Decompositions of complete graphs with holes of the same size into the graph-pair of order 4

Atif A. Abueida* Courtney Perkins[†]
Department of Mathematics
University of Dayton
300 College Park
Dayton, OH 45469-2316

Abstract

We give necessary and sufficient conditions for the decomposition of the complete graphs with multiple holes, $K_n \setminus hK_v$, into the graphpair of order 4.

1 Introduction

A graph-pair of order t consists of two non-isomorphic graphs G and H on t non-isolated vertices for which $G \cup H \cong K_t$. In [4], Abueida and Daven showed that there exists a $\{K_m, K_{1,m}\}$ -decomposition of λK_n for all $m \geq 3$, $\lambda \geq 1$, and $n \equiv 0, 1 \pmod{m}$. For graph-pairs of order 4 and 5, G and H, Abueida, Daven, and Roblee (in [3, 5]) determined the the values of n for which there exists $\{G, H\}$ -decomposition of λK_n for $\lambda \geq 1$. In [6], Abueida and O'Neil showed that there exists a $\{C_m, K_{1,m-1}\}$ -decomposition of λK_n for m = 3, 4, and 5 and $n \geq m+1$.

For positive integers h, n and $v \geq 2$ where hv < n, the complete graph of order n with h holes of size v is formed by removing all the edges of h complete subgraphs K_v from K_n , while retaining all vertices (i.e. $K_n \setminus hK_v$). The non-isomorphic graphs with no isolated vertices, G and H on t vertices form a graph-pair of order t if $G \cup H \cong K_t$. The graphs $G \cong C_4$ and

^{*}aabueida1@udayton.edu

[†]Perkinsc1@notes.udayton.edu

 $H \cong 2K_2$ are the only graph-pair of order 4. A (G, H)-decomposition of K_n is a partitioning of the edges of K_n into copies of G and H with at least one copy of G and at least one copy of H. If a decomposition does not exist, we then attempt the decomposition of the graph as closely as possible. With a maximum packing, one can obtain a leave L (the set of unused edges) with as few edges as possible. For a minimum covering, one can obtain a padding P (the set of edges used more than once) that has as few edges as possible.

Recently, Shyu [9] gave decompositions of the complete graph K_n into p copies of P_{k+1} and q copies of S_{k+1} when $n \geq 4k$, $k(p+q) = \binom{n}{2}$, and either k is even and $p \geq \frac{k}{2}$, or k is odd and $p \geq k$. In [10], Shyu investigated the decomposition of K_n into paths and cycles. He obtained necessary and sufficient condition for decomposing K_n into p copies of P_5 and p copies of P_6 for all possible values of $p \geq 0$ and $p \geq 0$.

Let $V(K_n) = \mathbb{Z}_n$ and $V(K_{s,t}) = \mathbb{Z}_{s+t}$. If $S \subseteq \mathbb{Z}_n$, then $K_n[S]$ is the subgraph of K_n induced by the vertices in S. For a disjoint sets S and T, if $S \cup T \subseteq \mathbb{Z}_n$, then $K_n[S;T]$ is the bipartite subgraph of K_n on the vertices $S \cup T$. When s = |S| and t = |T|, it is clear that $K_n[S] \cong K_s$ and $K_n[S;T] \cong K_{s,t}$. Define $[a,b] = \{t \in \mathbb{Z}_n \mid a \leq t \leq b\}$. If S = [a,b] and T = [c,d], then we write $K_n[a,b]$ and $K_n[a,b;c,d]$ rather than $K_n[S]$ and $K_n[S;T]$. We say that $C_4 \cong \{a,b,c,d\}$ to denote the cycle on 4 vertices a,b,c and d in order.

2 Preliminaries

One of the nicest results in cycle decomposition of graphs is due to Alspach and Gavlas in [8]. The results are summarized in the following theorem.

Theorem 2.1. [8] For odd integers m and n with $3 \le m \le n$, there exists a C_m -decomposition of K_n if and only if m|n(n-1)/2.

Another nice result is due to Sotteau in [11] which is summarized in the following theorem.

Theorem 2.2. [11] $K_{2a,2b}$ is C_m -decomposable if and only if $m \leq 4a$, $m \leq 4b$, and m|4ab.

One can deduce the following corollary directly from Sotteau's theorem.

Corollary 2.3. For nonzero even integers a and b, $K_{a,b}$ is C_4 -decomposable.

The authors in [3] settled the problem of multidesigns of the complete graph K_n into the graph-pair of order 4. The following theorem summarizes their results.

