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Abstract

Multilevel Hadamard matrices (MHMs), whose entries are inte-
gers as opposed to the traditional restriction to {1}, have been
introduced as a way to construct multilevel zero-correlation zone se-
quences for use in approximately synchronized code division multi-
ple access (AS-CDMA) systems. This paper provides a construction
technique to produce 2™ x 2™ MHMs whose 2™ alphabet entries form
an arithmetic progression, up to sign. This construction improves
upon existing constructions because it permits control over the spac-
ing and overall span of the MHM entries. MHMs with such regular
alphabets are a more direct generalization of traditional Hadamard
matrices and are thus expected to be more useful in applications
analogous to those of Hadamard matrices. This paper also intro-
duces mixed-circulant MHMSs which provide a certain advantage over
known circulant MHMs of the same size.

MHMs over the Gaussian (complex) and Hamiltonian (quater-
nion) integers are introduced. Several constructions are provided,
including a generalization of the arithmetic progression construction
for MHMs over real integers. Other constructions utilize amicable
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pairs of MHMs and ¢-MHMs, which are introduced as natural gener-
alizations of amicable orthogonal designs and c-Hadamard matrices,
respectively. The constructions are evaluated against proposed crite-
ria for interesting and useful MHMSs over these generalized alphabets.

1 Overview

This paper presents improved multilevel Hadamard matrices (MHMs) and
introduces MHMs over the Gaussian (complex) and Hamiltonian (quater-
nion) integers. Background information on MHMs is provided in Subsection
2.1 and a recursive algorithm for order 2™ MHMs over arithmetic progres-
sion alphabets is provided in Subsection 2.2. These MHMs represent an
improvement over existing MHMSs due to the regular spacing and the con-
trolled span of their alphabet entries. In Subsection 2.3, we build order
2m mixed-circulant MHMs using pairs of order m MHMs. We also gener-
alize this construction to use pairs of c-MHMs, defined herein as a natural
generalization of c-Hadamard matrices [10].

C-MHMs over the Gaussian integers are introduced in Section 3. Sev-
eral constructions of C-MHMs are proposed, including a construction using
amicable pairs of MHMs, a construction using amicable pairs of c-MHMs,
and a generalization of the arithmetic progression construction for MHMs
over the real integers. We introduce Q-MHMs over the Hamiltonian in-
tegers in Section 4 and provide constructions that are generalizations of
those proposed for C-MHMs. Conclusions and open problems are reviewed
in Section 5.

2 Improved Multilevel Hadamard Matrices

2.1 Introduction to MHMs

In 2006, Trinh et al. [17] introduced multilevel Hadamard matrices for use
in approximately synchronized code division multiple access (AS-CDMA)
systems (4, 17]. Here, we provide a clarified definition as follows:

Definition 1. A multilevel Hadamard matrix (MHM) A of order n is an
n X n matriz such that each row and column contains some permutation
of the integer alphabet A = {ag,a1,...,an_1}, up to sign and where the a;
can be nondistinct, such that AAT = ATA = Z::ol |ai|2I,., where I,, is the
order n identity matriz.
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Previously it had been understood but not stated that each row and
each column must contain permutations of the same entries, up to sign. If
the entries a; are restricted to {%1}, then we obtain traditional Hadamard
matrices. On the other hand, if the a; are generalized to real variables,
then we obtain real orthogonal designs. Thus, MHMs may be viewed as
an intermediary between Hadamard matrices, which have been applied in a
variety of areas, including CDMA spreading systems, error control coding,
optical multiplexing, and the design of statistical experiments (3, 15], and
real orthogonal designs, which have also proven useful for wireless commu-
nications [11, 18].

We introduce the entry count of an MHM as follows:

Definition 2. The entry count of an MHM A is the number of distinct
entries up to sign in A; in other words, the number of alphabet entries with
distinct absolute values.

In general, we aim to achieve an entry count that is as high as possible.
An order n MHM with entry count n is considered the most interesting
since it provides more variety in element choice and more closely resembles
a real orthogonal design of full rate [11]. This notion had been captured
previously through the introduction of the rate of an MHM, defined as the
the number of elements of distinct absolute value divided by the order of
the matrix [1]. Given an order n MHM, it has entry count n if and only if
it has rate 1. A constructive proof has previously shown that there exist
entry count n MHMs of any order n [1]; accordingly, our work here focuses
primarily on order n MHMs of entry count n. We describe such MHMs as
full entry count MHMs.

2.2 MHMs Over Arithmetic Progression Alphabets

The existing construction [1] of full entry count order n MHMs has a draw-
back: the alphabets of the constructed MHMs involve entries of a geometric
progression, so the entries are not evenly spaced and they grow exponen-
tially large as the order of the MHM increases. These properties are likely
undesirable for applications, which would more naturally require entries
that are evenly spaced within a limited range, more directly generalizing
traditional Hadamard matrices over {+1}. In this subsection, we present
a recursive construction for MHMs whose entries form an arithmetic pro-
gression, up to sign, where the initial integer and common difference can be
chosen arbitrarily. These arithmetic progression MHMs achieve full entry
count, however they are constructed only for orders n = 2™. This construc-
tion was motivated by Trinh et al.’s example of an order 2™ = 4 MHM
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whose entries are consecutive integers beginning with 1 [17]. We expect
the additional control we provide by generalizing to arithmetic progression
alphabets (up to sign) will be useful. As shown below, our construction
also implies the existence of order 2™ MHMs whose entries are all primes,
bringing us to a stronger intermediary between Hadamard matrices and
real orthogonal designs.

We begin with some definitions. Recall first that a matrix M is sym-
metric if M = MT, is skew-symmetric if M = —M7T, and is skew if
M + MT = 2I where z is some constant.

Definition 3. Given a matriz X = [z;;], the sign matrix S = [s;;] corre-
sponding to X is defined as a matriz of the same size where s;; = zi;[|zi;|.
In other words, S is a matriz over {1} that encodes the signs of the cor-
responding entries of X.

Definition 4. The half-identity matrix of order 2™ is defined as J,, =

Igm-l O
0 —I2m-l
om-1,

, where Iym-1 represents the identity matriz of order

Note that J,, = JL and J2 = I. I is used here and will be used
throughout to represent the identity matrix of the most appropriate size in
context. Note also that although half-identity matrices exist for all even
orders, we only consider those with orders 2™.

Algorithm 1. Given two positive integers a and d, let

_ e a+d
Xl—[a+d —a ]
, and for k > 1, let

X _ X Xe+ d2’°Sk
L= X Tk +d28Skde —XiJk

, where Sy is the sign matriz corresponding to the Xy matriz and Jy is the
half-identity matriz of order 2%.

Example 1. For example, if a = 3,d = 2, then
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(3 5
X1 = | 5 3]
[ 3 5/ 7 9
5 —3| 9 -7
Xo= |73 5| ™
|9 7|-5 -3
[ 3 5 7 9] 11 13 15 17 ]
5 -3 9 -7[13 -11 17 -15
7 -9 -3 515 -17 -11 13
Yoo |0 7 -5 -=3|17 15 -13 -11
3T ™1t 13 -15 -17| -3 -5 7 9
13 —-11 -17 15| -5 3 9 -7
15 —17 11 -13| -7 9 -3 5
17 15 183 11|-9 -7 -5 -3 |

We will now show that the matrices produced by Algorithm 1 are
MHMs over arithmetic progression alphabets (up to sign) with initial term
a and common difference d. We begin with a lemma; Appendix A contains
straight-forward proofs by induction for each part.

