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Abstract

We give necessary and sufficient conditions for the decomposition
of the complete graphs with multiple holes, K, \ hKy, into the graph-
pair of order 4.

1 Introduction

A graph-pair of order ¢ consists of two non-isomorphic graphs G and H on
t non-isolated vertices for which GU H & K,. In (4], Abueida and Daven
showed that there exists a { K, K1 m }-decomposition of AK, for allm > 3,
A >1,and n =0,1 (mod m). For graph-pairs of order 4 and 5, G and H,
Abueida, Daven, and Roblee (in [3, 5]) determined the the values of n for
which there exists {G, H }-decomposition of AK,, for A > 1. In [6], Abueida
and O’Neil showed that there exists a {Cpm, K1,m—1}-decomposition of AK,,
form=3,4,and5and n>m+1.

For positive integers h, n and v > 2 where hv < n, the complete graph of
order n with A holes of size v is formed by removing all the edges of h com-
plete subgraphs K, from K, while retaining all vertices (i.e. K,\hK,).
The non-isomorphic graphs with no isolated vertices, G and H on ¢ ver-
tices form a graph-pair of order ¢t if GU H = K,. The graphs G = C4 and
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H = 2K, are the only graph-pair of order 4 . A (G, H)-decomposition of
K, is a partitioning of the edges of K, into copies of G and H with at
least one copy of G and at least one copy of H. If a decomposition does
not exist, we then attempt the decomposition of the graph as closely as
possible. With a maximum packing, one can obtain a leave L (the set of
unused edges) with as few edges as possible. For a minimum covering, one
can obtain a padding P (the set of edges used more than once) that has as
few edges as possible.

Recently, Shyu [9] gave decompositions of the complete graph K, into
p copies of Piy; and g copies of Sky1 when n > 4k, k(p + q) = (3), and
either & is even and p > —'25, or k is odd and p > k. In [10], Shyu investigated
the decomposition of K, into paths and cycles. He obtained necessary and
sufficient condition for decomposing K, into p copies of Ps and q copies of
C, for all possible values of p > 0 and ¢ > 0.

Let V(K,) = Z,, and V(K,;) = Zgqe. If S C Z,,, then K,[S] is the
subgraph of K, induced by the vertices in S. For a disjoint sets S and
T,if SUT C Z,, then K,[S;T) is the bipartite subgraph of K, on the
vertices SUT. When s = |S| and t = |T|, it is clear that K,,[S] = K, and
Ko[S;T) = K, ;. Define [a,b] = {t € Z, |a <t <b}. If S = [a,b] and
T = [c¢,d], then we write Ky[a,b] and K,[a,b; ¢,d] rather than K,[S] and
K,[S;T). We say that Cy = {a,b,c,d} to denote the cycle on 4 vertices
a,b,c and d in order.

2 Preliminaries
One of the nicest results in cycle decomposition of graphs is due to Alspach
and Gavlas in [8]. The results are summarized in the following theorem.

Theorem 2.1. [8/ For odd integers m and n with 3 < m < n, there exists
a Cp,-decomposition of K, if and only if m|n(n —1)/2.

Another nice result is due to Sotteau in [11] which is summarized in the
following theorem.

Theorem 2.2. [11] Ko, is Cr-decomposable if and only if m < da,
m < 4b, and m|4ab.

One can deduce the following corollary directly from Sotteau’s theorem.

Corollary 2.3. For nonzero even integers a and b, K, 3 is C4-decomposable.
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The authors in [3] settled the problem of multidesigns of the complete
graph K, into the graph-pair of order 4. The following theorem summarizes
their results.

Theorem 2.4. [3]
1. There is a (C4,2K2)-decomposition of K,, if and only ifn=0,1 mod
4i(n>4,n#5).
2. There is a (Cy4,2K,)-mazimum packing (minimum covering) of Kn
with L (and P) = K if and only if n = 2,3 mod 4.
In [1], Abueida solved the proposed problem when there is exactly one
hole. The results are summarized in the following theorem.

