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Abstract

Broadcasting is a fundamental information dissemination
problem in a connected graph, in which one vertex called the
originator, disseminates one or more messages to all other
vertices in the graph. A-broadcasting is a variant of
broadcasting in which an informed vertex can disseminate
message to at most k uninformed vertices in one unit of time.
In general, solving the broadcast problem in an arbitrary
graph is NP-complete. In this paper, we obtain the k-
broadcast time of the Sierpinski gasket graphs forall k > 1.

1 Introduction

An essential component of a super-computer based on large-scale parallel
processing is the interconnection network. The interconnection network consists
of hardware and software entities that are interconnected to facilitate efficient
computation and communication. Parallel processing and supercomputing
continue to exert great influence in the development of modern science and
engineering [8]. Interconnection networks are often modeled by finite graphs or
digraphs. The vertices of the graph represent the nodes of the network, the
processing elements, memory modules, switches and the edges correspond to
communication lines [15].

Fractal antennas have been studied, built, commercialized for a considerable
while. Properly synthesized fractal antennas feature multi-band properties. Some
of the modern mobile radio communication systems are based on Sierpinski
fractals or Sierpinski gasket like structures and have a log-periodic behaviour as
far as radiation patterns are concerned. Fractal geometries also have
electromagnetic applications [10].

The performance of information dissemination often determines the efficiency
of a whole network or a parallel system. There are two approaches to reduce the
delay of information dissemination: one is to reduce the amount of data being
transferred, while the other is to minimize the delay of information spreading. The
first goal can be achieved by data compression or by reducing redundant
information and the second can be achieved by designing efficient algorithms and
network topologies for gossip or telephonic problem, broadcast problem and their
variants [6].
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In this paper, we focus on information dissemination to at most & neighbouring
vertices from an orginator u and obtain A-broadcast time of Sierpinski gasket
graphs for all > 1. In the sequel, we refer to Bondy and Murty (2] for basic
concepts in Graph Theory.

2 Preliminaries

Bavelas [1] was the first person to study the effectiveness of different
communication patterns in helping small groups of people solve common tasks. In
studied tasks, the subjects could communicate with one another according to a
given communication pattern by writing messages. Bavelas considered such
measures as the number of messages and the time required to complete the task.
He showed that for any communication pattern of a certain type among p people,
2(p - 1) messages are required to solve a given task. He also showed that, if any
communication pattern is allowed and each message takes unit time, then the time
required to complete the task is no more than log,.

Broadcasting, as a major variant of the Gossip Problem, was introduced in
1977 by Slater, Cockayne and Hedetniemi [13], when they studied the minimum
time required for one person to transmit one piece of information to everyone in a
communication network. A survey of the early results in gossiping and
broadcasting was presented by Hedetniemi, Hedetniemi, and Liestman [6] and few
results were published by Fraigniaud and Lazard [3]. The k-broadcast time has
been obtained for the complete graph, the path graph, the d-grid graph, the d-
Torus graph, hypercube, cube connected cycles, butter.y graph, the deBruijn
graph, the shuffle-exchange graph, the stargraph, the necklace graph etc. [12].

As processors become faster and more efficient, network communication has
become a larger concern for bottlenecks and communication slowdowns.
Broadcasting is an information dissemination problem in a connected network, in
which one vertex, called the originator, must distribute a message to all other
vertices by placing a series of calls along the communication lines of the network.
The broadcasting is completed as quickly as possible, subject to the following
constrains: (1) A call can involve only one informed vertex and an uninformed
vertex, (2) A vertex can call only one of its neighbours who is connected to it, (3)
The information is transmitted in one time unit, (4) In one time unit many calls
can be performed in parallel.

Given a connected graph G and a message originator U, the broadcast time of
vertex U, O(Y) is the minimum number of time units required to complete
broadcasting from vertex . It is easy to see that for any vertex ¢ in a connected
graph G with 77 vertices, &(¥) > [log, nl, since the number of informed vertices can
at most double during each time unit. The broadcast time of a graph G, &G) is
defined to be the maximum broadcast time of any vertex ¢ in G, i.e. & G) = max
{&U) : u e V}. For the complete graph K, with 7> 2 vertices, A K,) = {log; nl.
From application perspective, the minimum broadcast time helps graphs represent
the cheapest possible communication networks (having the fewest communication
lines) in which broadcasting can be accomplished, from any vertex, as fast as
theoretically possible.
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A Kbroadcasting is an /-vertex communication network that supports a
broadcast from any one member to at most £ of its neighbours in optimal time
[14]. Given a connected graph & and a message orginator #, we defined the &
broadcast time of vertex ¢, H{t) to be the minimum number of time units required
to complete #broadcasting from vertex ¢. The k-broadcast time of G is defined as
b 6) = max {b(t) :ueV}.