Lemma 1. Let X,, be an order 2™ matriz constructed via Algorithm 1,
S be the corresponding sign matriz, and J,, be the half-identity matriz of
order 2™. Then,

1. Sy, is a traditional Hadamard matriz;

2, .‘5’,,‘}(,7,;l is skew; and

3. XmJmSZL is symmetric.

We are now prepared for our main result of this section:

Theorem 1. For each m > 1, Algorithm 1 produces full entry count order
2™ MHMs over arithmetic progression alphabets.

a a+d

Proof. Consider the matrix X; = [ a+d

rithm 1. Then,

] generated via Algo-

T _ vT _ 2a2+2ad+d2 0
XX, _XIX‘“[ 0 202 + 2ad + d?
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and it is clear that X is an MHM of order 2! over the arithmetic progression
alphabet {a,a + d}. Since X; was created via Algorithm 1, it follows
respectively from the three parts of Lemma 1 that its sign matrix S is
a traditional Hadamard matrix, that $;X{ is skew, and that X;J;ST is
symmetric. We also confirm these conditions directly by noting that S; =

1 1
1 -1

r_[1 1 a a+d)]_[2a+d d
R R | PSP B el A
is clearly skew; and
T _ a a+d 1 0 1 1] _ -d 2a+d
X‘JISI“[Hd -a Ho -1]|1 -1]" | 2a+d d
is clearly symmetric.

Let us assume that for some k > 1, X is a MHM of order 2* that was
created via Algorithm 1 and that has an arithmetic progression alphabet
starting at @ with common difference d. We will show this implies X,
(defined via Algorithm 1) is an MHM of order 2*¥+! with an arithmetic
progression alphabet starting at a with common difference d.

is clearly a Hadamard matrix;

Taking the transpose of Xj4; and recalling that JT = Ji gives

XxT. = Xt d2k B ST + Je XT
k+1 7= XT 4 dokST .4 '
and then
A B
XXl = [ cC D ]
where

A=2X, XT +d2* X, ST + d2*Si XF + d%22%S,.ST;

B = d2* X JiSF - d2* S, i X T

C = d2*S,Ji XF — d2* X, Ji ST; and

D = d?2% 8, Ji Ji ST + d2* S Ji i XF + d28 X i Ji ST + 2 X0 Je i XT .

To show that X4, is a MHM, we must show that A = D = bl for some
scalar b, and B = C = 0. From our expression for A we get:

A = 2wl +d?2% 8, ST + d2*( X ST + Si XT) (1)
= 2wl + d22%%2% [ + d28 (X SF + Sk XT) 2)
= Qwlyx +d?2%% I 4 d2¥ 21 (3)
= bl (4)
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where (1) follows as X} is an MHM by our inductive hypothesis and thus
X XT = wly for some scalar w; (2) follows as Sy is an order 2¥ Hadamard
matrix by part 1 of Lemma 1 and thus SiS¥ = 2% I,; (3) follows as S X7
is skew by part 2 of Lemma 1 and thus X;SF + Sk X} = zIx, where z
is some integer. Therefore, (4) follows where b is some integer, namely
b = 2w + d22%F 4 d2%z. It follows similarly and using J2, = I that D is the
same scalar multiple of Io«.

Now, since J,Z' = Ji, we can rewrite the expression for B as B =
d2*((SkJk XT)T — Sk Ji XT). Then, since Sk Ji XF is symmetric by part 3
of Lemma 1, we see that B = 0. It follows similarly that C = 0.

Thus, Xk+1X,Z+1 = bl. It can be shown similarly that XE+1Xk+; = bl,
using a similar lemma and similar proofs. It follows that Xy is an MHM.

Furthermore, since X has every row and column being a permutation
of the arithmetic progression alphabet +a,+(a + d),...,+(a + (2¥ — 1)d),
the same holds for the rows and columns of —(Xi)Ji. It also follows that
every row and column of the matrices Xk-l-(al'2’°).5';c and (Xx +(d-2¥)Sk) Jk
are permutations of +(a + 2¢d), £(a + (2* + 1)d),..., £(a + (2**! — 1)d).
Therefore every row and column of Xjt; is a permutation of +a,+(a +
d),...,x(a+ (2¥* - 1)d).

Thus, by the principle of mathematical induction, Algorithm 1 generates
MHMs whose alphabets are in arithmetic progression for every order 2™.
Since a and d are positive, these MHMs are clearly of full entry count. O

Notice that our algorithm and proof imply that we actually have more
control over the spacing of entries than in a strict arithmetic progression.
To illustrate, consider the following modification which can be substituted
for Xx+1 in Algorithm 1 and proved similarly as above:

Xoir = Xk X + di S
LT (X +deSk) e —(Xe)de |-

If we define d; = 2'd for all i = 1,2,...,k we get our original arithmetic
progression construction. However, we can choose any set of integers to be
dy,ds, . ..,d, which would give additional control over the spacing of the
entries in the resulting MHM. (We focused on arithmetic progressions, as we
expect the regularity of such alphabets to be useful in future applications.)
We provide the following example, P, which is an MHM constructed using
the generalized algorithm with a =7, d; = 6, d2 = 16, d3 = 30, d4 = 534:
P= ]};; lej , where
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P =

P,

P

corollary:

[ 7
13
23
29
37
43
53
59

541
547
557
563
571
577
587
593

541
547
557
563
571
577
587
593

-7
-13
-23
-29
-37
—43
—-53

| 59

13
=7
-29
23
43
=37
—59
53

547
—541
—563

557

577
-571
-593

587

547
—541
—563

557

577
=571
—-593

587

-13
7
29
-23
—43
37
59
—53

23
29
=7
—13
—53
—59
37
43

557
563
—541
—543
—587
—593
571
577

557
563
—-541
—543
~587
—593
571
577

-23
-29
7
13
53
59
=37
—43

29 37
—-23 43

13 53

-7 59
-59 -7

53 -—13
—-43 -23

37 =29

563
-557
543
—541
—593
587
=577
571

563
—557
543
—541
-593
587
=577
571

43
=37
—59

53
-13

7

29

-23

571
577
587
593
—541
—547
—557
—563

—-571
—577
—587
—593
541
547
557
563

-29 37 43
23 43 37
-13 5 59
7 59 53
59 -7 -13
=53 -13 7
43 =23 29
-37 -29 -23

This example is interesting because it contains all prime numbers. We
chose to include an order 16 MHM with all prime numbers as it is the small-
est case obtainable via our generalized algorithm that cannot be obtained
by evaluating the entries of a full rate real orthogonal design (well-known
to exist only for orders 1, 2, 4 and 8) at prime numbers. With a different
rationale involving the original Algorithm 1, we have the following related

53
59
=37
—43
23
29
-7
-13

577
—571
—593

587
—547

541

563
—-557

—577
571
593

—587
547

—541

—563
557

53
59
=37
—43
23
29
=7
-13

59 1

—53
43
=37
29
-23
13

=7

587
593
—-571
—377
557
563
—541
—547

—587
—593
571
577
-557
—563
541
547

59
—53
43
=37
29
-23
13

.._7.

593
—587
577
—571
563
—-557
547
—541

-593 ]
587
-577
571
-563
557
—547

541 i

, and

Corollary 1. For any m, there ezists a full entry count order 2™ MHM
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whose entries are all primes.

