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Abstract

Mobile guards on the vertices of a graph are used to defend the
graph against an infinite sequence of attacks on vertices. A guard
must move from a neighboring vertex to an attacked vertex (we as-
sume attacks happen only at vertices containing no guard). More
than one guard is allowed to move in response to an attack. The m-
eternal domination number is the minimum number of guards needed
to defend the graph. We characterize the trees achieving several up-
per and lower bounds on the m-eternal domination number.
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1 Introduction

Let G = (V, E) be a graph with n vertices. Several recent papers have con-
sidered problems associated with using mobile guards to defend G against
an infinite sequence of attacks; see for instance [1, 2, 6, 7, 9, 10, 11, 12].

Denote the open and closed neighborhoods of a vertex £ € V by N(z)
and N(z], respectively. That is, N(z) = {v|zv € E} and N[z] = N(z)u{z}.
Further, for § C V, let N(S) = U, cs N(z). Forany X C V and z € X,
we say that v € V — X is an external private neighbor of x with respect to
X if v is adjacent to z but to no other vertex in X; we sometimes simply
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say that v is a private neighbor of z. The set of all such vertices v is the
external private neighborhood of x with respect to X.

A dominating set of graph G is a set D C V with the property that
for each u € V — D, there exists r € D adjacent to u. A dominating
set D is a connected dominating set if the subgraph G[D] induced by D
is connected. The minimum cardinality amongst all dominating sets of G
is the domination number v(G), while the minimum cardinality amongst
all connected dominating sets is the connected domination number v.(G).
Further background on domination can be found in [8].

An independent set of vertices in G is a set ] C V with the property
that no two vertices in I are adjacent. The maximum cardinality amongst
all independent sets is the independence number, which we denote as 5(G).

Let D; C V,1 < i, be a set of vertices with one guard located on each
vertex of D;. In this paper, we shall allow at most one guard to be located
on a vertex at any time. The problems considered in this paper can be
modeled as a two-player game between a defender and an attacker: the
defender chooses D, as well as each D;,i > 1, while the attacker chooses
the locations of the attacks ry,7s,.... Note that the location of an attack
can be chosen by the attacker depending on the location of the guards.
Each attack is handled by the defender by choosing the next D; subject to
some constraints that depend on the particular game. The defender wins
the game if they can successfully defend any series of attacks, subject to
the constraints of the game; the attacker wins otherwise.

In the eternal dominating set problem, each D;,i > 1, is required to
be a dominating set, r; € V (assume without loss of generality r; ¢ D;),
and D;, is obtained from D; by moving one guard to r; from a vertex
v € D;,v € N(r;). The smallest size of an eternal dominating set for G is

denoted v*°(G). This problem was first studied in [2].

In the m-eternal dominating set problem, each D;,i > 1, is required to
be a dominating set, r; € V (assume without loss of generality r; € D,),
and D, is obtained from D; by moving guards to neighboring vertices.
That is, each guard in D; may move to an adjacent vertex. It is required
that 7; € D;4;. The smallest size of an m-eternal dominating set for G
is denoted v°(G). This “all-guards move” version of the problem was
introduced in [6]. It is clear that v*°(G) > 7% (G) = v(G) for all graphs G.

We say that a vertex is protected if there is a guard on the vertex or
on an adjacent vertex. We say that an attack at v is defended if we send a
guard to v.
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Our objective in this paper is to describe the trees that achieve some
upper and lower bounds on the m-eternal domination number. In Sections
3 through 6 we describe the trees for which equality holds in each of the
following:

(&) YR(T) £ 7(T) +1;
(b) ¥(T) £X(T);
() Y¥(T) < 2¥(T); and
(d) 7 (T) < B(T).

2 Terminology and Background

A neo-colonization is a partition {V},Va,...,V;} of the vertex set of graph
G such that each G[V;] is a connected graph. A part V; is assigned a weight
w(V;) = 1 if it induces a clique and w(V;) = 1 + v.(G|V;]) otherwise. Then
0.(G) is the minimum total weight of any neo-colonization of G, and is
called the clique-connected cover number of G. Goddard et al. [6] defined
this parameter and proved that Y(G) < 6.(G). For X C V we will write
0.(X) as shorthand for 6.(G[X]). Klostermeyer and MacGillivray then
proved the next result, which is key to what follows in this paper.

Theorem 2.1 (10| For any tree T, 6.(T) = v2(T).

It follows from the previous theorem that v(G) < 7.(G) + 1.

The following property of neo-colonizations will be useful.

Proposition 2.2 Let T be a tree with at least two vertices. Then there is
a neo-colonization of minimum weight in which every part has size at least
two.

Proof. Suppose that IT = {V},V5,..., WV, {r}} is a minimum weight neo-
colonization of T. Without loss of generality, {z} is adjacent to a vertex of
Vi. Since the subgraph of T induced by V, is connected, = is adjacent to
exactly one vertex of V. The neo-colonization IT' = {V},V,,..., Vi U {z}}
has minimum weight and fewer parts of size one. Applying this argument
repeatedly, one arrives at the desired neo-colonization. O
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A stem of a tree T is a vertex of degree at least two that is adjacent to
a leaf. A vertex of T that is not a leaf is called an internal vertex. A tree
is a star if it is isomorphic to K, m > 1.