Theorem 2.4. [3]

- 1. There is a $(C_4, 2K_2)$ -decomposition of K_n if and only if $n \equiv 0, 1 \mod 4$ $(n \geq 4, n \neq 5)$.
- 2. There is a $(C_4, 2K_2)$ -maximum packing (minimum covering) of K_n with L (and P) $\cong K_2$ if and only if $n \equiv 2, 3 \mod 4$.

In [1], Abueida solved the proposed problem when there is exactly one hole. The results are summarized in the following theorem.

Theorem 2.5. Suppose n, p, v are integers with p = n - v and $v \ge 2$. The following are true:

- 1. There is a $(C_4, 2K_2)$ -decomposition of $K_n \setminus K_v$ if and only if:
 - (a) $p \equiv 0 \mod 4$;
 - (b) $p \equiv 1 \mod 4$ and $v \equiv 0 \mod 2$; or
 - (c) $p \equiv 3 \mod 4$ and $v \equiv 1 \mod 2$.
- 2. There is a $(C_4, 2K_2)$ -maximum packing (minimum covering) of K_n with a leave L (padding P) $\cong K_2$ if and only if:
 - (a) $p \equiv 1 \mod 4$ and $v \equiv 1 \mod 2$;
 - (b) $p \equiv 2 \mod 4$; or
 - (c) $p \equiv 3 \mod 4$ and $v \equiv 0 \mod 2$.

Hence, throughout this paper, we can assume that $h \ge 2$. We make use of the following lemma in the proof of the main result.

Lemma 2.6. 1. There is a $2K_2$ -decomposition of $K_{2,3}$.

2. There is a $(C_4, 2K_2)$ -decomposition of $K_{3,4}$.

Proof. Let $K_{2,3}$ have parts A labeled 0,1 and B labeled 2,3,4. Then $\{0,2:1,3\},\{0,3;1,4\},\{0,4;1,2\}$ is a $2K_2$ -decomposition of $K_{2,3}$.

Let $K_{3,4}$ have parts A labeled 0,1,2 and B labeled 3,4,5,6. Then the following is a $(C_4, 2K_2)$ -decomposition of $K_{3,4}$:

$$C_4 \cong \{0, 3, 1, 4\}, \{1, 5, 2, 6\};$$
 and $2K_2 \cong \{0, 5; 2, 3\}, \{0, 6; 2, 4\}.$

Lemma 2.7 is a result of combining Corollary 2.3 and Lemma 2.6.

- **Lemma 2.7.** 1. There is a $(C_4, 2K_2)$ -decomposition of $K_{even,even}$ and $K_{even,odd}$.
 - 2. There is a $(C_4, 2K_2)$ -packing of $K_{odd,odd}$ with a leave $L \cong K_2$.

3 The main result

Now, we now present our main result.

Theorem 3.1. For integer $v \geq 2$, there is a $(C_4, 2K_2)$ decomposition of the $K_n \setminus hK_v$ if and only if either:

- 1. $n \equiv 0$ or 1 (mod 4), and either h is even or $v \equiv 0$ or 1 (mod 4); or
- 2. $n \equiv 2$ or 3 (mod 4), h is odd, and $v \equiv 2$ or 3 (mod 4).

Proof. Note that $|E(K_n \setminus hK_v)| = \binom{n}{2} - h\binom{v}{2}$. Since both of C_4 and $2K_2$ have even number of edges then the existence of $(C_4, 2K_2)$ decomposition of $K_n \setminus hK_v$ requires that either both of the terms $\binom{n}{2}$ and $h\binom{v}{2}$ to be even or both odd. Cases 1 and 2 show the $(C_4, 2K_2)$ -decomposition when both $\binom{n}{2}$ and $h\binom{v}{2}$ are even, and Cases 3 and 4 show the $(C_4, 2K_2)$ -decomposition when both $\binom{n}{2}$ and $h\binom{v}{2}$ are odd.

Next, we will exhibit the decomposition by splitting the problem into cases based on the parity of n modulo 4. We note that there are three type of edges that are involved in the decomposition. For simplicity, we call the edges between any two vertices in $K_n \setminus hK_v$ type 1 edges, the ones between vertices in different holes type 2 edges, and the ones between vertices in the holes and vertices in $K_n \setminus hK_v$ type 3 edges. (see figure 1)