Corollary 1 follows from Green and Tao’s 2004 work proving the exis-
tence of arbitrarily long arithmetic progressions of primes [5]. Their proof
is nonconstructive, but with it, we establish the existence of MHMs of all
orders 2™ such that the entries are prime numbers in arithmetic progres-
sion. More concretely, at the time of writing, it is possible to use myriad
databases available online to construct MHMs using up to 26 primes in
arithmetic progression. In a sense, MHMs with prime entries are a stronger
intermediary towards real orthogonal designs, and they may be more useful
for certain applications as the entries share no common factors.

2.3 Mixed-Circulant MHMs

In this section, we introduce mized-circulant MHMs whose entries follow a
pattern that is sometimes seen in Latin squares and that bears resemblance
to the pattern seen in circulant matrices.

Consider a matrix of even order n with columns vy,..., v, such that the
odd columns vy, vs,...,v,_1 contain the entries ¢, ¢y, ..., Cn—1, beginning
in this order in column v; and then circulating down two steps per odd
column and such that even columns vg,vy,..., Vv, contain entries ¢y, —cp,
Cn-1y —Cn—2, --+ (=1)%tley, ..., —cq, beginning in this order in column
ve and then circulating down two steps per even column. For example,
consider the following 6 x 6 example C:

o & € C3 €2 Cp
€t —C €3 —C2 C3 —C4
c2 ¢ C & €4 C3
€3 —C C —C €5 —C2
€4 €3 C2 C ¢ O
Cs —C C3 —C4 C1 —Cp

More formally, we have the following definition:

Definition 5. A mixed-circulant matrix C = {d;;} of even order n is a
square matriz with alphabet {co,c1,...,Cn_1} such that

dis = C(i-j) (mod n) if j is odd
’ C(—itj) (modn) (—1)*F1 if jis even

Theorem 2. Given a mized-circulant matriz A with columns {v1,Va,...,Vo},
Ve vy =0ifz+y is odd
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Proof. Since exactly one among z and y is odd when = + y is odd, without
loss of generality let  be odd and y be even. Then,

Vg Vy = Zci—l‘c—iﬂ;-(—l)i"'l (5)
i=1
= Zcilc((y—z)—i;).(—l)i’+m+1 ©
i1=1
= Zc((v—x)—iz)ci,.(—l)y-iz«}-l -
ia=1
1o v |
- 520"6“1’“’)-*’)'((—1)’”“+(—1)v—z+1) (8)
i=1
- (9)

where all subscripts are modulo n. Eqn. (6) follows from (5) by the substi-
tution i; = i —z. Eqn. (7) follows from (5) by the substitution i = —i +y.
Eqn. (8) follows by taking the average of Equations (6) and (7). Then, as
(i+zx+1)+(y—i+1) =z +y+2is odd by our assumption, exactly one
of the exponents on (—1) in Eqgn. (8) is odd, hence Eqn. (9) follows. a

Thus, half of the columns in a mixed-circulant matrix are pairwise or-
thogonal regardless of alphabet. So, while a general order n MHM is re-
quired to satisfy ('2') orthogonality constraints, a mixed-circulant MHM
must only satisfy | % | orthogonality constraints, namely

n—1

. n
Z CiC(i+2j) (modmn) =0,7=1,2... I.ZJ )

i=0

This is a reduction by half of the already reduced number I_% _| of constraints
required for circulant MHMSs, namely

n—1

. n
Zcic(iﬂ') (mod n) =0,7 =1,2... I.EJ ,
=0

and it has been previously shown that the reduction in the circulant case
facilitated the identification of direct solutions to produce circulant MHMs
of all orders n # 4 [1]. Thus, this further reduction should facilitate finding
direct solutions to produce mixed-circulant MHMs of even orders. We leave
this as an open problem, however, and instead proceed with alternative
ways of constructing mixed-circulant MHMs.
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Algorithm 2. Construct two order n MHMs A and B over alphabets A =
{ao,...,an-1} and B = {by,...,bn-1}, respectively. Then, define an order
2n mized-circulant matriz C with alphabet c3; = a; and ¢,y = b;, for
1=0,1,...,n—1.

Theorem 3. Any order 2n matriz C obtained via Algorithm 2 is a mized-
circulant MHM. Furthermore, for each order 2n, it is possible to construct
such a mized-circulant MHM of full entry count.

Proof. To verify that the matrix C defined via Algorithm 2 is a mixed-
circulant MHM, it suffices to verify that

2n—1
Zcici+2j (mod2n) = 0 (10)

i=0

for j =1,2,...,|%]. Note that for each j we have:

2n—1 n-—1 n—1
Z CiCiy2j = z Giitj (modn) T+ z bibiyn—j (moany (11)
i=0 i=0 i=0
= 0-0 (12)
= 0 (13)

Eqn. (11) follows directly from the definition of C. Eqn. (12) follows
as the summations of Eqn. (11} respectively represent inner products of
columns 1 and n — j of A (an MHM) and of B (another MHM).

Furthermore, to construct such a C' with entry count 2n, begin with
two entry count » MHMs constructed as follows. For n = 4, let A = H; as
defined in Eqn. (10) of [1], and let B = 2H,. The resulting mixed-circulant
MHM of order 8 has full entry count over the alphabet {1,2,...,8}. For
n # 4, let A be an entry count n circulant MHM generated by the construc-

tion in [1] over alphabet {ag,a1,...,an—1} wherea; = rifori =0,1,...n—2
n—1
and a,_; = _ST_TL;I’”Z, and where all entries might be multiplied by a con-

stant to ensure each entry is an integer given the chosen values of r # 0 and
n. Although B can be chosen as a simple suitable scalar multiple of A, we
suggest constructing B over an independent alphabet, specifically by gen-
eralizing the construction in (1] to produce a back-circulant MHM B. (This
is done in anticipation of our use of circulant and back-circulant matrices
to construct C-MHMs in Subsection 3.2). In the circulant construction and
its obvious back-circulant generalization, the ratio r in the alphabets can
be chosen arbitrarily, so the alphabets for A and B can be chosen not to
overlap. O
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3 -14 24 12 6
6 3 -14 24 12
Example 2. Let A = 12 6 3 —-14 24 | be obtained via
24 12 6 3 -14
-14 24 12 6 3
7 42 252 1512 -—258
42 252 1512 -—258 7
the construction in [1], and let B = 252 1512 -—258 7 42
1512 —-258 7 42 252
—258 7 42 252 1512
be obtained via its obvious back-circulant generalization. Then, A and B are
mized and signed to create a full entry count order 10 mized-circulant MHM

3 7 -14 42 24 252 12 1512 6 —258
( 7 -3 -258 -6 1512 -12 252 —-24 42 14
6 -—258 3 7 -14 42 24 252 12 1512
42 14 7 -3 ~-258 -6 1512 -12 252 -24
C = 12 1512 6 -258 3 7 -14 42 24 252
252 —24 42 14 7 -3 -258 -6 1512 -12
24 252 12 1512 6 —258 3 7 -14 42
1512 -12 252 -24 42 14 7 -3 258 —6
~14 42 24 252 12 1512 6 —258 3 7
L —258 -6 1512 -12 252 —-24 42 14 7 -3 J

The advantage of this mixed-circulant construction over the existing
circulant MHM construction [1] is that we can achieve an order 2n MHM
whose entries do not follow a single geometric progression (with one addi-
tional entry), meaning it is possible to choose two shorter geometric pro-
gressions whose overall span (including the two additional entries) is smaller
than possible using the currently known constructions for circulant MHMs
of order 2n [1]. Although this does not provide as much control as the
arithmetic progression construction of Subsection 2.2, this construction ex-
ists for all orders 2n while the arithmetic progression construction exists
only for orders 2",

We now introduce c-MHMs as a natural extension of c-Hadamard ma-
trices [10] and use them to produce mixed-circulant MHMs. These c-MHMs
will be used again later to build C-MHMs in Subsection 3.2.

