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Abstract

Let R be a noncommutative ring with identity and Z(R)" be the
non-zero zero-divisors of R. The directed zero-divisor graph ['(R) of
R is a directed graph with vertex set Z(R)* and for distinct vertices
z and y of Z(R)", there is a directed edge from 2 to y if and only if
zy =0 in R. S.P. Redmond has proved that for a finite commutative
ring R, if I'(R) is not a star graph, then the domination number of
the zero-divisor graph I'(R) equals the number of distinct maximal
ideals of R. In this paper, we prove that such a result is true for
the noncommutative ring Mz(IF), where F is a finite field. Using this
we obtain a class of graphs for which all six fundamental domination
parameters are equal.

Keywords: directed zero-divisor graph, orbit, regular action, nilpotent,
domination number, perfect domination number.

1 Introduction

The study of algebraic structures, using the properties of graphs, became
an exciting research topic in the past twenty years, leading to many fas-
cinating results and questions. In the literature, there are many papers
assigning graphs to rings, groups and semigroups. D. F. Anderson and P.
S. Livingston[2] introduced the zero-divisor graph and studied the inter-
play between the ring-theoretic properties of a commutative ring R and
the graph-theory properties of its zero-divisor graph I'(R). The concept of
the zero-divisor graph has been extended to non-commutative rings by S.P.
Redmond[13]. Throughout this paper R denotes a non-commutative ring
and Z(R)* be its set of non-zero left and right zero-divisors. The directed
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zero-divisor graph I'(R) of R is a directed graph with vertex set Z(R)*
and two distinct vertices x and y of Z(R)* are joined by a directed edge
from z to y if and only if zy = 0 in R. Also, corresponding to R, there
is an undirected graph T'(R) [13] with the vertex set Z(R)* in which two
distinct vertices x and y are adjacent if and only if either zy = 0 or yz = 0.
For a commutative ring R, S.P. Redmond(14] proved that the domination
number of T'(R) = I'(R) is equal to the number of distinct maximal ideals
in R. In this paper, in Section 2, we prove that such a result is true for
the noncommutative ring M>(F), where F is a finite field. Using this we
obtain a class of graphs for which all the six fundamental domination pa-
rameters are equal. In Section 3, we characterize independent and efficient
dominating sets in I'(M2(F)).

For a non-commutative ring R with identity, Z(R)* denotes the set of all
non-zero left and right zero-divisors of R, G denotes the group of all units of
R and X is the set of all nonzero non-units of R. The group action on X by
G given by (g,z) — gz (resp. (g,z) — zg~!) from G x X to X is called
the left (resp. right) regular action. If ¢ : G x X — X is the left(resp.
right) regular action, then for each = € X, op(z) = {#(9,z) = gz : g € G}
(resp. oq(z) = {#(g,z) = zg~! : g € G}) is called left(resp. right) orbit
of z. Note that if R is a finite ring, then Z(R)* = X. Recall that, for
z € Z(R)*, the set anne(z) = {y € Z(R)* : yx = 0}(resp. ann.(z) = {y €
Z(R)* : zy = 0}) is called the left(resp. right) annihilator of z. For basic
definitions on rings, one may refer [4].