Case 1: $n \equiv 0 \pmod 4$. If h is even, and v is even (or h is odd and $v \equiv 0 \pmod 4$), then $n-hv \equiv 0 \pmod 4$. Applying Theorem 2.4 to $K_{n-hv}[a_1,a_{n-hv}]$, we get a $(C_4,2K_2)$ -decomposition that uses all the edges of type 1. For $1 \le i \ne j \le h$, we apply Lemma 2.7 to $K_{v,v}[b_1^i,b_v^i;b_j^j,b_v^j]$ and $K_{n-hv,v}[a_1,a_{n-hv};b_1^i,b_v^i]$, to get a $(C_4,2K_2)$ -decomposition that uses all the type 2 and type 3 edges, respectively. If h is even and v is odd, then $n-hv \equiv 0$ or 2 (mod 4). For $1 \le i \ne j \le h$, apply Lemma 2.7 to the type 2 edges in $K_{v,v}[b_1^i,b_v^i;b_1^j,b_v^j]$. For each choice of $i \ne j$, the packing will have a leave of a single edge. Without loss of generality, we can assume that the leave is the edge b_1^i b_1^j . The collection of those leave edges is the complete graph $K_h[b_1^1,\cdots b_1^h]$. Apply Lemma 2.7 to the type 3 edges in

Figure 1: The three types of edges in $K_n \setminus hK_v$.

 $K_{n-hv,v}[a_1, a_{n-hv}; b_1^i, b_v^i]$ to get a $(C_4, 2K_2)$ -decomposition that uses all of the type 3 edges.

If $h \equiv 0 \pmod{4}$, then $n - hv \equiv 0 \pmod{4}$, then apply Theorem 2.4 to $K_{n-hv}[a_1,a_{n-hv}]$ and $K_h[b_1^1,b_1^h]$ to get a $(C_4,2K_2)$ -decomposition that uses all the edges of type 1 and the rest of type 2 edges, respectively. Otherwise, $h \equiv 2 \pmod{4}$ and $n - hv \equiv 2 \pmod{4}$. Apply Theorem 2.4 to $K_{n-hv}[a_1,a_{n-hv}]$ and $K_h[b_1^1,b_1^h]$ to get a $(C_4,2K_2)$ -packing with a leave of a single edge in each case, say a_1 a_2 and b_1^1 b_1^2 respectively. Those two edges form another copy of $2K_2$.

So, we can assume that h is odd and $v \equiv 1 \pmod{4}$. For $1 \leq i \neq j \leq h$, apply Lemma 2.7 to the type 2 (type 3 edges) in $K_{v,v}[b_1^i, b_v^i; b_1^j, b_v^j]$ ($K_{n-hv,v}[a_1, a_{n-hv}; b_1^i, b_v^i]$) will produce a $(C_4, 2K_2)$ -packing with a leave consisting of a single edge, say b_1^i b_1^j (say edge a_1 b_1^i). The collection of those leaves is the complete graph $K_h[b_1^1, \cdots, b_1^h]$ (single edge a_1 b_1^i). Apply Theorem 2.4 to the type 1 edges in $K_{n-hv}[a_1, a_{n-hv}]$ to get either a $(C_4, 2K_2)$ -decomposition or a $(C_4, 2K_2)$ -packing with a leave consisting of a single edge, say a_1 a_2 , depending on the parity of n-hv modulo 4.

If $h \equiv 3 \pmod 4$, then $n-hv \equiv 1 \pmod 4$. Apply Theorem 2.4 to the edges in $K_{h+1}[a_1,b_1^1,\cdots,b_1^h]$ to get a $(C_4,2K_2)$ -decomposition since $h+1\equiv 0 \pmod 4$. If $h\equiv 1 \pmod 4$, then $n-hv\equiv 3 \pmod 4$. Apply Theorem 2.4 to the edges in $K_{h+1}[a_1,b_1^1,\cdots,b_1^h]$ to get a $(C_4,2K_2)$ -packing with a leave consisting of a single edge, say b_1^1 b_1^2 , since $h+1\equiv 2 \pmod 4$. In this case we match the edges b_1^1 b_1^2 and a_1 a_2 to get another copy of $2K_2$.

Case 2: $n \equiv 1 \pmod{4}$. If both h and v are even (or h is odd and $v \equiv 0 \pmod{4}$), then $n - hv \equiv 1 \pmod{4}$. Applying Theorem 2.4 on $K_{n-hv}[a_1, a_{n-hv}]$, we get a $(C_4, 2K_2)$ -decomposition that uses all the edges of type 1. For $1 \leq i \neq j \leq h$, we apply Lemma 2.7 to $K_{v,v}[b_1^i, b_v^i; b_1^j, b_v^j]$

and $K_{n-h\nu,\nu}[a_1,a_{n-h\nu};b_1^i,b_{\nu}^i]$, to get a $(C_4,2K_2)$ -decomposition that uses all the type 2 and type 3 edges.

