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Abstract. A family G of connected graphs is a family with con-
stant metric dimension if dim(G), is finite and does not depend
upon the choice of G in G. In this paper, we show that the sunlet
graphs, the rising sun graphs and the co-rising sun graphs have
constant metric dimension.
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1 Notations and preliminary results

For a connected graph G, the distance d(u,v) between two vertices
u,v € V(G) is the length of a shortest path between them. A vertex w of
a graph G, is said to resolve two vertices u and v of G if d(w, u) # d(w,v).
Let W = {w;, w2, ....,wx} be an ordered set of vertices of G, and let v be a
vertex of G. The representation of a vertex v with respect to W denoted by
r(v|W) is the k-tuple (d(v,w;),d(v,w2),.....,d(v, wx)). If distinct vertices
of G, have distinct representations with respect to W, then W is called a
resolving set for G, [3]. A resolving set of minimum cardinality is called a
metric basis for G, and the cardinality of this set is the metric dimension
of G, denoted by dim(G).

For a given ordered set of vertices W = {w;,ws, ....,wr} of a graph G, the
ith component of r(v|W) is 0 if and only if v = w;. Thus, to show that W
is a resolving set it suffices to verify that r(z|W) # r(y|W) for each pair of
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distinct vertices z,y € V(G)\W.

Caceres et al. (1] found the metric dimension of the fan graph f,,. Tomescu
et al. [11} found the metric dimension of Jahangir graph Jon.

In [3] Chartrand et al. proved that a graph G has metric dimension 1 if
and only if it is a path, hence path on n vertices constitute a family of
graphs with constant metric dimension, and cycles with n > 3 vertices also
constitute such a family of graphs as their metric dimension is 2. In [2] J.
Caceres et al. proved that:

dim(p, x Cp) = {

Prisms D, are the trivalent plane graphs obtained by the cartesian prod-
uct of the path P, with a cycle Cy; they also constitute a family of 3-
regular graphs with constant metric dimension. In [6], Javaid et al. proved
that the antiprism graph A, constitutes a family of regular graphs with
constant metric dimension as dim(A,) = 3, for every n > 5.

In this paper, we extend this study by considering the metric dimension
of sunlet graphs, the rising sun graphs and the co-rising sun graphs. We
show that these graphs constitute families of graphs with constant metric
dimension.

The prism D,, n > 3, consists of an outer n-cycle v,v5...v,, an inner n-
cycle uyus...u,, and a set of n spokes u;v;, where n + i is taken modulo n.
The sun let graph S, is constructed from the graph D,, by deleting the
edges a;a;+1 from E(D,), for i = 1,2,...,n, where n+1 is taken modulo n.
The antiprism graph A,, n > 3, consists of an outer n-cycle a;as...a,, an
inner n-cycle bybs...b,, and a set of n spokes b;a; and b;41a;,7 = 1,2,3,...,n
where n + 1 is taken modulo n.

The rising sun graph S, is obtained from the antiprism graph by deleting
the edges a;a;41 from E(A,), i = 1,2,...,n and the vertex a, from V(A4,).
The co-rising sun graph Sz is the extension of the above graph S, as fol-
lows: We introduce two new vertices z, y. Introduce two new edges xb,,
ybr. Relabel the vertices of S, as {u; =b;|i = 1,2,...,n} and {z =v;,a; =
U2,y Y = Uny1}-

2, if n is odd;
3, otherwise.

2 Sun related graphs with constant metric dimension.
In this section we show that the graphs S,,, S, and S defined above have
constant metric dimension.

Theorem 1. Forn > 3,

. ’ 2, for3<n<5;
dim(S,,) = { 3, forn>6.
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Proof By [3] it is easy to show that W = {v;,v,} is a resolving set for
S when 3 £ n < 5, because it is not a path. For n > 6 consider the set
W {v1,v2, v} C V(.S' ). We show that W is a resolving set for S We
find the representations of vertices of V(S,) \ W with respect to W The
representations of V(S,,) \ W vertices are as follows:

(1,2, k), for i = 1;
. _ ) Gi-1k+1-14), for2<i<k;
r@lW) =9 (k1 1,k,2), fori=k+1;
(% —i+2,2k—i+3,i—k+1), fork+2<i<n.
And
(f+1,5,k+2—7), for3<i<k-1;
r(v;|W) (k+2,k+1,3), fori=k+1;
(2%k—i+3,2k—i+4,i—k+2), fork+2<i<n.

