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ABSTRACT. In this paper, we give a new look at Sears’ 3¢2 transfor-
mation formula via a discrete random variable. This interpretation
may provide a method to calculate 3¢2 by Monte Carlo experiments.

1. INTRODUCTION

The following is Sears’ 3¢, transformation formula

(1 1) 3¢2 (alva2ra3.q b1b2 ) - (bz/a;;, ble/ala2;q)°°
. bly b2 ) ’ala,2a3 (b2?blb2/a1a2a3;q)oo

bi/a1,b1/az,a3 b_2) b1by by

X3¢2( bl,blbg/alaz ) ’a3 1 I {<1’la3|<1‘
Sears’ 3¢5 transformation is an important formula in basic hypergeometric
functions theory. It has been used by Andrews(3, 14] in proving many of
Ramanujan’s identities for partial theta functions.

The probabilistic method is also a useful tool in the study of basic hyper-
geometric functions. There are some works available in the literature. For
example, K. W. J. Kadell [11] gave a probabilistic proof of Ramanujan’s
1¥1 sum based on the order statistics. J. Fulman (8] presented a prob-
abilistic proof of Rogers-Ramanujan identity using Markov chain on the
non-negative integers. R. Chapman [5] extended J. Fulman’s methods to
prove the Andrews-Gordon identity. In particular, the present author [18]
established the following new discrete probability distribution W (z; g):

(—a:)"(:z:"‘lq"“ , anlﬂ-l; q)mqk
(0,9/z,%;9) o

wherez < 0;0<g<1;n=0,1; £k =0,1,2,---, and gave some applica-
tions of this distribution in g-series. g-type distributions play an important

?

(1.2) P(§ =z"g") =
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role in applications. Various g-type distributions have appeared in the
physics literature in the recent years [6, 7, 12, 13, 15, 20].

In this paper, we ask a question: is there any probabilistic interpretation
for Sears’ 3¢5 transformation formula? We try to give an answer.

We first recall some definitions, notation and known results in [4, 9]
which will be used in this paper. Throughout the whole paper, it is sup-
posed that 0 < ¢ < 1. The g¢-shifted factorials are defined as

(1.3)  (aigo=1, (a;jg)n= l:[(l -ag®), (@i9)oo = [J(1 - ad¥).
k=0 k=0

We also adopt the following compact notation for multiple g-shifted facto-
rials:

(L.4) (a1,a2, ... am; Pn = (81; O)n(a2; Prn--(Gm; Dns
where 7 is an integer or co. We may extend the definition (1.2) of (a;q)n

to

(a5 @)oo
1.5 a;Q)a = ————,
(15) (29) (29%; @)oo
for any complex number «. In particular,

(1.6) (@;@)—n = (a;9)0 1 (~a/a)" ()

= — = q

(@490 (2070 (9/a;9)n
Heine introduced the .41, basic hypergeometric series, which is defined
by

[o <]
a1,82, ..., Qry1 (a1,02, ., 8r41;q)nZ"

1.7 r 0T )= '

(1-7) r+19 ( by, b2, ..., by 1 ) Z (9,61, b2, .-, br; Q)

The ¢-Gauss summation formula

a,b. ¢\ _(c/a,¢/big)o €
(1.8) m( i, ab) - Sipitle 121 c0,

The following is the well known Ramanujan’s ;3; summation formula

n=0

=~ (4;9)n _n _ (g,b/a,02,9/02;¢)s

A9 X Gt = Gafanbange M <<
F. H. Jackson defined the g-integral by [10]

d oo
(1.10) | #0dt=da -0 3 @,

Y n=0
and

d d c
(1.11) [ e = [ st — [ rerdee
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The g-integral is important in the theory and applications of basic hy-
pergeometric series. The following is the Andrews-Askey integral [2], which
can be derived from Ramanujan’s 14; summation:

¢ (gt/c,qt/d; g)oo dyt = d(1 — g)(¢, dg/c, ¢/d, abed; g)oo
c (at bt; Q) (aca ad, be, bd; q)oo '

provided that no zero factors occur in the denominator of the integrals. Al-
Salam and Verma gave an extension of the Andrews-Askey integral, which

is called the Al-Salam and Verma (1] g-integral

4 (qt/c, qt/d, et; q)oo dt
¢ (at b, ft; @)oo

d(l — Q)(Qv dQ/cv C/d, e/a'l e/bv e/f; q)oo
(ac,ad, be, bd, fc, fd; q)oo !

provided that no zero factors occur in the denominator of the integrals,
where e = abedf.

Lebesgue’s dominated convergence theorem: Suppose that {X,,n >
1} is a sequence of random variables, that X, — X pointwise almost
everywhere as n — oo, and that |X,| <Y for all n, where random variable
Y is integrable. Then X is integrable, and
(1.14) lim EX, =EX.

n—oo

(1.12)

(1.13)

2. A NEW LOOK AT SEARS’ 3¢ TRANSFORMATION

In this section, we use the following lemma to give a new look at Sears’
3¢9 transformation formula via a discrete random variable.

Lemma 1. Let £ denote random variable having distribution W (z; q), -1 <
z <0, then

(abz€; 9)oo _ (abz, bex; 9) oo b,bx,c
& E{(aﬁ,b&cﬁ;q)w}— (a,b,bz,¢,cz;9)oo ¢ (abw,bcw’q’ax>’

provided that max{|a}, |b], |c|} < 1,where E(X) denotes expected value of
the random variable X .