Definition 6. A c-multilevel Hadamard matrix (c-MHM) N of order n is
an n X n matriz such that each row and column contains some permutation
of the alphabet {ag, a1, ...,an_1}, up to sign and with entries not necessarily
distinct, such that NNT NTN = 3 |a;|*I + L., where L. is a uniform
matriz of value ¢, with zeros down the main diagonal.

Whereas above we used a pair of order n MHMs to build an order 2n
mixed-circulant MHM, below we generalize this construction and use a pair
of oppositely-signed order n c-MHMs (one with value ¢ and the other with
value —c¢) to build an order 2n mixed-circulant MMH.
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Begin with a circulant matrix A’ over alphabet {a,b,b,...,b} and a
back-circulant matrix B’ over alphabet {z,y,y,...,y}, where a,b,z,y are
chosen to satisfy 2ab + (n — 2)b? = —2zy — (n — 2)y?, so that the value
of the inner product of distinct columns within A’ is the negative of the
value of the inner product of distinct columns within B’. Then, for n # 4,
multiply both A’ and B’ on the left by the same full entry count order n # 4
circulant MHM M over alphabet M obtained using the construction in [1].
Since MHMs act as linear transformations that preserve inner products,
the resulting matrix A = M A’ is an order n c-MHM, where ¢ = (2ab +
(n — 2)b%) 77 m?, and similarly B = MB’ is an order n (—c)-MHM.
Properties of circulant and back-circulant matrices imply that A is circulant
and B is back-circulant. By choosing a # b such that a,b ¢ M, we see that
A = M A’ has entry count n, and similarly for B. Then, we can construct
a mixed-circulant matrix C whose alphabet is defined by cz; = a; and
c2j+1 = bj, for 7 = 0,1,...,n — 1. The proof that C is indeed a mixed-
circulant MHM follows similarly to the proof of Theorem 2, except that
we replace Eqn. (13) with ¢ — ¢, as A is now a ¢-MHM and B is now a
(—c)-MHM.

Note that this construction of mixed-circutant MHMs also holds in the
case of n = 4 by replacing M with the aforementioned full entry count
order 4 MHM H,. A = H4A' and B = H B’ will be ¢- and (—c)-MHMs,
respectively, and it is possible to choose the alphabet entries so that each
is of full entry count, but they will not be circulant and back-circulant,
respectively. The circulance and back-circulance of A and B, respectively,
do not play any role in verifying that they can be mixed and signed to form
an order 2n mixed-circulant MHM. We only take A and B to be circulant
and back-circulant, respectively, here in anticipation of our use of such paJrs
of ¢- and (—c)-MHMs in Subsection 3.2.

It is straightforward in most cases to ensure that the resulting mixed-
circulant MHM is of full entry count. As demonstrated in the following
example, the entries in the mixed-circulant MHMs constructed using c-
MHMs and (—c)-MHMs are not simply intertwined geometric progressions
(plus two additional values) as are the mixed-circulant MHMSs constructed
via Algorithm 2, so this construction provides some variation.

Example 3. We now illustrate this generalization of the mized-circulant
construction using a value of ¢ = 1,614,480. First, we build a circulant (-
1,614,480)-MHM A and a back-circulant (1,614,480)-MHM B using appro-
priate circulant and back-circulant matrices A’ and B’ and an appropriate
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Jull entry count MHM M :

A=MA
[ 3 -14 24 12 6 -117 8 8 8 8
6 3 -4 24 12 8 -117 8 8 8
= 12 6 3 —14 24 8 8 -117 8 8
24 12 6 3 -4 8 8 8 -117 8
-14 24 12 6 3 8 8 8 8 -—117

—-127 1998 -2752 -1252 -502
—-502 —-127 1998 2752 —1252
= ~1252 -502 127 1998 -—2752
—2752 -—-1252 502 127 1998

1998 -2752 -1252 502 127

B=MB’

3 14 24 12 6 12 20 20 20 20
6 3 -14 24 12 20 20 20 20 12
= 12 6 3 14 24 20 20 20 12 20

24 12 6 3 -14 20 20 12 20 20
-14 24 12 6 3 20 12 20 20 20

[ 506 572 524 428 732
572 524 428 732 596
= | 524 428 732 596 572
428 732 506 572 524
| 732 596 572 524 428

We then combine A and B to form a full entry count order 10 mixed-
circulant MHM C=

-127 596 1998 572 —2752 524 —1252 428 —-502 732 1
596 127 732 502 428 1252 524 2752 572 —-1998
-502 732 -127 596 1998 572 -—2752 524 —1252 428
572 -1998 596 127 732 502 428 1252 524 2752
—1252 428 —502 732 -127 596 1998 572 —2752 524
524 2752 572 —1998 596 127 732 502 428 1252
-2752 524 -—1252 428 —502 732 -127 596 1998 572
428 1252 524 2752 572 -1998 596 127 732 502
1998 572 —2752 524 —1252 428 -502 732 -127 596

L 732 502 428 1252 524 2752 5§72 -1998 596 127
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3 MHMs over the Gaussian Integers: Com-
plex C-MHMs

3.1 Introduction to C-MHMs

We introduce complex C-MHMs motivated by potential future applications
similar to those of Hadamard matrices {15, real MHMs [17], and /or com-
plex orthogonal designs [11, 18]. Our work here focuses on building theory
and constructions for these C-MHMs.

Definition 7. Given two nxn matrices A and B with integer alphabets A =
{ao,ay,...,an_1} and B = {bo,b1,...,bn_1}, respectively, such that each
row and column of A and B contain some permutation of their respective
alphabet up to sign and where the entries of the alphabets are not necessarily
distinct, then Z = A+ Bi is an order n C-multilevel Hadamard matrix (C-

n-—1

MHM)if ZZH = Z (a? + b?)I, where H denotes the Hermitian transpose.

i=0
The complez entries of Z can be written as z), = +a; £bii, for somea; € A
and some by € B.

All results can be trivially generalized if we instead require Z7Z =
n-1
Z (a? 4 b2)I, which would also be the constraint used in the case of future
i=0

rectangular C-MHMs,
In analogy to the entry count of an MHM, we define the following:

Definition 8. The entry count triple of «a C-MHM Z = A + Bi is an
ordered triple (s,t,r) such that s is the number of distinct entries a in A
up to sign, t is the number of distinct entries b in B up to sign, and r is
the number of distinct entries a + bi in Z up to sign in each component.

We propose that it is of primary interest to find C-MHMs with the fol-
lowing entry count triples: (n,n,n%) and (n,n,n). In the former case, we
have maximized the amount of information possible in the real and imag-
inary dimensions, and we have mixed the real and imaginary components
maximally so that every pairing occurs precisely once. In the later case,
we have again maximized the number of distinct entries in the real and
imaginary dimensions, but we have now aligned the alphabets so that the
complex combinations behave more like the complex variables in a com-
plex orthogonal design: there are n complex pairings (up to sign in each
component) that are repeated once per row and per column. These are
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the extremal cases, perhaps the most interesting to achieve from a math-
ematical perspective. They are also perhaps the most promising from an
applications perspective, as they allow for maximal mixing of terms or
maximum repetition of terms. While either extreme is likely to be useful in
applications, we note that these entry count triples do not reflect all possi-
bly useful properties of a C-MHM. For example, a C-MHM could trivially
achieve the desirable entry count triple (n,n,n) by taking A = B in the
definition; this is less desirable than achieving (n,n,n) via matrices A and
B on independent alphabets.