Let D = (V, A) be a digraph(directed graph) with vertex set V and arc
set A. The in-degree and out-degree of a vertex v are respectively denoted
by id(v) and od(v). The minimum degree §(D) of a digraph D is defined
as the minimum of all in-degrees and out-degrees of vertices in D. For a
subset S of vertices of D, the the out-neighborhood N*(S) of S consists of
all those vertices w in D — § such that (v, w) is an arc of D for some v € S.
The in-neighborhood N~ (S} consists of all those vertices © € D — S such
that (u,v) is an arc of D for some v € S. Also let N*[S] = N+(S) U {S}
and N~[S] = N=(S) U {S}. For basic definitions on graphs, one may refer
(6].
For a digraph D = (V, A), a subset S of V is called an out-dominating
set of D if for every v € V — S, there exists u € S such that (u,v) € A. The
out-dominating set of a digraph D is commonly called as dominating set of
D. A subset S of V is called an in-dominating set of D if for everyv € V-5,
there exists u € S such that (v,u) € A. A dominating set S of V is called an
independent if the sub digraph induced by S has no arcs. A dominating set
S of V is called a total dominating set if the induced subdigraph < S > has
no isolated vertices. The underlying graph of a digraph D is obtained from
D by removing all directions from the arcs of D and replacing any resulting
pair of parallel edges by a single edge. A digraph D is weakly connected
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if the underlying graph of D is connected. A dominating set S of V is
called a weakly connected dominating set of D if the induced sub digraph
< 8§ > is weakly connected. A subset S of V is called an irredundant
set of D if every v € S has a private out neighbour. The out-domination
number(resp. upper out-domination number) of a digraph D, denoted by
v+ (D)(resp. T'*(D)), is the minimum (resp. maximum) cardinality of a
out-dominating set of D. There are so many domination parameters in the
literature and one can refer [9] for more details and undefined terms. Some
of the vital results used in this paper are listed below for ready reference.
In fact Theorem 1.1 is part of the result due S.P. Redmond(14, Corollary

5.2].

Theorem 1.1. [14, Corollary 5.2] Let R be a finite commutative ring with
identity that is not a domain. If I'(R) is not a star graph, then the dom-
ination number of T'(R) equals the number of distinct mazimal ideals of
R.

Lemma 1.2. {8, Theorem 2.4 and Lemma 2.7] Let R be 2 x 2 matrices
over a finite field F. Then G is half-transitive on X by the left (resp. right)
reqular action and |os(a)| = |or(a)| = IF? -1 foralla € X.

Lemma 1.3. [11, Lemma 2.1} Let R = My(F) where F is a finite field.
Then the number of orbits under the left (resp. right) regular action on X
by G is |F| + 1.

Remark 1.4. [11, Remark 1] Let R = M,(F) where F is a finite field.
Then the number of non-zero nilpotent matrices in R is [F|2 — 1, X =
|Fi+1 |F|+1

U or(zi) = U oe(z:) and or(zi) Nor(z;) = O (resp. oe(z:) Noe(z;) =0)
i=1 i=

1=
for i # j where each z; is a non-zero nilpotent element in R.

Theorem 1.5. {11, Theorem 2.3 and Theorem 2.5} Let R = M»(F) where
[ is a finite field and N be the set of all non-zero nilpotents in R. Then.
under the left (resp. right) regqular action on X by G, we have the following:

() loe(z)) N N| = [F| -1
(%) oe(z) NN = op(xz) N N = 0p(z) N0, (T)
(¢42) |oe(z) Nor(y)| = |F| — 1 for each z,y € X.

Theorem 1.6. [11, Theorem 3.5] Let R = M3(F) where F is a finite field
and x € X. Then annj(z) = op(y) for all y € annj(z) (and annj(z) =
0,(z) for all z € ann(z) ).
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Lemma 1.7. (1, Lemma 14] Let F be a finite field and n > 2. Suppose
M € M, (F) is a non-zero matriz and rank(M) = k < n. Then the in-
degree and out-degree of M in T(M,(F)) are |F|™™~*) —¢ and the degree of
M in T(M,(F)) is equal to 2|F|™ k) — |1F|(""°)2 — €, where € = 1, unless
M? =0 and in this case € = 2.

Theorem 1.8. [12, Lemma 4.2(i)] Let R = M, (F,) where F, is a finite field
with q elements. Then |Maze(R)| = |Maz.(R)| = gq_;ll where Mazxe(R)
(resp. Maz,(R)) is the set of all mazimal left (resp. right) ideals in R.

Theorem 1.9. [9] For any digraph D, ir(D) < v*(D) < (D) < B(D) <
I'+(D) < IR(D).

2 Domination in I'(M(F))

In this section, we obtain the values of certain domination parameters for
the directed zero-divisor graph D on M3(F), where |F| = p™ and p is a
prime number and m > 1. In view of this, we obtain a class graphs for
which all parameters in the fundamental chain given in Theorem 1.9 are
equal.