We partition the internal vertices of T into loners, weak stems and
strong stems depending on whether they are adjacent to no, exactly one or
at least two leaves. Denote the set of leaves of T by L(T') and let £ = |L(T')|.
Obviously, v.(T) = n — £, the number of internal vertices, for any tree T of
order n > 3.

The eccentricity of a vertex in a graph is its maximum distance from
any other vertex. A vertex of maximum eccentricity in a tree is a leaf which
is an end vertex of a longest path. Leaves of maximum eccentricity and the
stems to which they are adjacent play an important role in some of our
proofs. We use deg(v) to denote the degree of vertex v.

3 Trees with 7> =17.+1

It turns out to be easier to describe the trees for which v° < 4. + 1. The
results below make it possible to look at a tree and determine if Y&° < 147,.
They do not, however, give much structural information on the trees for
which the inequality holds. Finding such results is an open problem.

Proposition 3.1 A tree T has v < 147, if and only if T has a spanning
forest consisting of v Ky '’s and trees T1,Ts, ..., T, on at least three vertices
such that at least k loners of T are leaves of the k+r trees in the collection.

Proof. Suppose 7° < 1 + 7.. By Lemma 2.2, there is a minimum weight
neo-colonization IT = {W}, V,, ..., Viyr} in which there are no parts of size
one. Without loss of generality, V, V5,..., Vi each have size at least three,
and the remaining parts each have size two. Let T; =T[V;], 1 <i < k+r.
Every internal vertex of some T; is an internal vertex of T. Since there are
no parts of size one, every leaf of T belongs to the same part as the stem to
which it is adjacent. In particular, no stem of T' is a leaf of any tree T; that
is not isomorphic to K. Each of the trees T}, k+ 1 < j < k + r contains
at least one internal vertex of T. The weight of II is 7 + & plus the total
number of internal vertices of the trees T;, 1 < i < k. All but k units of
this quantity are accounted for by internal vertices of T. Since 7. equals
the number of internal vertices of T, it follows that at least k loners of T
appear as leaves of the trees in the collection.
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On the other hand, suppose that T has a spanning forest consisting of
trees T1, T3, . .., Tk on at least three vertices and 7 trees Txy1, Tk42 - - - » Tkt
each isomorphic to K5, such that at least k loners of T are leaves of the
k+r trees in the collection. Let V; = V[T;], 1 < ¢ < k+r and consider the
neo-colonization II = {V}, V5, ..., Viyr}. The weight of IT is » + k plus the
total number of internal vertices of the trees T;, 1 < i < k. Since each of
the trees which are isomorphic to K> contains at least one internal vertex
of T, and every leaf of T belongs to the same part as the stem to which it
is adjacent, this quantity is at most <y, the number of internal vertices of
T.O

Corollary 3.2 Let T be a tree. Then v® < 1+ 7. if and only if there
erists a set of edges whose deletion creates a spanning forest consisting of
r Ko’s and trees T\, T5,...,Tx on at least three vertices such that at least
k loners of T are leaves of the k + r trees in the collection.

Proof. The implication that if the condition holds then 73 < 1+ v, follows
from Proposition 3.1.

Suppose Y& < 1 + .. By Proposition 3.1 the tree T has a spanning
forest consisting of r K3's and trees 11,75, ..., T on at least three vertices
such that at least & loners of T are leaves of the k4 trees in the collection.
The set of edges to delete consists of the edges of T with ends in different
subtrees. O

We note, in particular, that if every internal vertex is a weak stem then
the corollary holds with k = 0.

4 Trees with 7> =17

Informally, the corona of a graph G is the graph obtained by joining a
new vertex of degree one to each vertex of G. Formally, if G has ver-
tex set V(G) = {vy,va,...,v,}, then corona(G) is the graph with the
2n vertices V(corona(G)) = {v1,v2,...,va} U {v},v},...,v,} and edges
E(corona(G)) = E(G) U {vv! : 1 < i < n}. A graph H is a corona if it
is the corona of some graph G. It is known that a connected graph has
domination number '%l if and only if it is either Cy4 or a corona [3, 4]. The
trees with ¥3° = v turn out to be exactly the coronas of trees.

Lemma 4.1 Let T be a tree for which Y°(T) = 4(T). For each minimum
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weight neo-colonization Il = {V},Va,..., Vi} of T and i = 1,2,...,k, we
have 422 (TIVA]) = +(T{Vi])-

Proof. Each induced subgraph T[V;] is connected. Since v$°(T') is a mini-
mum taken over all neo-colonizations, it must be that fori =1,2,...,k, the
partition {V;} is a neo-colonization of T[V;] of weight v (T'[V;]). Hence,

k k k k
VR(T) =Y wVi) =D _R(TVi]) 2 > 1e(TVi]) = > ATVi]) = v(T)
i=1 i=1 i=1 t=1
and the result follows. O

Theorem 4.2 A tree T with n > 2 vertices satisfies v° =~ if and only if
T is a corona.

