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Abstract A sequence {a;|1 < i < k} of integers is a weak Sidon
sequence if the sums a; + a; are all different for any i < j. Let g(n)
denote the maximum integer & for which there exists a weak Sidon sequence
{ai|1 <i < k} such that 1 < a; < --+ < ax < n. Let the weak Sidon
number G(k) = min{n | g(n) = k}. In this note, g(n) and G(k) are studied,
and g(n) is computed for n < 172, based on which the weak Sidon number
G(k) is determined for up to k = 17.

1 Introduction

A sequence {a;|l < i < k} of integers is a Sidon sequence if the sums
a; + a; are all different for any i < j. Let f(n) denote the maximum
integer k for which there exists a Sidon sequence {a;|1 < i < k} such that
1<a; <--- < ar <n. The Sidon sequence was first considered by the
Hungarian mathemnatician Simon Sidon [7] in 1932.

The Sidon sequence, also called Golomb rulers, was well studied by
mathematicians and computer scientists. It has many applications, for
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example, in radio frequency selection, radio antennae placement and error
correcting codes [1, 2, 5].

Let the Sidon number F(k) = min{n| f(n) = k}. Computing values
of Sidon numbers is a famous and difficult problem. Shearer [8] proposed
one of the first efficient algorithms which was able to compute minimuin
Golomb ruler up to 16 marks. Later, Dollas et al. [9] introduced the
GVANT algorithm and managed to compute the optimal Golomb ruler with
19 marks. With the help of “Distributed.Net” who had taken a liking to
Golomb rulers, minimum Golomb rulers with 20 < m < 23 were obtained,
see [11]. More recently, the OGR project is coordinating the search for
optimal Golomb rulers with 24, 25 and 26 marks. It is already difficult
to solve for k > 27, and it is also interesting to build their upper bounds
and also some techniques have been proposed in the literature. Projective
plane and affine plane constructions for the upper bound on F'(k) for more
k < 150 can be found in [12].

Similarly, a sequence {a;|1 < i < k} of integers is a weak Sidon sequence
if the sums a; + a; are all different for any ¢ < j. Let g(n) denote the
maximum integer k for which there exists a weak Sidon sequence {a;|1 <
i < k} such that 1 € a3 < --+- < ax £ n. Let the weak Sidon nuinber
G(k) = min{n|g(n) = k}.

In (6], Ruzsa proved that g(n) < n'/2 + O(n!/4). An alternate proof of
this result was presented in [3]. There were little references on values or
bounds for small weak Sidon numbers.

In this paper, g(n) and G(k) are studied. After preliminaries in Sec-
tion 2, some general results are proved in Section 3. In Section 4, g(n) is
determined for n < 172, based on which the weak Sidon number G(k) is
determined for up to k = 17, with the constructions on the upper bounds
given in the Appendix. Section 5 concludes the note.

2 Preliminaries

Given a positive integer n,to search a weak Sidon sequence S C {1,2,---,n}
with the minimum cardinality, we need the following simple lemnmas.

Lemma 1 Let ¢(A) be the mazimum cardinality of a weak Sidon sequence
as a subset of A. Ift is an integer, then c(A) = c(A+t), where A+t =
{z+t|ze A}

If A={1,2,---,n}, then ¢(A) = g(n).

By reflection symmetry, we have
Lemma 2 If S is a weak Sidon sequence of order g(n) in {1,2,---,n}, a
and T are the prefix and suffix of S of length {n/2], respectively, then either
#(a) = [g(n)/2] or #(1) 2 [9(n)/2].
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We also have the following lemma.

Lemma 3 For any integern > 1, g(n+1) = g(n) org(n+1) = g(n) +1,
and g(n + 1) = g(n) + 1 if and only if there is a weak Sidon sequence
{ai |1 <i < g(n+1)} that contains n + 1.

3 Some general results on weak Sidon num-
bers

It is not difficult to see that any subsequence of a weak Sidon sequence
is also a weak Sidon sequence. This can be used to prove the following
theorem, which will be important in the computation in the next section.

Theorem 1 Ifk > 4 and {a;|1 < i < k} is a weak Sidon sequence, where
l=a < - < ax = G(k), thena; < G(k) — G(k—i+ 1)+ 1 for any
i€ {2,---,k—1}.