We note that there are no two vertices having the same representations
implying that dim(S, ) < 3. We now show that dzm(S ) > 3, by proving
that there is no resolving set W, with |W| = 2 for S,,. Contrarily, suppose
that |W| = 2, then we have the following possﬂ'nhtles

(1). Both vertices belong to {u;} C V(S,), i =1,2,..,n. Without loss of
generality, we suppose that one resolving vertex is u;, and the other is u,,
(2<t<k+1). For2<t<k, we have,

T(unl{ulaut}) = T(vll{ulaut}) = (1,1).

For t = k + 1, we have,

r(ug|{u1, ue}) = r(ua|{v1,us}) = (1, k — 1), a contradiction.

(2). Both vertices belong to {v;} € V(S,), i = 1,2,...,n. Without loss of
generality, we suppose that one resolving vertex is v;, and the other is v,
(2<t<k+1).For2<t<k-—1,we have,

r(veg1{ve, ve}) = r(ueso|{vr, ve}) = (£ +2,3).

For t =k,

T(ues2|{v1, ve}) = r(ve=1|{v1,v:}) = (k,3), similarly for ¢ = k+ 1, we have,
r(v2l{v1,v:}) = r(un|{v1,v:}) = (3,t), a contradiction.

(3). One vertex belong to {u;} and the other vertex belong to {v;}, for
i = 1,2,...,n. Without loss of generality consider one resolving vertex is
uy, and the other is v, (1 <t <k+1). For1 <t <k—1, we have,
7(Un|{u1,0e}) = (un_1[{u1,v:}) = (2,£ +2).

Fort =k,

r(urp2|{u1, ve}) = r(ve—1|{u1,v:}) = (k — 1,3), similarly for t =k + 1, we
have,

r(un|{u1,ve}) = r(uz|{u1,v:}) = (1,k), a contradiction.

Hence, from above it follows that there is no resolving set with two vertices
for V(S,). Thus, dim(S,,) = 3.
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Theorem 2. Forn > 3,

. z 2, for n = 2k;
dmw&)_{3,btn=2k+L

Proof. We distinguish two cases:

Case(l) Forn =2k, k € Z*. Let W = {vy, e} C V(S.), we show that
w is resolving set for S.. Consider the representations of any vertex of
V (8, )\W with respect to W.

Representations of the vertices are as follows:

(1,%), i=1;
an ) —Lk+1-4), 2<i<k;
rwlW) =1 k1), i=k+1;

2k +2—i,i—k), k+2<i <2k
And

. (G k=i+1), 2<isk-1
T(UzIW)—{(2k+2—ii—-k+l) k+1<i<2-1.

Since these representations are pair-wise distinct, it follows that dzm(S )<
2. By [3] it is clear that dim(S,) > 2. Which implies that dim(S,,) = 2, for
even n.

Case(2). For n = 2k + 1, k € Z*. Consider W = {v1,v2, vie41} C V(S Y,
we show that W is resolving set for S Consider the representations of any
vertex of V (S, )\W with respect to W

Representations of the vertices are as follows:

(1,3 —i,k+2—1), for1 <i<2;
‘ _ ) E-1i-2,k+2—1), for3<i<k+1;
r(w|W) = (k+1,k,1), fori=k+2;
2k —i4+3,2k—i+4,i—k), fork+3<i<2k+1.
And
(yi—1,k+2—1), for 3 < i < k;
r(v;|W) (k+1,k+1,2), fori=k+2;
(2k —i+22k—i+3,i—k+1), for k+3<i <2k

We note that there are no two vertices having the same representations
implying that dim(S,,) < 3. For the other side of the proof, we show that
dim(S,,) > 3, by proving that there is no resolving set having two vertices.
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Contrarily, suppose that |W| = 2, then we have the following possibilities:
(1). Both Vertices belong to {u;} C V( S ), for i = 1,2,...,n. Without loss
of generality, we suppose that one resolvmg vertex is uj, and the other is
u, (2<t<k+1). For 2<t<k-—1, we have,
T(un-ll{ul,ut}) = r(vn—ll{uhut}) = (2: t)'
For t =k,
r(ve|{u1, us}) = r(ues1]{u1,we}) = (¢, 1), a contradiction. Similarly for ¢t =
k + 1, we have,
r(vi|{u1, ue}) = r(un|{u1, ue}) = (1,%), a contradiction.
(2). Both Vertices belong to {v;} C V(S,,), for i =1,2,...,n — 1. Without
loss of generality, we suppose that one resolving vertex is v;, and the other
isv, (2<t<k+1).For2<t<k-1, we have,
7(Un-1{v1,ve}) = r(un-1l{vi,ve}) = (3,2 +2).
For t =k,
r(ugso|{v1,v:}) = r(veg1]{v1,ve}) = (¢ + 1,1), similarly for t = k41, we
have,
r(vg|{v1, v:}) = r(unl{v1,ve}) = (2,k), a contradxctlon