In order to construct C-MHMs, we must examine the constraints implied
by Definition 7. Formally, we need

ZZH = (A + Bi)(A + Bi)f = AAT — ABTi + BATi + BBT =11,
where r is the real number Y7 (a2 + b?). Because 7 is real, the following
equations must be satisfied

AAT + BBT =71 (14)
ABT = BAT (15)

In the following subsections, we offer several constructions that simul-
taneously fulfill Equations (14) and (15) while specifically achieving entry
count triple (n,n,n?) for odd n and entry count triple (n,n,n) for all n.

3.2 C-MHMs with Entry Count Triple (n,n,n?)

We note first that Eqn. (14) can be satisfied by requiring A and B to he
MHMs. Next, we note that pairs of matrices A and B that satisfy Eqn.
(15) are precisely known as amicable matrices, as previously introduced in
the context of real and complex orthogonal designs [12, 20, 21] and in the
context of Hadamard matrices [19]. Thus, we present a construction based
on amicable pairs of MHMSs. This construction was inspired by Seberry
(Wallis)’s work on amicable Hadamard matrices [19] and by Adams et al.’s
previous work on circulant MHMs [1]. Recall the following result (Theoremn
1 from [19]) which can be restated as:

Lemma 2. [19] If A is a circulant n x n matriz and B is a back-circulant
n X n matriz, then A and B are amicable.

This allows us to obtain our first C-MHM construction:

Theorem 4. For any odd order n, let A be an order n circulant MHM
and B be an order n back-circulant MHM such that A and B have disjoint
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alphabets of entry count n. Then, Z = A+ Bi is a C-MHM with entry
count triple (n,n,n?).

Proof. First, recall that circulant order n MHMs of entry count n exist for
all orders n # 4 using the construction provided by Adams et al. (1], and
the construction there can be modified in an obvious manner to provide
back-circulant order n MHMs of entry count = for all orders n # 4 as well.
The construction provides enough choice in alphabet composition to ensure
that A and B can be formed using disjoint alphabets, as it uses geometric
progressions with arbitrary initial terms and arbitrary common ratios (plus
an additional term in each alphabet). Now, for n odd, let A be a circulant
MHM and B be a back-circulant MHM with disjoint alphabets of entry
count n. Eqn. (14) is satisfied since A and B are MHMs, and Eqn. (15) is
satisfied by Lemma 2. Thus, A + Bi is a complex MHM.

Since A and B both have entry count n, the first two entry counts of
the entry count triple of A + Bi are n. Now, if we restrict to odd n, the
third entry count value of A + Bi is n?; to see this, note that if two entries
(31,71) and (iz, j2) were equal it would imply

%ii—j, (modm) = Gip—j; (mod n) (16)
biytis (modnm) = biztj, (modn) (17)
t1—71 (modn) = i3—j2 (modn) (18)
i1+71 (modn) = iz+j2 (modn) (19)
2(i; —i2) = 0 (modn) (20)
2(j1—j2) = 0 (modn) (21)

ih = i (22)

h = 72 (23)

Eqn. (18) follows from Eqn. (16) because A is an MHM with entry count
n. Similarly, since B is a MHM with entry count n, Eqn. (19) follows from
(17). Add and subtract Equations (17) and (19) to get Equations (20) and
(21), respectively. Since ged(2,n) = 1, Equations (22) and (23) follow from
(20) and (21), respectively. O

This construction implies the following concise result:

Corollary 2. For any odd n, there exists an order n C-MHM with entry
count triple (n,n,n?).

Example 4. The order 5 component MHMs from Example 2 can be com-
bined to form an order 5 C-MHM with entry count triple (5, 5, 25): A+
Bi=
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3+7 —14+42i 24 +252i 12+ 1512¢ 6 — 258
6+42i 3+4252i —14+1512i 24 —258; 124+ 7¢

12 +252i 6+ 1512¢ 3—-258i —144+Ti 24 442
24415127 12 — 258: 6+ 7 3+42:i —14 + 252¢
—14 — 258¢ 244+Ti 12 +42¢ 6+252i 341512

We can now generalize this construction using c-MHMs: for n odd, take
A to be a circulant cc-MHM and B to be a back-circulant (—c)-MHM, whose
existence was developed in Subsection 2.3. It is straight-forward to verify
that Eqn. (14) is satisfied as L. + L.. = 0, and Eqn. (15) is satisfied as
Lemma 2 implies that A and B are amicable. Thus, Z = A+ Bi is a
C-MHM.

Example 5. Let A the circulant (-1,614,480)-MHM and B be the back-
circulant (1,614,480)-MHM from Ezample 3. Then we obtain an order 5
C-MHM with entry count triple (5, 5, 25): A+ Bi =

—127 4 596i 1098 4+ 572i  —2752 +524i —1252 4 428i —502 + 732i

—502 45721  —1274524i 1998 4428  —2752 4 732 —1252 + 596i

—1252 +524i —502 + 428i  —127 4+ 732i 1998+ 596i  —2752 + 572i

—2752 + 428¢ -—-1252 + 732¢ —502 + 596¢ —127 + 5721 1998 + 524:
1998 + 732i —2752 4 596¢ —1252 4+ 572i  —502 4- 524i —127 + 428:

3.3 C-MHMs with Entry Count Triple (n,n,n)

We begin with a trivial solution to the problem of finding C-MHMs with
entry count triple (n,n,n) by taking A to be a full entry count MHM and
by taking B to be a nonzero scalar multiple of A; say B = cA where ¢ is
some integer. Then, A and B are both MHMs, so Eqn. (14) is satisfied.
Eqn. (15) is also satisfied since ABT = A(cA)T = (cA)AT = BAT. It
follows that Z = A + Bi is a complex MHM. This construction provides
C-MHMs of entry count triple (n,n, n) as a required full entry count MHM
A can be constructed for any order n using prior constructions (1], and then
if ¢ # 0, Z must be of entry count (n,n,n), as A and B would have the
same pattern distribution.

Our next and final construction of C-MHMs with entry count triple
(n,n,n) builds on the arithmetic progression construction of MHMs given
in Algorithm 1 in Subsection 2.2. In addition to achieving entry count
(n, n,n), this construction allows the most control over the span and spacing
of the entries. However, this construction only applies for orders n = 2™.

We first provide a new algorithm for achieving MHMs of order 2™ over
arithmetic progression alphabets. This new algorithm produces MHMs Y,
that closely resemble the MHMs X,, of Algorithm 1; effectively, MHMSs
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formed via Algorithm 3 can also be made by reversing the order in which
the columns appear in an MHM constructed via Algorithm 1.

Algorithm 3. Given two positive integersb and e, LetY) = [ b_-l-be b _I:_ e },

and fork > 1, let

Ve = Y. + e2FU; Y.
k1= Y Jk ~YiJi — e2¥UkJi |

where Uy is the sign matriz of Yi and Ji is half-identity matriz of order
2k,

A proof that Algorithm 3 generates full entry count MHMs of all orders
2™ over arithmetic progression alphabets follows similarly to the analogous
proof for Algorithm 1. As with Algorithm 1, we can modify Algorithm 3
to allow for more general alphabets than strict arithmetic progressions by
using different integers e at each iteration, rather than using e2* at each

iteration.

Below, we will prove that if X and Y are MHMs of order 2™ constructed
via Algorithms 1 and 3 respectively, then X +Y'¢ is a C-MHM of order 2™.
To show this, the following lemma will be needed; proofs for each part are
provided in Appendix B.