Proof. Since that {a;|1 < i < k} is a weak Sidon sequencee, {a;,---,ax}
is a weak Sidon sequence too. Thus ay —a; > G(k —i+ 1) — 1 for any
i€ {2,---,k—-1}. So we have a; < G(k) — G(k —1+ 1)+ 1 for any
ie{2, .-, k-1}. ' o

We can see that G(n) < F(n). Similar to some known results on F'(n),
we can prove the following results on G(n) in Theorem 2 and Theorem 3.
For integers ki,ke > 1, it is not difficult to see that G(k; + k2) >
G(k1)+G(k2). In fact, we can do a little better as in the following theorem.

Theorem 2 For integers ki, ko > 2, G(ky + ko — 1) > G(k1) + G(k2) — 1.

Proof. Suppose m = G(k; + ko — 1) and A = {a1, ", 0k, +k,—1} IS 8
weak Sidon sequence, where 1 = a; < -+ < Gk, 4k,—1 = m. Let A =
{a1,---,ax,}, and Ay = {ak,,"+,ak, +k,—1}- So both A; and A, are weak
Sidon sequences. Thus ax, —1 = ax, —e; 2> G(k;) —1 and ax, 4x,—1 — Gk, =

m —ag, > G(k1 + kg — 1) — 1, respectively. So m —1 > G(k1) + G(k2) — 2
Thus G(ky + kg — 1) 2> G(k1) + G(k2) — 1.

For integers kq,k2 > 2, we can prove that F'(ky + ko — 1) > F(ky) +
F(kg) — 1 similarly.
We know that G(k + 1) > G(k) + 1. Now we will improve this result.

Theorem 3 For any integer k > 3, we have

(a) G(k+1) > G(k) + 1;

(b) if G(k + 1) = G(k) + 2, then there is a weak Sidon sequence A =
{a1, - ,ak+1} € {1,---,G(k + 1)} such that ay < --- < ag41, where a; =
l,a2 = 2,ax = G(k+1) — 2 and ax4+1 = G(k +1).
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Proof. (a) We know that G(k + 1) > G(k) + 1. Suppose that m = G(k +
1) = G(k) + 1 and A = {a1,---,ar4+1} is a weak Sidon sequence, where
l=a; <+ < Qr+1 =M. Let A; = {al,-n-,ak}, andAz = {ag,---,ak+1}.
It is not difficult to see that both A; and A, are weak Sidon sequences, and
az =2 and ax = G(k) = m—1. So {1,2,m —1,m} C A, which contradicts
with that A is a weak Sidon sequence. Thus G(k + 1) > G(k) + 1.

(b) can be proved similarly. o

From definitions of Sidon sequences and weak Sidon sequences, it is not
difficult to see that a Sidon sequence is a weak Sidon sequence without
arithmetic progressions of length 3. So we have the following theoremn.

Theorem 4 If n = G(k) < F(k) for an integer k > 2, and A = {a;|1 <
i < k} is a weak Sidon sequence, where 1 =ay < --- < a = n, then there
is an arithmetic progression of length 3 in A.

4 Values of some weak Sidon numbers

In this section, we will compute G(k) for k € {2,3,4,5} without the help
of computers firstly, and then compute more weak Sidon numbers by comn-
puters based on results proved in earlier sections.

4.1 Values of a few small weak Sidon numbers

In this subsection, we obtain the value of G(n) for n € {2,3,4,5} without
the help of computers.

It is not difficult to see that g(2) = 2 and ¢g(3) = 3. So we have
G(2) =2, G(3) = 3.

Because that g(4) > ¢(3) = 3, and {1,2,3,4} is not a weak Sidon
sequence, we know that g(4) = 3. Since {1, 3, 4, 5} is a weak Sidon sequence,
we can see that g(5) = 4. Thus G(4) = 5.

By (2) in Theorem 6 we know that G(5) > G(4) +1=5+1=6. Thus
9(6) = 4.

If g(7) = 5, then by (b) in Theorem 6 we know there is a weak Sidon
set A= {a;|1 <i<5}suchthata; =1,a0=2,a4=5andas="7. Soitis
not difficult to see that a3 can not be any integer in {3, 4, 6} because that
A is a weak Sidon set. Thus ¢g(7) = 4 and ¢(8) < 5. Since {1,2,3,5,8} is
a weak Sidon set, we have g(8) = 5 and G(5) = 8.

