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Abstract

Graph embedding problems have gained importance in the field of
interconnection networks for parallel computer architectures. In this
paper, we prove that grid and cylinder are the subgraphs of certain
circulant networks. Further, we present an algorithm to cmbed tori
into certain circulant networks with dilation 2 and vice-versa.

1 Introduction

In the implementation of any algorithm, it is necessary that the code should
be compilable and exccutable on any machine. However, it is far compli-
cated in the case of parallel algorithms and machines. This is due to the
fact that the propertics of parallel machines are highly depending on their
interconnection structure [1]. Thereby implementation of algorithms is of-
ten restricted to a certain class of networks. In order to overcome this
dependency, it is necessary to emulate one network by another. Thereby
implementation of algorithms is often restricted to a certain class of net-
works. In order to overcome this dependency, it is necessary to emulate one
network by another.

Graph embedding is an important technique that maps a guest graph
into a host graph. usually an interconnection network. Many applications
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_Guest graph | Host graph Dilation | Authors
Rectangular Grid Square Grid 2 Melhem
et.al. [5]
Complete Trees Hypercube 2 Bezrukov |6
Tori and Grids Twisted cubes 1 Lai et.al. 7
Hypercube Extended Hypercube 2 Manuel ct.al.
81

Table 1: Dilation of Graph Embedding

such as architecture simulations and processor allocations can be modeled
as graph embedding [2. 3, 4]. For example, architecture simulation can
be modeled as embedding the guest graph into the host graph [2]. Two
commonly and extensively studied cost measures of an embedding are the
dilation and the congestion [2]. The dilation is defined as the maximum
distance in H between two adjacent nodes in G. In general, embedding
stretches source edges to paths in the host network. The dilation of an
embedding is the maximum length of such paths taken over all source edges
|5]. A embedding with a long dilation faces many problems, such as long
communication delay, coupling problems and the existence of different types
of uncontrolled noise. Therefore, a minimum dilation is a most desirable
feature in network embedding. Some of them are listed in Table 1.

Link congestion is defined as the maximum number of paths over an
edge in H, where cvery path represents an edge in G |9]. In general link
congestion of an cmbedding is the maximum number of images of source
edges passing through a host edge. It represents the maximum number of
inter process communication source channels mapped on one physical host
link. Link congestion should be low to minimize link or router buffers con-
tention. Average congestion per node of an embedding is more important
than maximum congestion. Graph embedding has been well studied for
a number of networks [6, 2, 9, 5]. In general, the embedding problem is
NP-complete |10].

The circulant network is a natural generalization of double loop network,
which was first considered by Wong and Coppersmith [11]. Theoretical
properties of circulant graphs have been studied extensively and surveyed
by Bermond et al. [12]. Every circulant graph is a vertex transitive graph
[13]. Such graphs are highly desirable, because it allows the use of the same
algorithms at each node of the network.
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2 Preliminaries

In this section, we give the basic definitions and preliminaries related to
embedding problems.

Definition 1. [2] An embedding < f,p >of a graph G(Vg. Eg) into a
graph H(Vy, Ey) is defined by a mapping f from Vg to Vg, together with
a mapping p that maps each edge (u,v) € Eg onto a path Ps(u,v) in H
that connects f(u) and f(v). The load on a node v € Vy is the number of
nodes of G that are mapped onto v, the max-load of an embedding is the
maximum load over all nodes of H. The expansion of an embedding f is
the ratio of the number of vertices of H to the number of vertices of G.

In this paper, we consider embedding with expansion one and max-load
one.
Definition 2. [2] If ¢ = (u,v) € Eg, then the length of Ps(u,v) in H is
called the dilation of the edge e. The maximal dilation over all edges of G
is called the dilation of the embedding f and denote it by dil;(G, H). The
dilation of G into H is defined as

dil(G,H) = min dil; (G, H)

The minimum is taken overall embeddings f of G into H. The link
congestion of an embedding f of G into H is the maximum number of edges
of the graph G that are embedded on any single edge of H. Let Cy(e)
denote the number of edges (u,v) of G such that e is the path Pf(u,v)
between f(u) and f(v) in H. In other words,

Cyle) = {(u.v) € Eg : e € Pp(u,v)}|

where Py(u,v) denotes the path between f(u) and f(v)in H with respect
to f.