Proof. Suppose T is a corona. Then ¥(T') = 3. It is clear that there is a
neo-colonization of weight n/2 in which each part consists of a leaf and its
unique neighbor. Hence v& = 1.

The proof of the converse is by induction on n. The statement is clearly
true if n = 2,3, 4, the trees K, and P, being the only ones with v = .
Suppose the statement holds for all trees on at least two, and at most n—1
vertices, for some n > 5. Let T be a tree on n vertices for which 73 = v.
Then T is not a star.

Let IT = {V4, Va,...,Vi} be a minimum weight neo-colonization of T
By Lemma 4.1 we have y2(T[Vi]) = v(T[Vi]) for i = 1,2,...,k. By the
induction hypothesis, each tree T'[V;] is a corona. We claim that, in fact,
each is isomorphic to K. Otherwise, without loss of generality T[V;] has
at least three vertices and w(Vi) = 1+ v.(V1) > v(V1), a contradiction.
This proves the claim. It follows that y°(T) =k and n = 2k > 6.

Let u« be a leaf of maximum eccentricity in T, and v be the stem to
which it is adjacent. By the above argument, without loss of generality
Vi = {u,v}. By Proposition 2.2, the vertex v is not adjacent to another
leaf besides u. The choice of © now guarantees that v has degree two in T'.
Hence T —u — v is a tree. Further, {V},V3,...,Vk_1} must be a minimum
weight neo-colonization of T — v — v. Thus,

YT -u—-v)=k-1<y(T-u—v) <Y3(T —u—v).

It follows that ¥(T —u —v) = k — 1 = v%°(T — u — v). By the induction
hypothesis, T — u — v is a corona.
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Let w be the vertex of T — u — v to which v is adjacent in 7. The proof
will be complete if we can show that w is a stem. Otherwise, w is a leaf of
the corona T — u — v, which has at least four vertices. Let s be its unique
neighbor. Hence T contains the induced path on four vertices, u,v,w, s.
Since the subgraph of T induced by each set V; is connected and of size
two, without loss of generality Vi_y = {w, s}. Thus, TV =T — {u,v,w} is
a tree. The set X of all internal vertices except s form a dominating set of
size J—VL—TZ:M = 23, But then X U {v} is a dominating set of T and

HT) S T < B =k =2(D),

a contradiction. This completes the proof. O

An implication of Theorem 4.2 is that, for trees, ¥3* = < only if the
clique covering number equals 4. This implication holds for all graphs [6].
The converse is not true, even if we restrict the cliques to have size at least
two. For example, v2°(Cs) = ¥(Cs) = 2, but the clique covering number of
Ce equals three. The proof of the theorem shows that trees with v = «
have a unique neo-colonization of minimum weight: each part consists of a
leaf and the stem to which it is adjacent.

5 Trees with /X = 2y
The following is from [11] and we include the proof for completeness.

Proposition 5.1 [11] For any connected graph G, v¥(G) < 2v(G), and
the bound is sharp for all values of v(G).

Proof. Let D be a minimum dominating set. Place a guard at each vertex
of D. For each vertex v € D, if v has at least one external private neighbor,
pick one of them, say u, and place a guard at u. It is easy to see this
configuration is an m-eternal dominating set.

To see that the bound is sharp for v = 1, consider any star with at
least three vertices. For v = 2, consider Cs and let u and v be two vertices
at distance three apart. Add two new internally disjoint © — v paths of
length three to form the graph G. Obviously, {u, v} is a dominating set of
G. Let D be any minimum dominating set of G with |D| = 3. Suppose
u ¢ D. Since N(u) is independent with |N(u)| = 4, and no two vertices in
N(u) have a common neighbor other than u, D does not dominate N(u), a
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contradiction. Thus v € D and similarly v € D. Without loss of generality
say D = {u,v,w}, where w € N(u). Then D cannot repel an attack at a
vertex in N(v) — N(w). It follows that Y°(G) = 4 = 2v(G).

For v = k > 3, consider C3; and let {u;,...,ux} be any minimum
dominating set of C3,. Note that for each ¢, d(u;, uit1 (mod 3x)) = 3. For
eachi=1,...,k, add a new u; — %;y1 (mod 3x) Path of length three to form
G. Then v(G) = k, but it can be shown similar to the previous case that
no set of 2k — 1 vertices eternally protects the vertices of G. O

We shall now give several characterizations of the trees achieving the
bound in Theorem 5.1.

Proposition 5.2 Let T be a tree. If y(T) = 2v(T') then every minimum
dominating set of T is an independent set.

Proof. We prove the contrapositive. Suppose there is a minimum dominat-
ing set D and vertices w,z € D such that wz € E. Let Il = {W},V,,...,
V,} be a neo-colonization of T in which, for i = 1,2,...,~, the subgraph of
T induced by V; is a star containing exactly one vertex of D. If there exists
i such that |V;| < 3, then vy&(T) < 29(T). Hence assume that |V;| > 3
for i = 1,2,...,7. Without loss of generality, w € V,_; and z € V,.
Then, the neo-colonization II' = {V},Va,..., V,_2,V,_, U V,} has weight
at most 2y — 1 because the connected domination number of V,_; UV,
equals two, and hence it contributes 3 < 4 to the weight of IT'. Therefore
T (T) <2¥(T). B

Proposition 5.3 Let T be a tree such that y*(T) = 2y(T). If D is a
minimum dominating set of T, then every x € D has at least two external
private neighbors.