By (a) in Theorem 3 we know that g(9) = 5.
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4.2 Values of more weak Sidon numbers obtained by
computing

In this subsection, we will compute g(n) for n € {10,---,172} by comput-
ers.

In order to speed up the search, we compute G(k + 1) based on lemmas
and theorems given in Section 2 and Section 3, among which Theorem 4 is
an important one.

If we obtain G(k) = m, then by Theorem 2 we know that g(m+1) =k
and G(k+1) > m +2.

For i = m + 2, we will search if there is a weak Sidon sequence S =
{ai|1 <i<k+1}suchthat 1 =a; <--- < agy1 = 1. If there exists such
an S, then G(k+1) = m+2. Otherwise, we will do similar computation for
i =m+3 and so on, until find a weak Sidon sequence S with cardinality i.

Note that (b) in Theorem 3 can be used in the case G(k + 1) = m + 2,
where we can suppose that a; = 2 and a = m. It seems that G(k + 1) >
G(k) + 2 for any integer k > 4, but it may be not easy to prove.

Values of some weak Sidon numbers obtained and some known Sidon
numbers are listed in Table 1. The constructions are given in the Appendix
of this paper.

For n > 160, it needs several hours to compute g(n). For instance,
it needs about than 25 hours to compute g(165) on our computer (CPU
3.2GHz). So we have not computed g(n) directly one by one for n > 166.
To compute G(17), we compute if G(17) > n for n € {175,174}. We find
a good construction in {1,..-,174}, which is in {1,--.,172} too. So we
obtain g(17) < 172. Then we obtain that g(171) < 17 by computing. So
G(17) =172, and g(n) = 16 for any n € {152,---,171}.

Table 1: Values of G(k) and known values of F'(k)

k 2 3 4 5 6 7 8 9 10 11 12
G(k) 2 3 5 8 13 19 25 35 46 58 72
Fk) 2 4 7 12 18 26 35 45 56 73 86

k 13 14 15 16 17 18 19 20 21 22 23
G(k) 87 106 127 151 172
F(k) 107 128 152 178 200

5 Conclusions and Remarks
Similar to Sidon numbers, weak Sidon numbers are difficult to compute. In

this paper, g(n) and weak Sidon number G(k) are studied. By computing
g(n) for integer n < 172, we obtain the exact values of G(k) for k < 17.
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As mentioned above, G(k) < F(k). It seems interesting to ask the
following question.

Qusetion. Is there a constant C such that F(k) — G(k) < C for any
integer k?

We know that g(n) < f(n). Maybe g(n) is much smaller than f(n) for
any integer n that is not very small. For instance, by computing we obtain
that g(172) = 17, on the other hand, we know that F(17) = 200 (see [12]).
It is interesting to study upper bounds for more weak Sidon numbers by
the projective plane and affine plane constructions similar to those in [12].
This will be our future direction.

Appendix

For any k € {2,---,17}, in the following table, we show the minimum
integer n such that g(n) = k, together with the construction.

Table 2: Values of g(n)

n  g(n) construction
2 2 {1,2}
3 3 {1,2,3}
4 5 {1,2,3,5}
5 8 {1,2,3,5,8}
6 13 {1,2,3,5,8,13}
7 19 {1,2,3,5,9,14,19}
8 25 {1,2,3,5,9,15,20,25}
9 35 {1,2,3,5,9,186, 25, 30, 35}
10 46 {1,2,8,11,14, 22,27, 42,44, 46}
11 58 {1,2,6,10,18, 32, 35, 38, 45, 56, 58}
12 58 {1,2,12,19,22,37,42,56,64,68, 70, 72}
13 87 {1,2,12,18, 22, 35,43, 58, 61, 73, 80, 85, 87}
14 106 {1,2,7,15,28,45,55,67,70,86,95,102,104, 106}
15 127 {1,2,3,23,27,37,44,51,81,96,108,111,114, 119, 127}
16 151 {1,3,5,16,27,37,55,58,75,83,102,116,139, 145, 146, 151}
17 172 {1,6,10,11,12,44, 63 76, 89 113,116, 130,137, 144,152,
160,172}
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