Theorem 2.5. Suppose n,p,v are integers withp =n—v and v > 2. The
Sfollowing are true:

1. There is a (Cy4,2K,)-decomposition of K, \ K, if and only if:
(a) p=0 mod 4;
(b) p=1 mod 4 and v =0 mod 2; or
(c) p=3 mod { and v =1 mod 2.
2. There is a (Cy,2K,)-mazimum packing (minimum covering) of K,
with a leave L (padding P) = K> if and only if:
(a) p=1 mod 4 and v =1 mod 2;
(b)) p=2 mod 4; or
(c) p=3 mod { and v =0 mod 2.
Hence, throughout this paper, we can assume that A > 2. We make use
of the following lemma in the proof of the main result.
Lemma 2.6. 1. There is a 2K-decomposition of Kj 3.
2. There is a (Cy,2K3)-decomposition of K3 4.

Proof. Let K33 have parts A labeled 0,1 and B labeled 2,3,4. Then
{0,2:1,3},{0,3;1,4}, {0,4;1,2} is a 2K>-decomposition of Ko 3.

Let K34 have parts A labeled 0,1,2 and B labeled 3,4,5,6. Then the
following is a (Cj4, 2K3)-decomposition of K3 4:

Ci2{0,3,1,4},{1,5,2,6); and
2K, = {0,5;2, 3}, {0, 6; 2, 4}. m|
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Lemma 2.7 is a result of combining Corollary 2.3 and Lemma 2.6.

Lemma 2.7. 1. There is a (C4,2Ks)-decomposition of Keyen even and
Keven,add-

2. There is a (Cy4,2K3)-packing of Kodd odd with a leave L = K.

3 The main result

Now, we now present our main result.

Theorem 3.1. For integer v > 2, there is a (Cy,2K3) decomposition of
the K, \ hK, if and only if either:

1. n=0 or 1 (mod 4), and either h is even or v=0 or 1 (mod 4); or

2. n=2or 3 (mod 4), his odd, and v =2 or 3 (mod 4).

Proof. Note that |E(K, \ hKy)| = () — h(}). Since both of Cy and 2K,
have even number of edges then the existence of (Cy4,2K2) decomposition of
Kn \ hK, requires that either both of the terms (3) and h(3) to be even or
both odd. Cases 1 and 2 show the (Cj, 2K3)-decomposition when both (7)
and h(3) are even, and Cases 3 and 4 show the (Cy,2K3)-decomposition
when both (3) and h(3) are odd.

Next, we will exhibit the decomposition by splitting the problem into
cases based on the parity of n modulo 4. We note that there are three type
of edges that are involved in the decomposition. For simplicity, we call the
edges between any two vertices in K, \ hK, type 1 edges, the ones between
vertices in different holes type 2 edges, and the ones between vertices in the
holes and vertices in K, \ hK, type 3 edges. (see figure 1)

Case1: n = 0 (mod 4). If h is even, and v is even (or k is odd and
v = 0 (mod 4)), then n — hv = 0 (mod 4). Applying Theorem 2.4 to
Ko_ho[ay, Gn_hy), we get a (Cy4, 2K,)-decomposition that uses all the edges
of type 1. For 1 < i # j < h, we apply Lemma 2.7 to K, ,[bi, bi; b], bJ]
and Kp_pyv{a1,8n-hv; b3, b, to get a (Cy,2K2)-decomposition that uses
all the type 2 and type 3 edges, respectively. If h is even and v is odd, then
n—hv =0or 2 (mod 4). For 1 <4 # j < h, apply Lemma 2.7 to the
type 2 edges in K, (b}, b%; ], b7]. For each choice of i # j, the packing will
have a leave of a single edge. Without loss of generality, we can assume
that the leave is the edge b} b]. The collection of those leave edges is the
complete graph Kp[bl,---b%]. Apply Lemma 2.7 to the type 3 edges in
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Figure 1: The three types of edges in K, \ hK,.