Proof. We prove the contrapositive. Suppose first D is a minimum dominat-
ing set of T such that there exists w € D with no external private neighbor.
Then T admits a neo-colonization IT = {W}, V,,...,V,_;, {w}}} in which
the subgraph induced by V; is a star centered at a vertex in D — {w}. The
weight of IT is at most 2(«y — 1) + 1 < 2. The argument is similar if w has
exactly one private neighbor. O

Corollary 5.4 Let T be a tree such that Y°(T) = 2y(T). Then no leaf of
T belongs to a minimum dominating set of T'.
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A neo-colonization IT = {V},V3,...,Vi} is called finest if it has min-
imum weight, no parts of size one, and k is maximum over all such neo-
colonizations.

Theorem 5.5 Let D be a minimum dominating set of a tree T such that
1R =2y. IfII = {W,V,,...,Vi} is a finest neo-colonization of T, then
DNV, #0 fori=1,2,...,k.

Proof. The proof is by induction on the number of vertices of T. The
statement holds vacuously for all trees with one vertex. Suppose it holds
for all trees with n — 1 or fewer vertices, for some n > 2. Let T be a tree
with n vertices and 7° = 2.

Let II = {W,V4,...,Vik} be a finest neo-colonization of 7. The state-
ment holds if & = 1, since T must be a star with at least three vertices.

Hence, assume k > 2.

Let = be an end vertex of a longest path in T. Then z is a leaf. By
Corollary 5.4, z is adjacent to a vertex y € D. Since II is finest, the vertex
z and every other leaf adjacent to y belong to the same part of II, say V.
Let z be the vertex that precedes y on the longest path ending at z. By
Proposition 5.2, the vertex z is not in D. We distinguish two cases.

Case 1. Vertex z is a private neighbor of y. Then there is no other stem
adjacent to z. By choice of z as an end of a longest path, the vertex z has
degree two in T, otherwise there is a longer path.

Suppose Vi, = N[y]. Let TV = T—Vi. Then y(T”) = v(T)—1 and the set
D’ = D—{y} is a minimum dominating set of T". Since Vj can be defended
by two guards, Y (T") = 2v(T"). The sequence IT' = {V},V,,...,Vi_1}isa
finest neo-colonization of 7/. Hence, by the induction hypothesis, D’'NV; #
@fori=1,2,...,k —1, and the statement follows.

Suppose |Vix — N[y]| = 2. Let T/ =T — Nly]. Then (T') = ~4(T) -1
and the set D' = D — {y} is a minimum dominating set of 7. Since N[y]
can be defended by two guards, v32(T') = 2v(T"). Since both z and z are
internal vertices of the subgraph of T induced by V}., the weight of the neo-
colonization IT' = {V},V5,...,Vik_1,Vik — Nly]} of T" is two less than the
weight of II. Hence IT' is a finest neo-colonization of 7", and the statement
follows from the induction hypothesis as before.

Finally, suppose Vi = N{y] U {u}. Since k > 2 and z is not adjacent
to a leaf, the vertex u is adjacent to a vertex in some other part of II,
say Vi_1. Since the subgraph of T induced by Vi_; is connected, u is
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adjacent to at most one vertex in Vi_;. Again, let 7/ = T — N[y]. As
before, ¥(T') = v(T) — 1, the set D' = D — {y} is a minimum dominat-
ing set of T', and Y2 (T") = 2y(T”). The weight of the neo-colonization
I = {V;,Va,..., Vk—1 U{u}} of T" is two less than the weight of II. Hence
IT' is a finest neo-colonization of T”. Since z is a private neighbor of y, we
know that the vertex u € D, and the statement follows from the induction
hypothesis as before.

Case 2. Vertex z is not a private neighbor of y. Then, by Proposition 5.2,
z & D, and by Proposition 5.3, there is another leaf w # x adjacent to y.

Suppose first that Vi, = N[y] or Vi, = Nly] — {z}. As before, the tree
T =T — Vi has ¥y(T') = ¥(T) — 1, the set D' = D — {y} is a minimum
dominating set of T, v(T") = 2y(T") and I' = {W},Va,...,Vk-1} is a
finest neo-colonization of 7' = T — N[y]. By the induction hypothesis,
DnV;#®fori=1,2,...,k—1, and the statement follows.

Otherwise, |V, — (N[y] = {z})| =2 2. Then Il' = {1, V5,..., Vi1, Vi —
(N[y] — {z})} is a finest neo-colonization of T = T'\ (N[y] — {z}). By the
induction hypothesis, D'NV; # @ fori =1,2,...,k — 1, and the statement
follows. O

Corollary 5.6 IfI1 = {V},V,,...,Vi} is a finest neo-colonization of a tree
T with y° = 2, then k < 7.