(3). One vertex belong to {u;} - V(S.), i = 1,2,..,n and the other
vertex belong to b € {v;} C V(S,), for i = 1,2,...,n — 1. Without loss
of generality, we suppose that one resolving vertex is u1, and the other is
v, (1<t <k+1). Forl<t<k, we have,
T(vera|{u1, ve}) = T(ueq|{wa, ve}) = (£ +1,2).
Fort=k+1,
r(ug|[{u1,v:}) = r(ueq2|{u1,v:}) = (k,1), a contradiction.
Hence, from above it follows that there is no resolving set with two vertices
for V(S,,). Thus, dim(S.,) = 3.

(m]

Theorem 3. Forn >3,

emy [ 2, forn=2k+1;
dim(Sy) = { 3, for n =2k, except n =4.

Proof. We distinguish two cases:

Case(1). For n = 2k + 1, k € Z*. Suppose W = {v,vk41} C V(S3), we
show that W is resolving set for S};. Consider the representations of any
vertex of V(S2)\W with respect to W.

Representations of the vertices are as follows:

(i,k+1-1), 1<i<k
r(uw;|W) =< (4,1), i=k+1;
(2k+3—ii—k), k+2<i<2%+1.
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And

o [GR-it?),  2<i<k
”(”=|W)‘{(2k+4—i,i—k),k+2si52k+2-

Since these representations are pair wise distinct it follows that dim(S};) <
2. By [3] it is clear that dim(S};) > 2. Which implies that dim(S;;) = 2, for
odd n.

Case(2). For n = 2k, k € Z*, when k = 1 then dim(S}) = 2. For k > 2,
suppose W = {vy, v2,vk+1} C V(S},), we show that W is resolving set for
Sr. Consider the representations of any vertex of V(S;;)\W with respect
to W.

Representations of the vertices are as follows:

(1,1,k), for i = 1;
' _ ) Gi-1Lk+1-14), for2<i<k;
r(uw|W) = (k+1,k,1), fori=k+1;
(2k—i+3,26—i4+3,i—k), for k+2<1i <2k
And
(4,i-1,k+2-1), for3<i<k;
r(vi| W) = (k+2,k+1,2), fori=k+2;
VW= 2k +4-i,2k+4—ii—k), fork+3<i<2k+1;
3,3,k +2), for i = 2k + 2.

We note that there are no two vertices having the same representations
implying that dim(S;;) < 3. For the other side of the proof, we show that
dim(S;,) > 3, by proving that there is no resolving set having two vertices.
Contrarily, suppose that |W| = 2, then we have the following possibilities:
(1). Both vertices belong to {u;} C V(S}), i = 1,2,....,n. Without loss of
generality, we suppose that one resolving vertex is u;, and the other is u,,
(2<t<k+1).For2<t<k-1, wehave,

T(vll{ulv ut}) = r(unl{ulaut}) = (11 t)

Fort =k,

r(v|{u1, ue}) = r{uesr|{u1,ue}) = (¢,1), a contradiction. Similarly for ¢t =
k + 1, we have,

r(vs|{u1,ue}) = r(vnl{v1,w}) = (1,k — 1), a contradiction.

(2). Both vertices belong to {v;} C V(S3), i = 1,2,....,,n + 1. Without loss
of generality, we suppose that one resolving vertex is v;, and the other is
vy, (2 <t <k+1). Then for 2 <t < k, we have,

r(vns1l{v1, ve}) = r(val{v1,ve}) = (3,2 + 1).

Fort=k+1,

r(val{v1,ve}) = r(un|{v1,v:}) = (2, k), a contradiction.
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(3). One vertex Vertex belong to{u;} C V(S?), for i = 1,2, ...,n, and other
vertex belong to {v;} C V(S,), for i = 1,2,...,n + 1. Without loss of
generality, we suppose that one resolving vertex is u;, and the other is v,
(1<t<k+1). For1<t<k, we have,
T(vns1l{ur, ve}) = r(val{ur,ve}) = (2,2 +1).
Fort=k+1,
r(vo|{u1,v}) = r(un|{v1,v}) = (1, k), a contradiction.
Hence, from above it follows that there is no resolving set with two vertices
for V(S;). Thus, dim(S;;) = 3.

a
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