If h is even and v is odd, then $n-hv\equiv 1$ or $3\pmod 4$. For $1\le i\ne j\le h$, apply Lemma 2.7 to the type 2 edges in $K_{v,v}[b_1^i,b_v^i;b_1^j,b_v^j]$. For each choice of $i\ne j$, the decomposition will have a leave of a single edge. Without loss of generality, we can assume that the leave is dege b_1^i b_1^j . The collection of those leave edges is the complete graph $K_h[b_1^1,\cdots b_1^h]$. Apply Lemma 2.7 to the type 3 edges in $K_{n-hv,v}[a_1,a_{n-hv};b_1^i,b_v^i]$ to get a $(C_4,2K_2)$ -packing with a leave of a single edge for each choice of i, say the edge a_1 b_1^i .

If $h \equiv 0 \pmod{4}$ $(h \equiv 2 \pmod{4})$, then $n - hv \equiv 1 \pmod{4}$ $(n - hv \equiv 3 \pmod{4})$. Apply Theorem 2.4 to the complete graphs $K_{h+1}[a_1, b_1^1, \cdots, b_1^h]$ and $K_{n-hv}[a_1, a_{n-hv}]$. If $h \equiv 0 \pmod{4}$, then $n - hv \equiv 1 \pmod{4}$. So, we get a $(C_4, 2K_2)$ -decomposition of the complete graphs. If $h \equiv 2 \pmod{4}$, then $n - hv \equiv 3 \pmod{4}$. In this case, we have a $(C_4, 2K_2)$ -packing of the complete graphs $K_{h+1}[a_1, b_1^1, \cdots, b_1^h]$ and $K_{n-hv}[a_1, a_{n-hv}]$ with a leave consisting of a single edge each time, say the edges b_1^1 b_1^2 and a_1 a_2 . These 2 edges form another copy of $2K_2$.

So, we can assume that h is odd and $v \equiv 1 \pmod{4}$ for the rest of this case. Apply Lemma 2.7 to the edges in $K_{n-hv,v}[a_1,a_{n-hv};b_1^i,b_v^i]$ and $K_{v,v}[b_1^i,b_v^i;b_1^i,b_v^i]$ to get a $(C_4,2K_2)$ -decomposition and a $(C_4,2K_2)$ -packing with a leave consisting of a single edge, say the edge b_1^i b_1^i , for each choice of $i \neq j$. The collection of those leave edges is the complete graph $K_h[b_1^1,\cdots b_1^h]$. Apply Theorem 2.4 to the complete graphs $K_h[b_1^1,\cdots,b_1^h]$ and $K_{n-hv}[a_1,a_{n-hv}]$. If $h \equiv 1 \pmod{4}$; $n-hv \equiv 0 \pmod{4}$, then there is a $(C_4,2K_2)$ -decomposition of the complete graphs $K_h[b_1^1,\cdots,b_1^h]$ and $K_{n-hv}[a_1,a_{n-hv}]$. If $h \equiv 3 \pmod{4}$; $n-hv \equiv 2 \pmod{4}$, then there is a $(C_4,2K_2)$ -packing of $K_h[b_1^1,\cdots,b_1^h]$ and $K_{n-hv}[a_1,a_{n-hv}]$ with leaves consisting of single edges, say b_1^1 b_1^2 and a_1 a_2 respectively. These two edges form a copy of $2K_2$.

<u>Case 3:</u> $n \equiv 2 \pmod{4}$ and h is odd. If $v \equiv 2 \pmod{4}$, then $n - hv \equiv 0 \pmod{4}$. Apply Theorem 2.4 to $K_{n-hv}[a_1, a_{n-hv}]$, and Lemma 2.7 to $K_{v,v}[b_1^i, b_v^i; b_j^i, b_v^i]$ and $K_{n-hv,v}[a_1, a_{n-hv}; b_1^i, b_v^i]$ to get $(C_4, 2K_2)$ -decompositions, for all $i \neq j$.

So, we can assume that $v \equiv 3 \pmod{4}$. Apply Lemma 2.7 to $K_{v,v}[b_1^i, b_v^i; b_j^1, b_v^i]$ and $K_{n-hv,v}[a_1, a_{n-hv}; b_1^i, b_v^i]$ to get a $(C_4, 2K_2)$ -packing with a leave consisting of a single edge, say edges $b_1^i b_1^j$ and $a_1 b_1^i$ respectively, for each choice $i \neq j$. The collection of those leave edges is the complete graph $K_{h+1}[a_1, b_1^1, \cdots b_1^h]$. If $h \equiv 3 \pmod{4}$, then $n - hv \equiv 1 \pmod{4}$. Apply Theorem 2.4 to $K_{n-hv}[a_1, a_{n-hv}]$ and $K_{h+1}[a_1, b_1^1, \cdots b_1^h]$ to get $(C_4, 2K_2)$ -decompositions. Otherwise, if $h \equiv 1 \pmod{4}$, then $n - hv \equiv 3 \pmod{4}$.