Lemma 3. Suppose that X,, is an order 2™ MHM constructed via Al-
gorithm 1 using a common difference of d and having a sign matriz Sy,;
suppose that Yy, is an order 2™ MHM constructed via Algorithm 3 using a
common difference of e and having a sign matriz U,,; and suppose Jn, is
the half-identity matrix of order 2™. Then

1. .S'meU,Z'l is skew-symmetric;

2. XnUZL is symmetric;

3. SmY,',J: is symmetric; and

4 eXmImUL +dSmJnY,T is skew-symmetric.

Theorem 5. Suppose that X,, is an order 2™ MHM constructed via Algo-
rithm 1 and Yy, is an order 2™ MHM constructed via Algorithm 3. Then
Zm = Xm + Yt is an order 2™ C-MHM of entry count (2™,2™,2™), and
the alphabets of X,, and Y,, are independent arithmetic progressions.

Proof. As X,, and Y,,, are MHMs, it suffices to prove that X, and Y, are

amicable. We must show X,,Y,Z = Y;,XZ, or equivalently that X,,Y;T is
symmetric. We proceed by induction on m.
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Consider a base case when & = 1:

T _ x z+d y+e —y
XIYI—[J:+d —z ][ J y+e]
_ | 2zy+ex+dy det+dy+ex
T | de+dy+exr —2zy—dy-—er

is clearly symmetric.
Assume X, Y, = YT X, for some k > 1. Then, as defined in Algorithms

X Xi +d2%S,
1 and 3, we have Xx41 = [ X +§2kSka k_-;(ka k ], and Yiq4 =
[ Y, + e2"Uk Yi

Yidi  —YiJi — 2¥UpJy ] s0 that Xi41Yih =
[ 2X YT +e2* X, UT +d2* S YT —e2X X Sk UT —d2* Sk L1 Y,T —ed2?* $, I UT ]
+e25 X L UT +d2% Sk Ji YT +ed22* S, JLUT 2Xx Y, T +e2* X UT +d2* S, Y,T
It now follows directly from Lemma 3 and the inductive hypothesis
that X, lY,g_;_l is symmetric. Therefore, by the principle of mathematical
induction, X,,, and Y;,, are amicable for all m, and so X,,, + Y7 is a C-MHM
for all m.

It is clear that X, and Y;, each have entry count n, as their alphabets
are independently constructed arithmetic progressions {up to sign). The
construction then implies entry count triple (n, n,n). O

Example 6. In this ezample of an order 8 C-MHM with entry count triple
(8, 8, 8) constructed using Theorem 5, the first component matriz is an
extension of Example 1 with initial value 3 and common difference 2. The
second component matriz is formed using Algorithm 3 with initial value 4
and common difference 3.

3 + 25i 5 + 22i 7+ 19¢ 9 + 161 11 4+ 13: 13 4 103 15 4 7i 17 4+ 4i
$ = 22: —3 + 251 9 — 163 -7+ 19i 13 - 10¢ =114 13: 17 — 4i -15 + 7¢
74 19 -9 — 161 -3 — 25i 5 4 221 15 4+ 71 -17 = 41 —-11 =131 13 + 10¢
9~ 164 7 -19i -5 4 22i -3 4 25: 17 = 4i 15 - 71 =13 + 103 =114 13:¢
11 4 13¢ 13 4+ 104 —-15 =71 -17 = 4i -3 - 25¢ ~5 — 22i 74 194 9 4+ 161
13 - 10: =114 13i -17 4+ 4i 15 = 74 =54 22:¢ 3 - 25 9 - 16i -7 4+ 19:
154+ 7¢ -17 = 4i 11 + 134 -13 - 10: -7 =19: 9+ 161 -3 -~ 25: 5+ 22i
17 — 4é 18 — 73 13 - 10i 11 - 13d -9 4 16% -7 + 19: -5 4 22i -3 4+ 25i

This is potentially our most interesting construction for C-MHMs, as
we have complete control over the spacing and span of the two component
alphabets. The other constructions of C-MHMs exist for more general sizes,
however.

The trivial scalar multiple construction and Theorem 5 together imply
the following concise result:

Corollary 3. For any given order n, there exists a complez C-MHM with
entry count triple (n,n,n).
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4 MHMs over the Hamiltonian Integers:
Quaternion Q-MHMs

As the next natural generalization, we define MHMs over the Hamiltonian
integers. Such matrices may have similar applications as those enjoyed by
Hadamard matrices [15], real MHMs [17], and/or quaternion orthogonal
designs (2, 14, 22].

Definition 9. Given four n x n matrices A, B, C, and D with integer al-
phabets A= {aO) ay, ... a'n—-l}: B= {bO) bl’ L 9b‘n—-1}7 C= {007c1’ v :cn—l}:
and D = {do,d1,...,dn-1} such that each row and column of A,B,C,D
contain some permutation of their respective alphabet up to sign, and where
the entries of the alphabets are not necessarily distinct, then H = A +
Bi + Cj + Dk is an order n Q-multilevel Hadamard matrix (Q-MHM) if
HHCP =Y (a? 4+ b? + ¢ + d?)I, where Q denotes the quaternion conjugate
transpose. The quaternion entries of H can be written as qr, = *a; £bpi £
cij £ dmk, for somea; € A, bp € B, ¢ €C, and d, € D.

All results can be trivially generalized if we instead require H2H=
3" (a2 + b2 + ¢2 + d?)I, which would also be the constraint used in the case
of future rectangular Q-MHMs. Naturally, we have the following definition:

Definition 10. The entry count quintuple of ¢ Q-MHM H = A+ Bi +
Cj + Dk is an ordered quintuple (s,t,u,v,r) such that s is the number of
distinct entries a in A up to sign, t is the number of distinct entries b in
B up to sign, u is the number of distinct entries ¢ in C up to sign, v is
the number of distinct entries d in D up to sign, and r is the number of
distinct entries a + bi + cj + dk in H up to sign in each component.

With similar motivation as in the complex case, we propose that it is
of primary interest to build order n Q-MHMSs with entry count quintuples
(n,n,n,n,n) and (n,n,n,n,n2). In the former case, there are n entries of
distinct absolute value in each of the alphabets of the four component ma-
trices, and these entries align to form n quaternion integers (up to sign in
each component) that each appear in every row/column of the Q-MHM. In
the latter case, the four component alphabets are mixed so that no 4-tuple
appears more than once in the Q-MHM. Suggested future work involves
investigating the existence of higher-dimensional Q-MHMs, defined analo-
gously to higher-dimensional Hadamard matrices, real MHMs, and RODs
(1, 6, 7, 8, 9, 13, 16, 23], motivated by the search for higher-dimensional
Q-MHMs that include all possible n* quaternion entries (up to sign in each
component) given n distinct entries in each of the four component alpha-
bets.
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We first consider the conditions that must be true on the component
matrices A, B, C, and D in order to build a Q-MHM. According to Def-
inition 9, we must have (A + Bi + Cj + Dk)(A+ Bi + Cj + Dk)? = rI
where r = 3~ (a? + b? + ¢ + d?). When expanded and grouped according
to quaternion parts, this implies the following equations must be satisfied:

AAT + BBT 4+ ¢CT + DDT =17l (24)
BAT —ABT + DCT —CcDT =0 (25)
CAT - ACT +BDT-DBT =0 (26)
DAT —ADT +CcBT-BCT =0 (27)

One way to satisfy these equations would be to produce four pairwise
amicable MHMs A, B, C, and D. It remains an open problem to investigate
whether such families of MHMs exist for nontrivial parameters. We instead
provide alternative ways to build Q-MHMs.