A K-broadcast scheme or A-broadcast schedule is a series of calls that perform
k-broadcast. A K-broadcast scheme that finishes the f-broadcasting in by(¥) is
called an optimal #-broadcast scheme. For any vertex ¥ in a connected graph G
with 77 vertices, O(t) > [logy,, nl, since the informed vertices can at most be
multiplied by & + 1 during each time unit [9). In general, solving the broadcast
problem in an arbitrary graph is NP-complete [5, 13].

3 Sierpinski Gasket Graphs

The Generalised Sierpinski Graph 1K), 72 1, k2 1 is defined in the following
way:

US(n)={1, 2, ..., K}~ two distinct vertices ¥ = (44, l, ..., &) and V= (1, ¥, ...,
%) being adjacent if and only if there exists an # € {1, 2, ..., 7} such that
o=y fort=1,.., Hl;
(i) %, # W, and
(iii) 4 = Y, and y=Upfor 1= h+1, .., n

For convenience we write the vertex (U, b, ..., U,) as (thts...U,). The vertices
(1...1), 2..2), ..., (K...K) are called the extreme vertices of §7,K). In the literature,
§n3), n2 1 is known as the Sierpinski graph. For /=1, 2, 3, let 77+ 1, 3), be the
subgraph induced by the vertices that have / as the first entry. Clearly 7+ 1, 3);is
isomorphic to &7, 3).

The Sierpinski gasket graph S, 772 1, can be obtained by contracting all the
edges of §#,3) that lie in no triangle. For /=1, 2, 3 let S,,be the subgraph of Sy
induced by (i..0,{/f},{/k} where{/, j &} = {1, 2, 3} and all the vertices whose
prefix starts with 7 [9). The vertices (1...1), (2...2), ..., (K...K) are called the extreme
vertices of S,[10].

Geometrically, S, is a graph whose vertices are the intersection points of the
line segments of the finite sierpinski gasket g, and line segment of the gasket as
edges. The sierpinski gasket graph S, is the finite structure obtained by 7 iterations
of the process. The sierpinski graph §, has (3/2)(37"+1) vertices and 3~ edges [14].

The definition of sierpinski graphs S(/,4) originated from the topological
studies of the Lipscomb's space and is isomorphic to the graphs of the Tower of
Hanoi with 77 disks. Moreover, sierpinski graphs are the first nontrivial families of
graphs of fractal type for which the crossing number is known and several metric
invariants such as unique 1-perfect codes, average distance of sierpinski gasket are
determined [4, 11]. Teguia and Godbole [14] studied several properties of these
graphs such as particular hamiltonicity, pancyclicity, cycle structure, domination
number, chromatic number, pebbling number, cover pebbling number. vertex
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coloring, edge-coloring and total-coloring of sierpinki gaskets have been obtained.
Sn is properly three-colourable, that is, x(Sp) = 3 for each /7and its diameter is 2™

(10].

For convenience, we introduce the following notations : Consider Sp
Structurally, S, consists of three attached copies of S,., referred as the top, bottom
left and bottom right components of S, denoted by Sy 1, Sar and Sy respectively,
We denote top, left and right vertices of Spyr as Sy, Spn and S 7s The other
vertices in S are analogously denoted by Sp:7 Snits Sais Snrn Saat and Spee with
Snr.=8ntr, Sn1a= Snarand Sya = Spis See Figure 1.

Surr

Sor =8ur,

Suut Sn=Siat Sum
Figure 1: Sierpinski gasket graph S,
4 Broadcasting in S,

Lemma 4.1[3]: In any graph G of diameter d, if three different vertices &; ¥; and
W; with both 1 and I at a distance d from # exist, then H{G)>d + 1.

For n> 1; the broadcast time of S,, &S, = 2*' + 1. We further improve the
lower bound of & S,) and prove it to be sharp in the following theorem.

Theorem 4.1: For any 72> 4; &S;) 2 2™ +(n-2).

Proof: By the structure of Sp, the broadcasting in S, from the extreme vertex Sy.7r

to all vertices of S, must pass through successive lower dimensional Sierpinski

gasket graphs, S;, 1< /< n-1: Thus, KS;) > H(Sp) + AS2) + ... + A &) 2 2" *+

D+R7I+D+RT+ D+ R A DR E D=7 2"+ 42+ )+

1+ + D= "= /@) +(n - D)=2""-1+n-1=2""+(1-2).
We prove that the lower bound obtained is sharp by constructing a spanning

tree T,of Sp; 72 4 inductively as follows:

Step 1: Consider the spanning tree 7, of S; as shown in Figure 2. Let 7', denote

T, with the vertex S; ;; removed. See Figure 2.