Let T be a tree and D be a minimum dominating set of T. A dom-
inating set partition of T with respect to D is a neo-colonization II =
{",V,,...,V,} such that, for i = 1,2,...,7, the subgraph of T induced by
V; is a star centered at a vertex of D. Clearly, every minimum dominating
set D gives rise to at least one dominating set partition with respect to D.
A dominating set partition will be called fat if |V;] >3 for i =1,2,...,9.

Lemma 5.7 Let T be a tree such that YR (T) = 2v(T). Then for any
minimum dominating set D, there erists a fat dominating set partition of

T.

Proof. Let I1 = {V,V5,...,V,} be a dominating set partition of T with
respect to a minimum dominating set D. Then, by definition, for i =
1,2,...,7, the subgraph of T induced by V; is a star centered at a vertex
of D. Hence the weight of each part is at most two. Since the weight of II
equals 2v, and there are 7 parts, each part has weight exactly two. Thus



each star has at least three vertices, and II is a fat dominating set partition
of T. O

Lemma 5.8 Let T be a tree such that y2(T) = 2y(T). ThenII = {V}, Vs,
..., Vq} is a finest neo-colonization of T in which each part has at least
three vertices if and only if Il is a fat dominating set partition with respect
to a minimum dominating set D of T.

Proof. Suppose that IT = {V;,Va,...,V,} is a finest neo-colonization of T
in which each part has at least three vertices. Then each part contributes
exactly two to the weight of IT. Thus the subgraph induced by each part is
a tree with connected domination number one, that is, a star. If D is the
set of center vertices of these stars, then clearly D is a dominating set of
size 7.

Let IT be a fat dominating set partition with respect to a minimum
dominating set D of T. Then the weight of IT equals 2v, so that II is
a minimum weight neo-colonization of T in which each part has at least
three vertices. By Corollary 5.6, the neo-colonization II has the maximum
number of parts among all minimum weight neo-colonizations in which
there are no parts of size one, hence II is finest. O

Theorem 5.9 Let T be a tree. Then vX(T) = 24(T) if and only if there
is finest neo-colonization of T which is a fat dominating set partition with
respect to a minimum dominating set of T.

Proof. The forward implication is immediate from Lemmas 5.7 and 5.8. For
the converse, suppose there is a finest neo-colonization IT = {V}, V5, ..., V,}
which is a fat dominating set partition with respect to a minimum domi-
nating set D of T. Then, for i = 1,2,...,v, |V;| > 3, the subgraph of T
induced by V; is a star on at least three vertices. It follows that the weight
of each part equals two, so that the weight of II equals 2. Since II has
minimum weight, v = 2. O

The definition of a neo-colonization can be extended to forests. For each

component (tree), the restriction of the neo-colonization to sets consisting
of vertices from that tree, forms a neo-colonization.

Theorem 5.10 Let T be a tree. Then ¥y = 2v if and only if every mini-
mum dominating set D satisfies

(a) No vertex is adjacent to more than two vertices of D.
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() D is an independent set.
(c) No two vertices adjacent to two vertices of D are adjacent.
(d) Every vertez of D has at least two external private neighbors.

(e) There are no two vertices x,y € D such that the collection of all
private neighbors of x and y induce the Ps a,z,b,¢,y, 2.

Proof. Suppose that ¥ = 2v. By Proposition 5.2, D is an independent
set. Hence (b) holds. Suppose there is a vertex z adjacent to at least three
vertices of D. Let {u,v,w} C N(z) N D. Form a neo-colonization Il =
{1, Va,...,V,_2} by letting V) = N[u]UN[v]JUN[w] and of V3, V3,...,V o
be a partition of V(T') — V] into stars centered at vertices of D — {u, v, w}.
The weight of V} is five, so the weight of IT is at most 5 + 2(y — 3) < 2.
Since v3° = 24, it follows that (a) holds.

Suppose that z and y are adjacent vertices that are each adjacent to
two vertices of D. Let N[z]JN D = {a,b} and N[y] N D = {c,d}. Then
{a,b} N {¢,d} = 0. Form a neo-colonization II = {V},V,,...,V,_3} by
letting V; = N[a] U N[b] U Nic]U N[d] and V,,V3,...,V,_3 be a partition
of V(T) — V; into stars centered at vertices of D — {a,b,c,d}. The weight
of V] is seven, so that the weight of IT is at most 7 + 2(y — 4) < 2. Since
Y = 2, it follows that condition (c) holds.

Suppose there is a vertex z € D with only one external private neighbor,
say y, Form a neo-colonization II = {W,V,,...,V,_1,{z,y}} such that, for
i=12,...,7 -1, the subgraph of T induced by V; is a star centered at
a vertex of D — {z}. Then the weight of II is at most 2(y — 1) + 1 < 27.
Since 73 = 2+, it follows that the component V; can not exist. Therefore,
condition (d) holds.

Suppose that x,y € D and the set of all private neighbors of z and y
comprise the path ), z,z2,y1,y, y2. Form a neo-colonization IT = {V;, V5,
ooy Vao, {z1, 2}, {z2, 11}, {9, y2}}, where V3, V5, ..., V,_, is a partition of
V(T)- {z,z1,22,¥,¥1,y2} into stars centered at vertices of D — {z,y}.
Then the weight of II is at most 2(y — 2) + 3 < 2v. Since 7P = 27, it
follows that the vertices  and y can not exist. Therefore, condition (e)
holds.