Proposition 2.1. Let F be a finite field, R = My(F) and = € Z*(R). For
each a € o¢(z) (resp. a' € o.(2') ), 0e(a) = 0¢(z) and ann}(a) = anni(zx)
(resp. or(a’) = or(z') and annj(a’) = annj(z')).
Proof. Let a € og(z). Then a = gz for some unit g € R, z = g~ 'a and so
T € 04(a). Thus og(z) C 0p(a). By Lemma 1.2, |os(z)| = |oe(a)| = |F|® — 1
and so og(a) = oe(z).

Let y € anny(z). Then zy = 0, ay = gzy = 0 and so y € ann}(a).
Thus ann}(z) C anni(a). If z € ann}(a), then az = 0. Since z = g~la,
zz = 0 and so ann}(a) C ann;(z). Hence ann}(a) = ann}(z). O

Recall that a set of vertices S of V' is said to be an irredundant set of D
if every vertex v € S has at least one private out neighbour. The minimum
cardinality of a maximal irredundant set in D is called the irredundance
number and is denoted by ir(D). The maximum cardinality of a maxi-
mal irredundant set in D is called the upper irredundance number and is
denoted by IR(D)[9).

Theorem 2.2. Let F be a finite field with |F| = p™ where p is a prime

and m > 1. Let R = M3(F) and D = T'(M3(F)). Then ir(D) =IR(D) =
"+ 1.
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m

P
Proof. Note that Z(R)* = |J o0¢(z;:) where each z; is a non-zero nilpotent

i=1
element in R for 1 <i < p™+1 = t(say). Let a; € o¢(z;) for 1 <i <t
and Q = {a;,az,...,a;:}. Clearly ann,(a;) N ann,(a;) for some ¢ # j is
empty by the Remark 1.4 and Theorem 1.6 and so every element in §2
has a private out neighbor. Hence € is an irredundant set of D and so
ir(D) <t=p™+1.

Suppose ' is an irredundant set of D with || > p™+1. By Lemma 1.3,
the number of orbits under the left(resp. right) regular action on X by G
is p™ + 1. From this £ contains at least two elements from any one of
the orbit of Z(R)*. Let y1,y2 € ' with y1,y2 € o0g(a;) for some i. Then
by Proposition 2.1, ann,(y1) = ann,(y2) = ann,(a;) and so both y; and
y2 have no private out neighbors. Thus, for every subset of Z(R)* with
cardinality greater than p™ + 1 is not an irredundant set and so 2 is both
minimum and maximum cardinality of a maximal irredundant set of D.
Hence ir(D) = IR(D) = || =p™ + 1. O

Remark 2.3. Let F be a finite field with |F| = p™ where p is a prime
and m > 1. In view of Theorems 1.9 and 2.2, ir(D) = y*(D) = v(D) =
B(D) =T*(D)=IR(D)=p™ +1.

Theorem 2.4. Let F be a finite field with |F| = p™ where p is a prime
"4l

andm > 1. Let R = My(F), D = T(My(F)) and Z(R)* = U oe(z:)
i=1

1=
where each z; is a non-zero nilpotent element in R. Then Q is an ir-set
of D if and only if Q contains ezactly one element in oy(x;) for each i,
1<i<p™+1.

Proof. Suppose () contains exactly one element from og(z;) for each 7, 1 <
i < p™+1}. Then by Theorem 2.2, Q is an ir-set of D. Conversely, suppose
Q is an ir-set of D. Then || = p™ + 1. Suppose o¢(z;) N = @ for some 3.
Then Q contains at least two vertices a, b from og(z;) for some j # i. By
Proposition 2.1, ann.(a) = ann,(b) = ann,(z;) and both @ and b have no
private out neighbors, a contradiction. O

Corollary 2.5. Let F be a finite field with |[F| = p™ where p is a prime
™41

andm > 1. Let R = My(F), D = T(My(F)) and Z(R)* = U oe(z:)
i=1

=
where each x; is a non-zero nilpotent element in R. Then Q is a y*-set
of D if and only if Q contains exactly one element in op(x;) for each i,
1<i<pm+1.