Proof. Considering the following sequence of random variables (on a prob-
ability space):
T = (abca:{; q)oo - (bE,c; Q)k (a.:z:)k
" (a€, b€, ¢ @)oo = (g, abeat; q)k

where n =0,1,2,--
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Since,
(abez€; q)oo (b€, c; q) k
(a§7b‘$ Cf Q)oo kZ (%abcxg, Q)k x)

— (abezg*€iq)o0 (G, vk
,;, (a€,bg*€, ¢t q)0  (a:0)k (az)
(—labez; g) oo

(lal; 6], lel; Yoo £

|7 |

(¢ k
G (az)

IA

and the series
Z (C Q)k
(& q)k
converges absolutely. Using Lebesgue’s dominated convergence theorem
gets:
(2.2) Jim En, =E( lim 75).

Using the g-Gauss theorem, we have

. _ (abcx€:Q)oo = (bﬁ,c, ) k
(2.3) A TR )oo,;,(q,abcmﬁ (I)k( %)

(abezfiq)oo  (abzé, acT; q)oo
(a€,b€,c6;q)00  (abext,az;q)oo
(acz; @)oo (abz€;q)oo
(aa:; Q)oo (G-€, bg, c€; Q)oo '

Hence, we get the right hand side of (2.2):

. _ (acz;9)o (abz€;q) oo
24 E( firm, ) = (a%; 9) oo E { (a, b€, c€; @)oo } '

In order to get the left hand side of (2.2), Observe that
(abezti g)oo s~ _ (B, Ci )k k}
2.5 En, = E E azr
29) " {(aﬁ, b€, c€; q)oo £ (g, abezé; Q)k( )

= (g 9)kl(a)* (abezg®€; @)oo
- kz=;) (¢:9)x E{(aﬁibqk&c{;‘noo}‘
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Employing the Al-Salam and Verma g-integral (1.1) gives
bexq*&; q)
2.6 E{ (o  d)oo
(26) (a€,bg* €, cf; q)oo
%> (=2)"(z""1qmH, z"g™H, aber™ g™, g)ooq™
(9,9/z, z,az™g™, bx"g*+™, cq™I™; ¢)oo

n=0m=0

1 = (g™*/z,q™*!, abczg*t™; q)coq™
= — . [(1 “q) Z / m k+m m. =
(1 —a)(q,9/2,%;9)0 = (ag™, bg*+™, cq™; @)oo

0 m+1 , T m+1 abcxz k+m.
—x(l—q)z(q( qb cher g 1 Qo0q™ ]
m=0 azq™,bzq 1 C4™ZT; @)oo
_ 1 ! (gt/z.qt,0bcng*t 9)oo ,
- 9)(9,9/2,%; @)oo Ju at, bg*t, ct; ¢)o
(1-9)g,q/ ) (at, bg*t, ct; q) !
(abzq*, acz, bezq*; q)oo
(a,az,bg*, bxq*, c,cz;q)o0
Substituting (2.6) into (2.5) gets
Z(c,q)k(u { (abezg®€; q)oo }
(q, Q)k (a{, bqu) Cf; q)oo
_ (abx,acx,bcz;q)oo =\ (b, bz, c; q)x (az)
~ (o,a2,b,bz,¢,c7;9)00 £ (g, abz, bez; q)ie '

(27) Enn =

Hence, we get the left hand side of (2.2).

(abz, acz, bez; @)oo b,bz,c .
(a,az,b,bz,c,cT;q) oo 302 abz, bex 3, az
Substituting (2.4) and (2.8) into (2.2) gets (2.1). 0

Formula (2.1) gives a new look at Sears’ 3¢, transformation formula. It
is obvious that the left-hands of (2.1) is symmetric in a,b, and so is the
right-hand sides. Interchanging a, b on the right-hand side of (2.1), we have
Sears’ 3¢, transformation formula. In fact, interchanging a and b on the
left-hand side of (2.1), we obtain

(2.8) nll'n;o En, =

(abz, be; ) bbz,c
(2.9) (@,5,52. 0,050 3¢ abz, bt 0%
__(abz,act;g)o a,az,c
~ (a,b,az,¢,c7;9) 00 é2 abz, acz’ g6z ).
Hence,

(2.10) 392 ( b,bz, c ;q,a:r) - (808,071 9)eo 302 ( % 0%, € ;q,bx),

abzx, bex (az, bex; @)oo abz, acx
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which is equivalent to Sears’ 3¢, transformation formula. This tells us
Sears’ 3¢o transformation formula is nothing but only a symmetry of ex-
pectation formula(2.1). So (2.1) gives a probabilistic interpretation for
Sears’ 3¢, transformation formula. There is a similar formula in [19]. Un-
fortunately that formula can not give the above probabilistic interpretation
for Sears’ 3¢, transformation formula.

Monte Carlo methods (or Monte Carlo experiments) are a class of com-
putational algorithms that rely on repeated random sampling to compute
their results. Monte Carlo methods are often used in computer simulations
of physical and mathematical systems. These methods are most suited
to calculation by a computer. This method is also used to complement
theoretical derivations. We want to point out the interpretation set up a
relationship between expected value of a random variable and 3¢, and it
may provide a way to calculate 3¢ by Monte Carlo method.
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