Step 2: The spanning tree 7, of S,, n > 4 is constructed by extending the spanning

tree 5y of S, by attaching a copy of 7,4 with its root merged at S, ; and a copy

of T',., with its root merged at Sy 7
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Label the root of T,at level 1 as 0. Label its left child as 1 and its right child as
2. We call the shortest path from the top extreme vertex Sy rrto the left extreme
vertex Sg.; as left spine and that from Sy rrto the right extreme vertex Syan as the
right spine of 7,, &< n.If a vertex is labeled X on the left spine of Sg £ < A, then
label its children (if they exist) from left to right as X+ 1 and X+ 2: On the other
hand, if a vertex is labeled X on the right spine of Si; £ < 7, then label its children
(if they exist) from right to left as x + 1 and x+2: By construction, it is clear that
Sn14 receives label @, and that of S, g5 receives label d,;; where d, is the diameter
of S,. We now proceed to prove that 7> 4; &(S,) > 2™ + (n1- 2).

Sarr Sarr

Sast S.p8 Sann
Ta Ty
Figure 2: Spanning trees 7yand 74

Satt Si.pm
Figure 3: Broadcasting in S,

We prove this by induction on 7. From Figure 3, it is clear that S;) = 10 =2*
'+ (4 - 2). Assume the result to be true for Si,. Consider S}. It is clear that, &Sy =
t+& where { is the minimum time unit required for a message to reach S rg from
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S"TI and & is the broadcast time of &(Sk. ). Thus, &S =2""2+ 1+ 24" 2+ (k- 3).
=2 + (k- 2).

For n=1;2; 3, iS,) are as follows: &(5;) = 2; K(S;) =3 and KS;) = 6.
5 K-Broadcasting in Sp, £>2,n>2

Lemma 5.1[7): If G is a graph with degree A and diameter 0, then b(#) =D
when k=Aand D < b(u) < D+1 When k= A - 1. Generally speaking, when

<0, D<b(G) sl"%‘]-
Theorem 5.1: For any £> 2, n> 2, b(Sy) =2"".

The following algorithm proves that the #-broadcasting in S, ¥> 2, 72> 2 is its
diameter .

Input: An r-dimensional Sierpinski gasket graph Sp, 1> 2.
Algorithm:

Case 1: If k= 2; then construct the BFS tree (Breadth-First Search) of S, with the
two degree vertex S, 7ras the root. The children of the root are in the second level
denoted as L,. Consequently, in general the vertices in level L, are the children of
vertices in the level L;. See Figure 4.

8
Ssut Si.am
Figure 4: 2-broadcasting in S,

Case 2: If ¥ = 3; then construct the BFS tree (Breadth-First Search) of S,; with
Sn.ras the root. The children of the root are in the second level ;. Consequently,
in general the vertices in level L, are the children of vertices in the level
L Continue the above procedure in S, to obtain a BFS tree with 5, 7; as the root.
Then construct a BFS tree in S,z with S, gr as the root omitting the vertex already

traversed in S, . Thus we obtain a tree rooted at S,y r. See Figure 5.
Output: For 7> 2, the k-broadcast time of Sy 8K Sy = 2™, k> 2.
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Figure 5: 3-broadcasting in S,

Proof of Correctness:

Case 1: If £ = 2; then the BFS tree has at most two children at each vertex. So the
vertices in levels Lz i =1, 2, 3;..., 2*' +1 will receive the message from the
orginator S, rrin /- 1 units of time. For n > 1, the BFS tree has 2™ +1 levels and
hence the informed vertices can 2-broadcast message in time 2™ +1) - 1 =2 =
dy, where d), is the diameter of . See Figure 4.

Case 2: If k= 3; then the spanning tree has at most four children at a vertex and
only in the first round the originator S,7; broadcast to three vertices. In all the
other rounds the informed vertices broadcast only to at most 2 uninformed
vertices. In the first round itself, the message must be sent to the vertex adjacent to
the originator S, ; lying in the path passing through S, 7z So the vertices in levels
Lyi=1,2,3;..., 2" +1 will receive the message from the orginator in /- 1 units
of time. For n > 1, the spanning tree has 2*' +1 levels and the informed vertex can
3-broadcast message in time (2*' +1) - 1 = 2*' = g, where d, is the diameter of
Sp. See Figure 6.
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St eSitr

Figure 6: 3-broadcasting in spanning tree of 5,

Corollary 5.1: For k > A(Sn) = 4, by(S,) = 2™' = d,, where d, is the diameter of S,.

6 Conclusion

In this paper, we obtain the broadcast time of the Sierpinski gasket graphs S,. It is
also proved that the #broadcast time, K> 2 of S, is its diameter. The broadcast
time for Sierpinski derived architectures is under investigation.
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