Definition 3. [9] The average congestion of an embedding f of G into H
is given by

1 1 -
ACI(G, = E_(}[_) (u -u)gE(G) o (f(u,), f(v) ) E(_I-I) uGEZ(") bCf(e)

where dy(f(u), f(v) denotes the length of the path Pp(u,») in H. The
average congestion of G into H is defined as

AC(G,H) = min ACy(G, H)
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where the minimum is taken overall embeddings f of G into H.
Definition 4. The n x m grid graph M(n x m), has vertex set
Vin,m)={(i,j):0<i<n 0L j<m}
and edge sct
En(nym) = {(,3),(i",3) s li= 1+ 1i =51 =1}.

Let

Topg(n,m) = {(j,m—1),(j,0):0< j < n},

Sideg(n.m) = {(n - 1,1),(0,%) : 0 < i < m}.
Fat Cylinders FC(n,m), Thin Cylinders TC(n,m) and Tori T(n,m), arc
graphs with the same vertex set V(n, m) but respective edge sets:

Erpc(n,m) = Epn(n,m)U Sidep(n,m)

Epc(n,m) = Epy(nom)U Tope(n,m)
Ep(n,m) = Ep(n,m)u Sideg(n,m)U Topg(n.m)

Definition 5. [12] The undirected circulant graph G(n, S), S C £{1,2..... i}
1< j < |n/2] is a graph with vertex set V = {1,2,...,n} and the edge sct
E ={(i,k): |k - i| = s(modn),s € S. See Figurc 3.1.

3 Embedding Grid Related Networks into Cir-
culant Networks

In this section we prove that grid, fat cylinder and thin cylinder are sub-
graph of circulant graph. further, we embed tori into circulant graph with
dilation 2.

From the definitions, we know that M(n,m) C FC(n,m)/TC(n.m) C
T(n.m). Hence we have the following result.

Lemma 1. Minimum dilation of an embedding f of G into H
dil(M (n,m), H)<dil(FC(n,m)/TC(n.m), H)<dil(T(n,m), H).

Theorem 1. Let m > n be an integers, then fat cylinder FC(n,m) and
thin cylinder TC(n,mn) are subgraph of the circulant graph G(nm,+£{1,m})
and G(nm, £{1,n}) respectively.
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Algorithm 1 Dilation Algorithm A

Input: The torus T'(n,m),m > n and the circulant graph G(nm, {1, m}).
Algorithm: Label the i** row of T'(n,m) as mi+1, mni+2,...,mi+m from
left to right, where 0 < i < n. Label the consecutive vertices G(nmn, £1) in
G(nm,£{1,m}) as 1,2,...,nm in the clockwise sense.

Output: Anembedding f of T'(n,m) into G(nm,£{1,m}) given by f(z) =
z with dilation 2.

Proof. Label the i** row of FC(n,m) as mi + |, mi + 2,....,mi + m from
left to right, where 0 < i < n. Label the consecutive vertices G(nm. +1)
in G(nm,£{1,m}) as 1,2,....nm in the clockwise sense. Clearly any edge
in the it row, 0 < i < n in FC(n,m) is in G(nm, 1) and any edge in the
4" column, 0 < j < m in FC(n,m) is in G(nm,m). Hence FC(n,m)
is a subgraph of the circulant graph G(nm,+1,m). In a similiar manner
TC(n,m) is a subgraph of the circulant graph G(nm,+{1,n}) . a

Remark 1. Let m > n be an integers, then grid M(n,m) is a subgraph of
the circulant graph G(nm, £{1,m}).

Figure 3.1: G(16,%{1,4})

The following theorem is an casy consequence of Dilation Algorithm A

Theorem 2. Let m 2> n, G be a tori T(n,m) and H be the a circulant
graph G(nin, £{1,m}), Then dil(G,H) = 2.

Proof. Let o and y be the label of any two adjacent vertex in torus I'(n, m)
By Dilation Algorithm A jx—y| = 1,|Jz—y| =m—1or |z—y| = m. Again,
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Algorithm 2 Dilation Algorithm B

Input: The circulant graph G(nm,+{1,m}) and torus T'(n,m),m > n.
Algorithm: Label the consecutive vertices G(nm, £1) in G(nm, £{1,m})
as 1,2,...,nm in the clockwise sense. Label the i** row of T(n,m) as
mi+ 1, mi 4+ 2,...,mi + m from left to right, where 0 < i < n.