The proof of the converse implication is by induction on the number of
vertices of T. The statement holds for all trees on one vertex. Suppose it
holds for all trees on at most n — 1 vertices, for some n > 2. Let T be a
tree on n vertices for which conditions (a) through (e) hold. We need only
consider the case when T is not a star. Let D be a minimum dominating
set of T
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Let = be an end vertex of a longest path of T, and y the unique neigh-
bor of z. By choice of x, the vertex y has a unique neighbor z which
is not a leaf. Since condition (d) holds, no leaf is in D. Hence y € D.
Then, by (b), the vertex z can not belong to any minimum dominating
set. We claim that the vertex z has degree at most three. Suppose z has
four neighbors, y, u, v, w, where y and w lie on a longest path ending at z.
By choice of z, the vertices u and v are either leaves or adjacent to a leaf.
By condition (d), no leaf is in D. Hence each of u and v is adjacent to a
leaf, and u,v € D. Since y € D, the vertex z has three neighbors in D,
contrary to (a). Thus, 2 < degr(z) < 3. We consider these cases separately.

Case 1. degp(z) = 3. Let Nr(z) = {a,b,y}, where b lies on a longest path
starting at 2. Then a is not a leaf, but every vertex in Nr(a) — {z} is a
leaf. Since condition (d) holds, the vertices @ and y are each adjacent to at
least two leaves.

Let T = T— (N[y] — {2}). Then¥(T") =~4(T)—1, and D’ is a minimum
dominating set of T” if and only if D'U {y} is 2 minimum dominating set of
T. Since condition (a) holds, no minimum dominating set of T contains b.
Therefore there is no minimum dominating set of T” for which the vertex
z belongs to a Py as described in condition (e). It follows that conditions
(a) through (e) therefore hold for every minimum dominating set of 7/. By
the induction hypothesis, v (T") = 2v(T").

Let IT = {V1,Va,...,Vi} be a minimum weight neo-colonization of T'.
All leaves adjacent to y belong to the same part as y, say V). (otherwise IT
does not have minimum weight). Since the weight of IT is at most 2v(T), it
suffices to show that it is also at least 2y(T). There are three possibilities,
depending on Vi, — (N[y] — {z}).

If Vi = N{y] — {2}, then II° = {W}, V,,..., Vi_1} is a neo-colonization
of T', and hence has weight at least 2(y(T') — 1). Therefore the weight of
IT is at least 2y(T').

If Vi = N[y, then the weight of II is one more than the weight of the neo-
colonization IT! = {V},V5,...,Vi_1,{2}} of T'. Since all leaves adjacent to
a must belong to the same part as (a), and since the subgraph induced by
each part is connected, N[a] — {2z} is a part of I1!, say Vi, = Nla] — {2}
The neo-colonization {V}, Vs, ..., Vi1 U {z}} has weight one less that IT!,
so that the weight of IT! is at least 2(y(T) — 1) + 1. Therefore the weight
of Il is at least 2v(T).

If Vi — N{y] # 0, then the connected domination number of the subgraph
of T induced by V} is two more than the connected domination number of
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the subgraph induced by V. — (N[y] — {z}). Hence, the weight of II is two
more than the neo-colonization I? = {V;, Vs, ..., Vi1, Vi — (N[y] — {z})}
of T" of T". Since the weight of II? is at least 2(y(T) — 1), the weight of II
is at least 2y(T').

Case 2. degr(z) = 2. Let Np(z) = {b,y}, and T/ = T — N[y]. Then
Y(T') = v(T) — 1, and D’ is a minimum dominating set of T” if and only if
D' U {y} is 2 minimum dominating set of T. Since conditions (a) through
(e) hold for every minimum dominating set of T, they also hold for every
minimum dominating set of T/. Therefore, v (T") = 2v(T").

Let D’ be a minimum dominating set of T”. Since condition (d) holds
for T, the vertex b & D'.

Let II = {W}, Va,...,Vi} be a minimum weight neo-colonization of T'.
Then all leaves adjacent to y belong to the same part as y, say Vj, (otherwise
IT does not have minimum weight). If z also belongs to Vi, the weight of
II is two more than the weight of IT’, and it follows that ¥ (T) = 2v(T).

Hence, suppose that z does not belong to Vj. If there are at least two
leaves adjacent to y, or if the part containing z, say Vi_, is not a star
centered at b, then the weight of IT is two more than the weight of IT’, and
it follows that y2(T) = 2v(T).

Assume then, that z is the only leaf adjacent to y and the part Vi_;
containing z is a star centered at b. The list I1" = {V;,V,,...,Vi_2} is a
neo-colonization of T’ — Vj_; which is of weight at most 2(y(T") — 1) — 1.
Hence the domination number of T/ — Vj._, is at most ¥(T') — 2 < y(T").
Since Vj._, is a star centered at b, there is a dominating set D" of T’ that
contains b. Therefore D" U {y} is a dominating set of T in which y has only
one external private neighbor. Hence condition (d) does not hold for T, a
contradiction.