A simple way to satisfy the governing equations for A,B,C,D is to
choose any two of these matrices to be the component matrices of a C-
MHM constructed in Section 3, and then let the other component matrices
be integer multiples of these, respectively. For example, given a C-MHM
with component matrices A, B and two nonzero integers o, 3, we can form
a Q-MHM of the form A+ Bi+aAj+BBk. This allows us to find Q-MHMs
of entry count quintuple (n,n,n,n,n%) and (n,n,n,n,n), however the re-
sulting examples are not entirely satisfying in that two of the component
matrices must be scalar multiples of the other two, respectively.

To illustrate, consider the construction in Subsection 3.2 that uses amn-
icable pairs of circulant and back-circulant MHMs. Suppose, for examn-
ple, that A and C are amicable MHMs so that ACT = CAT, and then
define B = aA and D = BC, where a, are nonzero integers. Then,
Eqn. (24) holds as A,B,C,D are all MHMs. Eqn. (25) holds because
BAT = (aA)AT = A(aA)T = ABT, so A and B are amicable, and simi-
larly with C and D. Eqn. (26) holds, because A and C are given as amicable
and thus BDT = (¢ A)(BC)T = afCAT = DBT, so B and D are also am-
icable. It is similar to show A, D are amicable and B, C are amicable, thus
satisfying Eqn. (27). Thus, it follows from our work in Subsection 3.2, that
if we restrict ourselves to odd orders n and take A to be a full entry count
circulant MHM of order n and C to be a full entry count back-circulant
MHM of order n (using the construction from [1] and its obvious back-
circulant generalization), then H = A + adi + Cj + BCk is a Q-MHM of
entry count quintuple (n,n,n,n,n2). Similarly, we can satisfy the defin-
ing equations for Q-MHMs if we take one of the component matrices to
be a circulant c-MHM, another to be a back-circulant (—¢)-MHM, (such
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pairs are developed in Subsection 2.3) and the others to be nonzero scalar
multiples of these, respectively.

We can trivially obtain the entry count quintuple (n,n,n,n,n) by tak-
ing the four component matrices to be scalar multiples of the same matrix.
More substantially, we can take A (for example) to be a full entry count
MHM generated via Algorithm 1 over an arithmetic progression alphabet
and C (for example) as an MHM generated via Algorithm 3 over an inde-
pendent arithmetic progression alphabet. Then, H = A+ aAi+ Cj + SCk
is a @-MHM of entry count quintuple (n,n,n,n,n), where n is of the form
2am,

Thus, we can obtain the desirable entry count quintuples of (n, n,n,n,n)
and (n,n,n,n,n?) by using generalizations of the complex constructions
from Section 3 and the component pieces developed in Section 2. It re-
mains open to find constructions that do not require two of the component
matrices to be integer multiples of the others, respectively.

We provide one representative example of a Q-MHM built using two
component matrices of a C-MHM and integer multiples thereof.

Example 7. Let A = X, from Ezample 1 obtained via Algorithm 1, and

2 4 6 8
—4 2 -8 6 . . .
let C = 6 -8 —2 4 be an MHM obtained via Algorithm 3. Then
-8 -6 4 2

by Lemma 2, A and C are amicable. Letting B = 2A and D = 5C gives
the following order 4 Q-MHM with entry count quintuple (4, 4, 4, 4, 4):

3+6i+ 25+ 10k 5+ 10i + 45 + 20k 7 + 14i + 65 + 30k 9 4 18:¢ + 85 + 40k
54 10¢ — 45 ~ 20k —3—-6i+ 25 + 10k 9+ 18i - 85 — 40k —7 — 14i + 65 + 30k
7+ 14i+ 65 + 30k -9 — 18{ — 85 — 40k -3 — 6i — 25 — 10k 5 + 10¢ 4 45 + 20k
9+ 187 — 85 — 40k 74+ 14i -~ 65 — 30k —5—10i 4+ 45 + 20k —3 - 6i+ 25+ 10k

5 Conclusions and Open Problems

This paper has explored multilevel Hadamard matrices over real, complex,
and quaternion integers. We have shown a construction that produces real,
full entry count, order 2™ MHMs over arithmetic progressions, allowing for
evenly spaced and nicely bounded alphabets. Their alphabets make them
preferable to the only other known MHMs that achieve full entry count
for all orders n, as those MHMs have alphabets that contain geometric
sequences [1]. This construction also implies the existence of full entry
count order 2™ MHMs whose alphabets contain all prime numbers, which
may be useful in future applications. We also presented constructions of
mixed-circulant MHMs of order 2n using pairs of MHMs or e-MHMs of
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order n. We suggested an open problem of determining direct solutions for
mixed-circulant MHMSs and explained why we believe this to be a feasible
problem.

We defined complex C-MHMs and demonstrated several different con-
struction techniques, thus achieving the proposed-as-desirable entry count
triples (n,n,n%) and (n,n,n). Most notably, one of the constructions
achieving entry count triple (n,n,n) contains Gaussian integers such that
the real components form an arithmetic progression and the imaginary
components form an independent arithmetic progression.

Finally, we defined quaternion Q-MHMs and generalized our C-MHM
constructions to build these Q-MHMs. Our constructions allow us to
achieve the proposed-as-desirable entry count quintuples (n,n,n,n,n?) and
(n,n,n,n,n), however the constructions do not allow for four completely
independent alphabets. Our constructions allow for at most two indepen-
dent alphabets, while the other alphabets are scalar multiples of these. We
hope these preliminary constructions will inspire future work in construct-
ing Q-MHMs over alphabets that have fewer dependencies. We also suggest
future work in studying higher-dimensional Q-MHMs (defined analogously
to the previously defined higher-dimensional Hadamard matrices, MHMs,
and RODs) that include all possible n* quaternion entries (up to sign in
each component) given n distinct entries in each of the four component
alphabets. It has not yet been studied whether such structures exist for
non-trivial parameters.
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Appendix A

This appendix contains proofs of the three parts of Lemina 1 from Subsec-
tion 2.2.

Lemma 1: Let X,, be an order 2™ matrix constructed via Algorithm 1,
S be the corresponding sign matrix, and J,,, be the half-identity matrix
of order 2™. Then,
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1. S, is a traditional Hadamard matrix;
2. SnXT is skew; and

3. X;nJmST is symmetric.

Proof. (Part 1 by Induction) Whenm =1,

re |1 1][1 1]_J2 0]_
Slsl’[l —1”1 —1]‘[0 2_‘”2
s0 S) is a Hadamard matrix and the base case holds. Suppose that S is a

Hadamard matrix and thus SpST = ST Sy, = (2¥)1 for some k > 1. Based

S
on the construction of Xi41, Sk41 = Sf-'}k _ S: T | and so

T _ ST JkS,Z' Sk Sk
Sic+15k+1 = [ Sz’ —JxSF SpJre —SiJk

S;{Sk + JkS{Ska S;{Sk - Jksgska
S;{Sk - JkSZSka SZ‘Sk + JkSk S Jk

Then, as ST S = (2¥)I,x by our inductive hypothesis and as JiJi = Ipx,
we simplify to get
ST, g = | () + (25) o (2%) 1ok — (2%) 1
k1ZRHL T | (9kY L — (2%) e (2%)Iox + (25)Ion