One can prove the following Lemma in analogous to the above.
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Lemma 2.6. Let F be a finite field with |F| = p™ where p is a prime and
p"+1

m 2 1. Let R = My(F), D = I'(M(F)) and Z(R)* = | or(z;) where
i=1

each x; is a non-zero nilpotent element in R. Then Q is a vy~ -set of D if and
only if Q contains exactly one element in o.(z;) for eachi, 1 <i <p™+1.

Remark 2.7. Let F be a finite field with |F| = p™, where p is a prime
number and m > 1. Let D = T'(M2(F)). In view of Theorem 1.8 and
Remark 2.3, the number of distinct maximal left ideals of M3(F) is equal
to the out-domination number of D and hence D is excellent.

Proposition 2.8. Let [F be a finite field with |F| = p™ where p is a prime
and m > 1. Let R = M3(F) and D = T(M3(F)). Then v(D) = ywe(D) =
Yo(D) =p™ + 1.

P +1
Proof. Take the partition of Z*(R) as Z(R)* = |J oe(z;), where each
i=1

z; is a non-zero nilpotent element in R. Let y; € og(z;) for some i. By
Theorems 1.5 and 1.6, [anny(y:) N oe(z;)] = |[F| — 1 for all j # i and so
there exists y; € og(x;) such that (y;,y;) € A for all j # i. By Corollary
25, Q= {y1,92,-..,Ypm+1} is a v+-set of D and the subdigraph induced
by € contains no isolated vertices and the underlying graph is connected.
Thus € is a total as well as weakly connected dominating set of D and so
V(D) = vwe(D) =p™ + 1.

Let a; € o¢(z;) Nann.(z;) and a; € ann,(z;) Nog(z;) for i # j. Then
(ai,a;) and (aj,a;) are arcs in I'(M>(F)). By Theorems 1.5 and 1.6, there
exists ar € op(zi) such that (e;,ax) is an arc in I'(M2(F)) for each k,
k #1i# j. By Corollary 2.5, @ = {a1,...,Qi,...,8j,...,0pm41} is a2y -set
of D. Also the subdigraph induced by  is connected and hence Q is an
open dominating set of D. Thus v,(D) =p™ + 1. O

Proposition 2.9. Let F be a finite field with |F| = p™ where p is a prime
andm > 1. Let R = My(F) and D = I'(M2(F)). IfQ is an open dominating
set of D, then S contains no nilpotent elements.

m

Proof. Consider the partition Z(R)* = |J o¢(z;), where each z; is a non-

1=
zero nilpotent element in R. Suppose {1 ccintains a nilpotent element, say,
z. Then z2 = 0. Clearly = € o0¢(z;) for some i and by Proposition 2.1,
0e(x) = 0¢(x;). Let y € 0¢(z). Then y = ux for some unit v in R, yz =0
and so (y,z) € A. Thus y € annj(z) and so o¢(x) C annj(z). Since
loe(z)| = |ann}(z)| = |F|2 — 1 and ann}(z) = o(z), we get that (a,z) ¢ A
for all @ € Q — {2}. Hence the subdigraph induced by €2 is not connected,
a contradiction. a



3 Efficient domination in I'(M;(F))

In this section, we characterize all independent dominating sets as well as
efficient dominating sets of the directed zero-divisor graph I'(R) of My (F),
where F is a finite field.

Theorem 3.1. Let F be a finite field with [F| = p™ where p is a prime and
m > 1. Let R = My(F), D = T'(M3(F)) and Q is a minimal dominating
set of D. Then Q is independent if and only if a> = 0 for every a € §.

™41

Proof. Consider the partition Z(R)* = U o¢(z;), where each z; is a non-

zero nilpotent element in R. Let Q be a rlninimal dominating set in D =
(V, A). By Corollary 2.5, Q@ = {a1,...,apm41 : @i € 0p(z;),1 <3< p™+1}.

Assume that Q is an independent dominating set of D. Suppose a? # 0
for some i. Without loss of generality one can take that a? # 0 for some i
and a? =0 for all j # i. By Lemma 1.7, id(a;) = od(a;) = p*™ — 1. Since

™1
Q is independent, a; ¢ ann,(z;) for all j # i and so a; ¢ ’ U ann.(z;).
Jj=1j#i

Since id(a;} > 0, a; € ann,(z;), (zi,a;) € A and so (y,a;) € A for all
y € og(z;)—{a;}. Since |o¢(z;)| = p>™—1, id(a;) = p*™ -2, a contradiction.