Ko hvolar, an—ny; b, bi] to get a (Cy, 2K3)-decomposition that uses all of
the type 3 edges.

If h = 0 (mod 4), then n — hv = 0 (mod 4), then apply Theorem
2.4 to Kn—hy[a1,08n-hy] and Kp[b}, %] to get a (Cy,2K2)-decomposition
that uses all the edges of type 1 and the rest of type 2 edges, respectively.
Otherwise, h = 2 (mod 4) and n — hv = 2 (mod 4). Apply Theorem 2.4
to Kn—hula1, an—ny] and Kp[bl,b%] to get a (Cy, 2K>)-packing with a leave
of a single edge in each case, say a; az and b} b2 respectively. Those two
edges form another copy of 2K5.

So, we can assume that h is odd and v = 1 (mod 4). For 1 <1 #
7 < h, apply Lemma 2.7 to the type 2 (type 3 edges) in K, ,[b3,bi;b], bi)
(Kn—hvwla1,Gnery; b}, L)) will produce a (Cy, 2K,)-packing with a leave
consisting of a single edge, say b b] (say edge a1 bi). The collection of
those leaves is the complete graph Kp[bl,--- ,b%] (single edge a; b}). Ap-
ply Theorem 2.4 to the type 1 edges in Kn ;w[al,an hv) to get either a
(C4,2K3)-decomposition or a (Cy, 2K2)-packing with a leave consisting of
a single edge, say a; a2, depending on the parity of n — hv modulo 4.

If h = 3 (mod 4), then n — hv = 1 (mod 4). Apply Theorem 2.4 to
the edges in Kpyi[a1,b}, -+ ,b%] to get a (Cy,2K3)-decomposition since
h+1=0 (mod 4). If h =1 (mod 4), then n — hv = 3 (mod 4). Apply
Theorem 2.4 to the edges in Kp41[a1,b},- -+ ,b%] to get a (Cy, 2K>)-packing
with a leave consisting of a single edge, say bl b2, since h + 1 = 2 (mod 4).
In this case we match the edges b} b? and a, a, to get another copy of 2K5.

Case2: n = 1 (mod 4). If both h and v are even (or & is odd and
v = 0 (mod 4)), then n — hv = 1 (mod 4). Applying Theorem 2.4 on
Kn_hol01,an—hy], we get a (Cy,2K3)-decomposition that uses all the edges
of type 1. For 1 < i # j < h, we apply Lemma 2.7 to Ko o[04, bi; 67, bi)]
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and Kp_hyv[a1,an—no; b}, bi], to get a (Cy, 2K,)-decomposition that uses
all the type 2 and type 3 edges.

Ifhiseven and vis odd, thenn—hv =1or3 (mod4). For1 <i# j < h,
apply Lemma 2.7 to the type 2 edges in K, ,[b},b}; b7, J]. For each choice
of i # j, the decomposition will have a leave of a single edge. Without loss
of generality, we can assume that the leave is the edge b} 4]. The collection
of those leave edges is the complete graph K [bl,---b%]. Apply Lemma 2.7
to the type 3 edges in Kpn—py,5[a1,8n-hy; b}, b:) to get a (Cy4, 2K7)-packing
with a leave of a single edge for each choice of i, say the edge a; 4.

If h =0 (mod 4) (h =2 (mod 4)),thenn—hv =1 (mod 4) (n—hv =3
(mod 4)). Apply Theorem 2.4 to the complete graphs Kp1[a1,bl,- - ,b%]
and Kn_no[a1,@n—ny|. If h = 0 (mod 4), then n — hv = 1 (mod 4). So,
we get a {Cy4,2K2)-decomposition of the complete graphs. If h = 2 (mod
4), then n — hv = 3 (mod 4). In this case, we have a (Cy, 2K>3)-packing
of the complete graphs Kpyilai,bl,--- ,b;‘] and Kn_py[a1,8n-ny] With a
leave consisting of a single edge each time, say the edges b} b3 and a; a,.
These 2 edges form another copy of 2Ks.

