43. Thus, t(K,) < |n/4]. O

Theorem 8 gives a method for attaining one-page torus book embeddings
of K,, forn < 7. The graph K7 has 21 = 3(7) edges, matching the maximum
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edge bound for a 7-vertex graph in a one-page torus book. It is the largest
complete graph that is embeddable on a torus without any restrictions on
the placement of vertices. Through the construction given in Theorem 8,
we see that K7 may be embedded on a torus with all vertices restricted to
the inner equator as shown in Figure 5. This graph is of particular interest
since Theorem 7 shows that K7 requires [7/2] = 4 pages for an embedding
in a classical book. Hence, K7 is a graph that admits an embedding in a
one-page torus book but is not embeddable in a classical three-page book.
This leads to the following question: Are there graphs that are embeddable
in a classical three-page book that are not embeddable in a one-page torus
book?

We consider the 10-vertex graph G consisting of an outer 10-cycle and
three rotations of the triangulation of Figure 7. Each triangulation fits on a
single page, so G is embeddable in a three-page classical hook. This graph
has 10 edges for the outer cycle and 3(10 — 3) = 21 edges for the three
triangulations for a total of 31 edges and 10 vertices. From Theorem 6, a
graph G with 31 edges and 10 vertices must have t(G) > (31-10)/[2(10)] =
21/20 > 1. Since t(G) is an integer, it follows that ¢(G) > 2. So, there are
examples of graphs that have classical three-page book embeddings, but
are not embeddable on a single-page torus book.

These two graphs demonstrate that a classical three-page hook and a
single-page torus book are generally not comparable. We can, however,
directly compare the number of edges admitted on each of these structures
for an n-vertex graph. A classical three-page book admits at most n +
3(n — 3) = 4n — 9 edges for an n-vertex graph, while the one-page torus
book can accommodate at most n + 2n = 3n edges. So, for graphs with
n < 8 vertices, the one-page torus book allows more edges, for graphs with
n > 10 vertices, the classical three-page hook allows more edges, and for
graphs with nine vertices, both structures admit the same number of edges.
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