The result now follows by induction. O
Let D be a dominating set of the tree T. The domination labeling of T

with respect to D is the function ¢p : V — {1,2,...,|D|} that assigns to
each vertex = € V' the integer {p(z) = |[N[z] N D|.

Given a domination labeling ¢p, we use F|(T'), or F} when the context
is clear, to denote the subgraph of T induced by the set of vertices that are
labeled one.

Corollary 5.11 Let T be a tree. Then ¥ = 2v if and only if every



minimum dominating set D satisfies

(a) 1 <€lp(v) <2 for everyve V.

(b) £p(x) =1 for everyxz € D.

(c) The set Ly = {z : £p(z) = 2} is an independent set.
(d) If x € D, then |Np, (z)| > 2.

(e) There are no two vertices z,y € D such that the subgraph of Fy
induced by N, [z] U Ng,[y] is isomorphic to Ps.

Corollary 5.12 Let T be a tree. Then v < 2v if and only if there exists
a minimum dominating set D and a domination partition with respect to
D such that at least one of the following statements holds:

(a) Some vertez is adjacent to three vertices of D.

(b) Two vertices of D are adjacent.

(c) There are adjacent vertices x and y that are each adjacent to two
vertices of D.

(d) The subgraph induced by some part of the partition is isomorphic to
K 1 OT Kg.

(e) There are two parts X and Y such that the subgraph of T induced by
X UY is isomorphic to Ps.

6 Trees with 7y* =0

The following is a fundamental upper bound on the m-eternal domination
number.

Theorem 6.1 (6] Let G be a graph. Then vX(G) < B(G).

Let s be a stem in a tree T with at least two vertices. We call s exposed
if it has at most one neighbor that is an internal vertex of T. Note that a
tree with at most two vertices does not have exposed stems by definition.

The next two propositions have simple proofs which we omit.
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Proposition 6.2 Every tree with at least two vertices that is not a star
has at least two exposed stems.

Proposition 6.3 Iteratively deleting ezposed stems and the leaves adjacent
to them partitions the vertices of a tree T into subsets that each induce a
star, and B(T') is the sum of the independence numbers of the stars in the
partition.

We consider the following operation which is a restriction of the proce-
dure in Proposition 6.3.

Operation EWS: If there is an exposed weak stem, delete it and its leaf.

Lemma 6.4 {10] If T’ results from one application of operation EWS to
T, then B(T") = B(T) = 1 and v2(T") = y3(T) - L.

The following lemma can be proved trivially by induction.

Lemma 6.5 IfT has an exposed strong stem that is adjacent to more than
two leaves, then v (T) < B(T).

Theorem 6.6 A tree with at least two vertices has § = ¥ if and only if
repeated applications of operation EWS reduces T to K, or Kj.

Proof. Suppose k applications of operation EWS reduces T to K; or Kb.
Form a neo-colonization {Vi,Va,...,Vi41} of T, where V; is the set con-
taining the stem and leaf deleted by the i** application of the operation,
1 <7 <k, and Vi is the vertex set of the final K; or K. By the discus-
sion above, the weight of this neo-colonization is 8. We show that there is
no neo-colonization of smaller weight by induction on n = |V}.

By inspection, the statement is true for trees with two or three vertices.
Suppose it holds for trees with between two and n — 1 vertices, for some
n > 4. Let T be a tree with n vertices. If operation EWS can be applied
to T, then the result follows by induction. Hence suppose EWS cannot be
applied to T. Then every exposed stem is strong. Further, by Lemma 6.2,
T has at least two strong stems.

By Lemma 6.5, if there is an exposed strong stem which is adjacent to
more that two leaves then S(T) > v and the statement follows. Hence



assume every exposed strong stem is adjacent to exactly two leaves. Since
T has at least four vertices, it follows that every exposed strong stem is
adjacent to a unique internal vertex of T'.

Let s be an exposed strong stem of T with maximum eccentricity. Let
X be the set consisting of s and the two leaves to which it is adjacent. It is
clear that 8(T) = 2+ B(T — X). We now consider the outcome of applying
operation EWS to T — X.

Suppose first that operation EWS does not reduce T' — X to K; or
K,. Then, by the induction hypothesis, S(T — X) > y2(T — X). Let
{V1,Va,...,V,} be a minimum weight neo-colonization of T'— X. Then
{1, Va,...,V,, X} is a neo-colonization of T' of weight 2 + 3> (T — X). In
this case we have

B(T) = 2+B(T-X)
> 2+ (T-X)
2z T (T),

and the result follows.

Now suppose that operation EWS reduces T — X to K; or K. We
claim that it is reduced to K;. Since T has at least two exposed strong
stems, T — X has at least one, say w. The reduced graph arising from
each application of EWS is a tree. No application of EWS deletes w or a
leaf adjacent to w unless the tree under consideration is a path on three
vertices. This proves the claim.

Next, we claim that T is a caterpillar with spine s, z;, 3, ..., T, w, such
that

(a) each of z1, z3, ..., Tk is either a loner or a weak stem.