Conversely, assume that a® = 0 for all a € ). As in the proof of Lemma
2.9, anne(z;) = oe(z;) for all ¢ and so x; ¢ ann,(x;) for all i # j. Thus
the subdigraph induced by € has no arcs, and so  is an independent
dominating set of D. O

Theorem 3.2. Let F be a finite field with |F| = p™ where p is a prime
number and m > 1. Let R = My(F) and D = T'(Ma(F)). Then d*(D) =
d=(D) = dy(D) = p*™ — 1 and hence D is domatically full.

"

Proof. Consider the partition Z(R)* = |J oe(z;), where each z; is a non-
i=0

1=
zero nilpotent element in R. Let og(z:) = {ai1, ai2,...,aipzm_1)} for all 4,
1 S i S pm+l and I/j = {alj,GQJ',. . ,a(prl|+1)j} for 1 S J S pzm —1. Then
Vin Vi = 0 for all k # ¢. By Corollary 2.5, V; is a y*-set of D for all j

21n_1
and V(D) = |J Vj. Hence {V1,V3,...,Vj2m_,} is a domatic partition
=1
for D and so d*(D) = p*™ — 1. In a similar way, one can d~ (D) = d¢(D) =
2m
p°™ - 1. a

Theorem 3.3. Let F be a finite field with |F| = p™ where p is a prime
number and m > 1. Let R = M2(F) and D = T'(My(F)). Then v*(D) =
1p(D) = 7e(D) =p™ + 1.
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™y "
Proof. Consider the partition Z(R)* = i U oe(zi) = ’ U anni(z;) =
i=1 i=1
™41
pU annj(z;), where each z; is non-zero nilpotent element in R. Let
1=
Q = {z1,22,....2pm4+1}. By Corollary 2.5, Q is a y*-set of D. Note that
ann}(x;) Nann}(z;) = 0 and ann}(z;) Nanny(z;) = O for all i # j. By
Lemma 1.7, od(z;) = p*™—2 and id(z;) = p*™ —2forall i, 1 <i < p>™+1.
Hence [N*[2]] = [N~ ()] = (™ +1)(5>™ — 2) + (p™ +1) = (p +1)(p*™ —
1) = |V(D)|. From this Q is both out-dominating and in-dominating set
of D. Also Q is a twin dominating set of D and so v*(D) = p*™ + 1.
By Theorem 3.1, 2 is an independent dominating set of D. Also for each
y € V(D) — Q, there exists a unique vertex z; € § such that (z;,y) € A4,
where A is an arc set of D. Hence Q is perfect and efficient dominating set
of D and so v,(D) = v¢(D) = p*™ + 1. O

From Theorems 3.1 and 3.3, we state a characterization for an efficient
dominating set in D.

Corollary 3.4. Let F be a finite field with |F| = p™ where p is a prime
number and m > 1. Let R = My(F) and D = T'(M(F)). If Q is a minimal
dominating set of D, then S is perfect (and so efficient) if and only ifa® = 0
for alla € Q.

The following theorem provides the number of efficient dominating sets
in D.

Corollary 3.5. Let F be a finite field with |F| = p™ where p is a prime
number and m > 1. Let R = M>(F) and D = T'(Mx(F)). Then the number
of disjoint efficient dominating sets in D is p™ — 1.

Proof. Consider the partition Z(R)* = |J oi(z;), where each z; is non-

i=1
zero nilpotent element in R. Let N be the set of all nilpotents in R. By The-
orem 1.5, [o¢(z;) NN (p)| = p™ —1 for all 4, 0(z:) NN = {ai1,- .., 8i(pm-1)}
forall,1 <i<p™+1. Let Vi = {ak,...,a(pm41yk} forallk, 1 <k <
p™ — 1. Then by Corollary 3.4, V} is an efficient dominating set of D for all
k. Hence the number of disjoint efficient dominating sets in Dis p™—1. O
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