—ok+1| fx O
0 In

- 2k+112k+1
A similar argument can be used to show that Si4157,; = 251k

and thus that S, is Hadamard. By induction, S,, is Hadamard for all
m>1. O

Proof. (Part 2 by Induction) Consider the base case for k = 1:
T_ |1 1 a a+d | 2a+d d
S1Xy _[1 —1][a+d -a ]_[ —-d 2a+d
is clearly skew. Suppose that S, X{ is skew for some k > 1. Then, consider

S XT - — Sk Sk X,{ d2kaSZ+JkXE
kH12k41 = | g —SkJk X,cT+d2’“S,'{ - XT

[ 28k XT +d2*H L. d2k§,J, ST
- —d2kSkaSg‘ 2SkX{ + d2k+112k ’
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To show that this is skew, we need to first confirm that the transpose
of the upper right block matrix plus the lower left block matrix gives 0
(equivalently the transpose of the lower left plus the upper right gives 0),
which is obvious. We next need to confirmn that the upper left block matrix
plus its transpose (and the lower right block plus its transpose) gives a
scalar multiple of the identity. This follows from our inductive hypothesis
that Sk X7 is skew. Thus, by the principle of mathematical induction,
SmX,z; is skew for all m > 1. ad

Proof. (Part 3 by Induction) Consider the base case of k = 1:

a+d a 1
__[ —d 2a+d]

X1J151T=(X1J1)51T=[ e ‘(“+d)H} _1]

2a +d d

is clearly symmetric. Assume that XkaS,f is symmetric for some k > 1.
Then,

Xicr1Je415F 11 = (Xie1Jk41)SF4s

_ X - X - (d2k)Sk S,{ JkSE
T Xede + (dzk)Sk.]k XiJi SZ' —JkS,Z"
_ —d2k+1] 2X i JikSF + d2%SkJi ST

= | 2X ST + d2* 8, Ji ST dok+1] ‘

Since X Ji.SF is symmetric by the inductive hypothesis, Xx41Ji+ ISL_I is
also symmetric. Thus, the result holds by induction. (]

Appendix B

This appendix contains proofs of the four parts of Lemma 3 from Subsection
3.3.

Lemma 3 Suppose that X,, is an order 2™ MHM constructed via Al-
gorithm 1 using a common difference of d and having a sign matrix Sp,;
suppose that Y, is an order 2™ MHM constructed via Algorithmn 3 using
a common difference of e and having a sign matrix U,,; and suppose J,, is
the half-identity matrix of order 2™. Then

1. S Jn UL is skew-symmetric;

2. XnUZ is symmetric;
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3. SnY,T is symmetric; and

4. eXn JmUZ; + dSmeY,',I; is skew-symmetric.

Proof. (Part 1 by Induction) As a base case, note that when k£ =1,
r_|1 1 1 0 1 -1
S1hUr = [1 —1] [0 —1] [1 1]
o -2
12 0

is clearly skew-symmetric. Assume SxJiUT = —(SiJRUF)T for some k >
1, and now consider the following:

r [ S S I 0 ur U7
Sk41Je41Upyy = | Sede =Skde || O T [ U -JUT

[ Sk Sk vl JUT
- i SpJi —SiJk —U;;r JkUE
0 mhaug]

1 28 Jp U 0
and then by our inductive hypothesis, we have
0 2(Se L UDT
T \T _ k
(Sk+1Jk+1Uk+1) = [ 2(SkaUkT)T 0

_ 0 —2SkaU,Z

- —2SkaUE 0
and thus Sk+1Jk+1U[+l = —(Sk.,.le.,.lU,Z')T. It now follows by induction
that S, JnUZ is skew-symmetric for all m > 1. m]

Proof. (Part 2 by Induction) Consider the base case k = 1:

r [ a a+d][1 -1
awi=[.5a %[5 T
_| 2a+d d
=| d -2-d]
which is clearly symmetric.
Assume that X UT = (X, UJ)T for some k > 1, and then consider:
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T X Xk+d2’°Sk ur JkUkT
Kiet1Uier = [ Xode +d2580 T —Xede ur 507
[ 2xeUF + a2k SR UKT  —d28Sk W UL
- d2kSkaU;{ 2XkU,Z~ +d2kSkUg‘
This implies (Xx4+1UT, )T
[ 2XUTYT + d2* (S UKT)T d2*(Se L UD)T (28)
- ~d2* (S, JUF)T 2AX,UT)T + d2¥ (S, UT)T
[ 2X,UT +d2*(S . UN)T —d2* Sy J UL (29)
- d2kSkaUE ZXkU,;I‘ + d2k(SkUE

where (29) follows from (28) by part 1 of Lemma 3 and by our inductive hy-
pothesis. Then, to finish the proof, we must show that SmU},: is symmetric
for all ;. > 1, and we do this sub-proof by induction on m.

The following base case for £ = 1 is clearly symmetric:
r_[1 1][1 -1
SIUI‘[l —1”1 1]

12 o
—10 -2
= (ST
Assume .S'kU,T = (SkUE)T for some k > 1 an consider:
T _ Sk Sk vl JUT
Sk+1Upyr = [ Sede  —SiJk UZT _JkU‘CcF
_ 2SkUkT 0
- 0 25U7 |’

which is symmetric by the inductive hypothesis. Thus, by induction, S, UZ
is symmetric for all m > 1. We can now conclude that Xk+1UE =

(Xk+1UZT,1)7T, and thus by induction, Xx4+1UZ,, is also symmetric for all
m 2> 1, completing our proof. O

Proof. (Part 3 by Induction)

The base case k = 1 is clearly syminetric:
T _ |1 1 b+e -—e
s |3 ][0

| 2b+e e
- e -2b—e |’
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Assume S YT = (S:Y,T)T for some k > 1, and then consider:

r _[ S Sk YT +e2kUf A
Sk+1¥iy = [ Sipdr  —SkJi ] [ Y,cT A e?kaU,;r
_ 2SkY,;F + erSkUE —e2kSkaU,Z'
- e2kSkaU,Z' 2SkYkT + eZ"SkU,? !

which can be seen to be symmetric because SkaU,;T is skew-symmetric by
part 1 of Lemma 3 and SkYkT is symmetric by our inductive hypothesis.
The result follows by induction. 0

Proof. (Part 4 by Induction)
The base case of k =1 holds as eXlJlU;F + dS'lJlYlT

_ a a+d 1 0 1 -1 +
“€la+d -a 0 -1 1 1

S PR | e

_ —de  —2ea —de + de —2db — de
T | 2ea +de —de 2db -+ de de

_ 0 —2ex — 2dy — 2de

| 2ea + 2db 4+ 2de 0

Assume erXkaU,Z' + d2'°SkaYkT = —(e2kaJkUZ + d2’°SkaYkT)T
for some k& > 1, and consider e2'°Xk+1Jk+1UZ‘+1 + d2"Sk+1Jk+1Yk7_",,1 =

—d2*e2k S, UT 2e2¥ X J UL + d2%e2% S JUT
22% X, JoUT + d2*e2* S, JUT d2ke2* S UT +

d2ke2k S, UT 2d2% S . YT + d2ke2k S L UF | _
2d2kSkaYkT + d2k62kSkaUZ‘ —d2ke2kSkUg‘ -

0 2(e2* X T UT + a2k 5, 0, ¥ T + d2ke2k 5, 5, UT)
2e2X X 1 UT + a2¥ s, 0, YT + azkezk s 0l ° ’
which is skew-symmetric by part 1 of Lemma 3 and by our inductive hy-

pothesis. Therefore, the desired result holds by induction. 0
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