So, we can assume that h is odd and v = 1 (mod 4) for the rest
of this case. Apply Lemma 2.7 to the edges in Kn—hy,u[a1,@n—ho; b%, )
and K, ,[bi,bi;4),bi] to get a (Cy,2K,)-decomposition and a (Cy, 2K>)-
packing with a leave consisting of a single edge, say the edge b} b{, for each
choice of ¢ # j. The collection of those leave edges is the complete graph
Ku[bl,---b%]. Apply Theorem 2.4 to the complete graphs K[bl,--- ,b?]
and Kn_py([@1,8n—hy]. If A =1 (mod 4); n — hv = 0 (mod 4), then there
is a (C4,2K3)-decomposition of the complete graphs K[b},--- ,b% and
Kop_holay,@n_ny). If h =3 (mod 4); n — hv = 2 (mod 4), then there is a
(C4,2K,)-packing of Kp[bl,---,b%) and K,,_py[a1,@n—ro] with leaves con-
sisting of single edges, say b} b? and a; a; respectively. These two edges
form a copy of 2K5.

Case 3: n = 2 (mod 4) and h is odd. If v = 2 (mod 4), then n —
hv = 0 (mod 4). Apply Theorem 2.4 to Kp_ny[a1,an—ny), and Lemma
2.7 to Ko,u[b},b};0},b]) and Kn—hvola1,an—nv;bi,b] to get (Cs,2K3)-
decompositions, for all i # j.

So, we can assume that v = 3 (mod 4). Apply Lemma 2.7 to K, [b},b;
b}, b3] and Kn_hv,v[01,@n-nv; b}, b to get a (Cy, 2K3)-packing with a leave
consisting of a single edge, say edges b} b{ and a; b} respectively, for each
choice i % j. The collection of those leave edges is the complete graph
Kpyila1,b},---b8]. If h = 3 (mod 4), then n — hv = 1 (mod 4). Apply
Theorem 2.4 to Kp_py[a1,8n—rs] and Kh.,_l[a.l,b},.ub'f] to get (Cy,2K5)-
decompositions. Otherwise, if h = 1 (mod 4), then n — hv = 3 (mod 4).
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Apply Theorem 2.4 to Ky—py[a1,an—ho] and Kpyia1,bl,--- %] to get a
(C4, 2K5)-packing with leave consisting of a single edge in each case, say
a1 Gn-hy and b} b2. These 2 edges form a copy of 2K,.

Case 4: n — hv = 3 (mod 4) and h is odd. If v = 2 (mod 4), then
n—hv=1 (mod 4). Apply Theorem 2.4 to Kpn_ho[a@1,8n—hv], and Lemma
2.7 to Ko,u[bi,b};b},b]] and Kn—hvwl@1,an-hy; b3, 0] to get (C4,2K2)-
decompositions, for all 1 <i# j < h.

So, we can assume that v = 3 (mod 4). Apply Lemma 2.7 to K, ,[b%,b%;
bjl-, bl to get a (Cy, 2K>)-packing with a leave consisting of a single edge, say
edges b} b{ The collection of those leave edges form the complete graph
Kb}, --b%). Since v = 3 (mod 4) and h is odd, then n — hv = 0 or 2
(mod 4). Apply Lemma 2.7 to Kn—hv,v[a1,an—nv; b%,bi] to get (Ca,2K2)-
decomposition for 1 < i < h. If A =1 (mod 4), then n — hv = 0 (mod 4).
Apply Theorem 2.4 to Kn_po|a1, @n—hy] and Kp[bl, - - -b?] to get (Cy, 2K3)-
decompositions. Otherwise, if A = 3 (mod 4), then n — hv = 2 (mod 4).
Apply Theorem 2.4 to Kp—pola1,an—hv] and Kp[bl, - b%] to get (C4, 2K>2)-
packing with leave consisting of a single edge in each case, say a1 a2 and
b} b2. These 2 edges form a copy of 2K».
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