Apply Theorem 2.4 to $K_{n-hv}[a_1, a_{n-hv}]$ and $K_{h+1}[a_1, b_1^1, \cdots b_1^h]$ to get a $(C_4, 2K_2)$ -packing with leave consisting of a single edge in each case, say $a_1 \ a_{n-hv}$ and $b_1^1 \ b_1^2$. These 2 edges form a copy of $2K_2$.

<u>Case 4:</u> $n - hv \equiv 3 \pmod{4}$ and h is odd. If $v \equiv 2 \pmod{4}$, then $n - hv \equiv 1 \pmod{4}$. Apply Theorem 2.4 to $K_{n-hv}[a_1, a_{n-hv}]$, and Lemma 2.7 to $K_{v,v}[b_1^i, b_v^i; b_1^j, b_v^j]$ and $K_{n-hv,v}[a_1, a_{n-hv}; b_1^i, b_v^i]$ to get $(C_4, 2K_2)$ -decompositions, for all $1 \le i \ne j \le h$.

So, we can assume that $v\equiv 3\pmod 4$. Apply Lemma 2.7 to $K_{v,v}[b_1^i,b_v^i;b_j^1,b_v^j]$ to get a $(C_4,2K_2)$ -packing with a leave consisting of a single edge, say edges b_1^i b_1^j . The collection of those leave edges form the complete graph $K_h[b_1^i,\cdots b_1^h]$. Since $v\equiv 3\pmod 4$ and h is odd, then $n-hv\equiv 0$ or 2 (mod 4). Apply Lemma 2.7 to $K_{n-hv,v}[a_1,a_{n-hv};b_1^i,b_v^i]$ to get $(C_4,2K_2)$ -decomposition for $1\le i\le h$. If $h\equiv 1\pmod 4$, then $n-hv\equiv 0\pmod 4$. Apply Theorem 2.4 to $K_{n-hv}[a_1,a_{n-hv}]$ and $K_h[b_1^1,\cdots b_1^h]$ to get $(C_4,2K_2)$ -decompositions. Otherwise, if $h\equiv 3\pmod 4$, then $n-hv\equiv 2\pmod 4$. Apply Theorem 2.4 to $K_{n-hv}[a_1,a_{n-hv}]$ and $K_h[b_1^1,\cdots b_1^h]$ to get $(C_4,2K_2)$ -packing with leave consisting of a single edge in each case, say a_1 a_2 and b_1^1 b_1^2 . These 2 edges form a copy of $2K_2$.

4 Acknowledgements

The authors wish to thank the referees for their careful reading of the paper.

References

- [1] A.Abueida, Multidesigns of the complete graph with a hole into the graph-pair of order 4, Bull. Inst. Combin. Appl. 53 (2008), 17-20.
- [2] A. Abueida, S. Clark and D. Leach, Multidecomposition of the complete graph into graph pairs of order 4 with various leaves, Ars Comb. 93 (2009), 403-407.
- [3] A. Abueida and M. Daven, Multidesigns for graph-pairs of order 4 and 5, Graphs Comb. 19 (4) (2003), 433-447.
- [4] A. Abueida and M. Daven, Multidecompositions of the complete graph, Ars Comb. 72 (2004), 17-22.

- [5] A. Abueida, M. Daven and K. Roblee, λ-fold Multidesigns for graphspairs on 4 and 5 vertices, Australasian Journal of Combinatorics 32 (2005), 125-136.
- [6] A. Abueida and T. O'Neil, Multidecomposition of λK_m into small cycles and claws, Bull. Inst. Combin. Appl. 49 (2007), 32-40.
- [7] B. Alspach, Research problems, Problem 3, Discrete Math 36 (1981), 333.
- [8] B. Alspach and H. Gavlas, Cycle Decompositions of K_n and $K_n I$, J. Combin. Theory Ser. B 81 (2001), 77-99.
- [9] T. Shyu, Decomposition of complete graphs into paths and stars, Discrete Math 310 (2010), 2164-2169.
- [10] T. Shyu, Decomposition of Complete Graphs Into Paths and Cycles, Ars Comb. 97 (2010), 257-270.
- [11] D. Sotteau, Decomposition of $K_{m,n}$ ($K_{m,n}^*$) into Cycles (Circuits) of Length 2k, J. Combin. Theory Ser. B **29** (1981), 75-81.