(b) there are two leaves adjacent to s and to w;

To see that T is a caterpillar, first recall from above that EWS cannot be
applied to T. Further observe that T can have no vertex v adjacent to three
internal vertices because EWS would delete all internal vertices on the path
from s to v in T — X and then could not be applied again. (Since w is an
exposed stem, v # w.) Similarly, neither T — X nor any tree derived from
it by applying operation EWS has at least two strong stems. Point (a) now
follows. Point (b) was established above. This proves the claim.

We complete the proof by showing that S(T) > 43°(T). Partition the
spine of T, i.e., the vertices s, r1, 2, ..., Tk, W, into maximal paths of stems
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and maximal paths of loners. Since none of the reduced trees arising from
T — X has two strong stems, and T — X is reduced to K, each maximal
path of loners has an even number of vertices.

Suppose first that T has no loners. Then T has connected domination
number k + 2 and independence number k +4. Hence assume T has loners.
Construct a neo-colonization of T by forming a part out of each maximal
path of consecutive stems along the spine of T, the leaves adjacent to them,
and any loner adjacent to exactly one of these stems. The remaining vertices
are all loners belonging to disjoint paths on an even number of vertices.
Partition each of these paths into Kj’s.

We argue that there is an independent I set of size greater than the
weight of the neo-colonization. The part containing s has independence
number two more than connected domination number. Put these vertices
into I. The maximum independent set in this part contains the vertex that
was a loner in T. Each K part has weight one and contributes one vertex
to I. The vertex that it contributes is the one farthest from s along the
spine of T. Proceeding away from s along the spine of T', eventually there
is a part containing a maximal path of stems. It has independence number
two more than connected domination number, but the loner closest to s in
this part is cannot be included in I because it is adjacent to the loner from
the previous part which belongs to I. Put the remainder of the maximum
independent set of the part, i.e. all but this loner, into I. Continuing in this
way, eventually the part containing w contributes its connected domination
number plus one vertices to I. Thus the weight of the neo-colonization is
|I] — 1. This completes the proof. O

An alternate characterization is given as a corollary of the previous
result.

Corollary 6.7 Let T be a tree with at least two vertices. Then yX(T) =
B(T) if and only if there exists a minimum-weight neo-colonization of T
containing only parts that are K3’s or P3’s and there is at most one Pj.

K1 3 with each edge subdivided twice is an example showing that the
minimum weight condition on neo-colonization is necessary in Proposition
6.7. This graph has a neo-colonization consisting of K»’s and Ps’s but has

m (T) < B(T).



7 Concluding Remarks

We begin this section by stating a result of Chambers et al. [5] which also
appears in the survey [13].

Theorem 7.1 [5, 18] For all connected graphs, v° < [J%"I

The trees for which ¥ = < and those for which y® = [ achieve
equality in this bound. There are other trees for which equality holds. One
example is the tree obtained from the path v;,vs,...,vs by adding two
vertices vyg,v1; and the edges v4v10, Usv11. Characterizing the trees such
that y° = ['—‘;—l] remains an open problem.

Acknowledgments
We thank an anonymous referee for their careful reading of the paper, their

helpful comments and corrections.

References

[1] M. Anderson, C. Barrientos, R. Brigham, J. Carrington, R. Vitray,
J. Yellen, Maximum demand graphs for eternal security, J. Com-
bin. Math. Combin. Comput. 61 (2007), 111-128.

[2] A.P. Burger, E.J. Cockayne, W.R. Griindlingh, C.M. Mynhardt,
J.H. van Vuuren, W. Winterbach, Infinite order domination in graphs,
J. Combin. Math. Combin. Comput. 50 (2004), 179-194.

[3] J.F.Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having
domination number half their order. Period. Math. Hungar. 16 (1985),
287-293.

[4] C. Payan and N.H. Xuong, Domination-balanced graphs. J. Graph
Theory 6 (1982), 23-32.

[5] E. Chambers, W. Kinnersly, and N. Prince, Mobile eternal security in
graphs, manuscript (2008).

[6] W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, Eternal security in
graphs, J. Combin. Math. Combin. Comput. 52 (2005), 169-180.

49



[7] J. Goldwasser, W.F. Klostermeyer, Tight bounds for eternal dominat-
ing sets in graphs, Discrete Math. 308 (2008), 2589-2593.

[8] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domi-
nation in Graphs. Marcel Dekker, New York, 1998.

[9] W.F. Klostermeyer, G. MacGillivray, Eternal security in graphs of
fixed independence number, J. Combin. Math. Combin. Comput. 63
(2007), 97-101.

[10) W.F. Klostermeyer, G. MacGillivray, Eternal dominating sets in
graphs, J. Combin. Math. Combin. Comput. 68 (2009), 97-111.

[11] W.F. Klostermeyer and C.M. Mynhardt, Graphs with Equal Eternal
Vertex Cover and Eternal Domination Numbers, Discrete Math. 311
(2011), 1371-1379.

[12] W.F. Klostermeyer and C.M. Mynhardt, Vertex Covers and Eternal
Dominating Sets, Discrete Applied Mathematics 160 (2012), pp. 1183-
1190.

(13] W. F. Klostermeyer, C. M. Mynhardt, Protecting a Graph with Mobile
Guards, to appear in Movement on networks, Cambridge Univer-
sity Press.