Output: An embedding f of G(nm, £{1,m}) into T'(n, m) given by f(z) =
z with dilation 2.

by the labeling, |f(z) — f(¥)| € {1.m} in circulant graph G(nm, £{1,m}).
Thus dilation of an embedding f of T(n,m) into G(nm, £{1,m}) given by
flz)=ais 2. a

Remark 2. Let m > n, tori T(n,m) is the subgraph of circulant graph
G(nm, {1, — 1,m}).

4 Embedding Circulant Network into Extended
Grid

In this section, we embed certain circulant networks into tori, grid with
minimum dilation.

4.1 Embedding Circulant Network into Tori

In this scction we embed the circulant graph G(nm, £{1,m}) and G(nm, £{1,m—
1,m}) into tori T(n,m) with minimum dilation.

Theorem 3. Let m 2 n, G be a circulant graph G(nm, {1, m}) and tori
T(n.m) and H be the a , Then dil(G,H) = 2.

Proof. Let x and y be the label of any two adjacent vertex in G(nm, £{1,m}).
Then |x—y| = 1 or m. By Dilation Algorithm B |f(x)—f(y)| C {1,m—1,m}
thus dilation of an ecmbedding f of G(nm, £{1,m}) into T(n,m)is2. O

Lemma 2. Let G and H be a graph and |Eg| = z,|Ey| = y/, * > y Then,

dil(G, H) > 2.

AC(G,H) > 2=Y,
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Algorithm 3 Dilation Algorithm C

Input: The circulant graph G(nm, £{1,m—1,m}) and torus T'(n,m),m >
n.

Algorithm: Label the consecutive vertices G(nm, +1) in G(nm, {1, m})
as 1,2,...,nm in the clockwise sense. Label the i*" row of T(n,m) as
mi + 1, mi + 2,...,/m1 + m from left to right, where 0 < i < n.

Output: An embedding f of T'(n,m) into G(nm,+{1,m — 1,m}) given by
f(x) = z with dilation and average congestion 2.

Theorem 4. Let m > n, G be a circulant graph G(nm,x{1,m — 1,m})
and H be a tori T(n,m), Then dil(G,H) =2 and AC(G,H) = 2.

Proof. Let x and y be the label of any two adjacent vertex in G(nm, £{1,m—
1,m}) By Dilation Algorithm B [z —y|=1,z~y|=m—1lor |z —y| =m.
Again, by the labeling of tori T(n,m), Ps(z,y) < 2. hence dilation of
an embedding f of G(nm,+{1,m}) into T'(n,m) given by f(z) = = is 2.
Also 2nm edges mapped as edges and remaining nm edges mapped as path
length 2, in other words, dilation and average congestion of embedding
G(nm.x{1,m}) into T(n, m) are both equel to 2. O

4.2 Embedding Circulant Network into Grid

The dilation and the wirelength problem are different in the sense that
embedding that gives minimum dilation need not give minimum wirelength
and vice-versa. In the literature there is no efficient method to compute
the exact dilation of graph embedding [2, 5, 6, 7]. In 2012, Manual et. al.,
obtained a strategy to compute on lower bound for dilation using minimum
wirelegth and formulated the result as IPS lemma [8]. In 2013, Rajan et.
al., introduced new strategy called dilation lemma to compute the lower
bound for dilation without using minimum wirelength [14].

Lemma 3. [14] Let G be an r-regular graph of order n. Let H be a graph
on n. vertices that for u € V(H),Ds(u) # ¢, where Ds(v) denotes the set
of all diametrically opposite vertices of u in G. If |Ds(u)| + |Ds=1(u)| +
|Ds—2(u)| + ...+ |Ds~i ()] > n—r, then the dilation of embedding G onto
H is at least § — k, where k = min,cpyyk(u) and § is a diameter of H.

Theorem 5. Let G be a circulant graph G(nm,x£{1,2,...,|nm/2] - 2})
and H be the grid M(n,m),m > n. Then dil(G,H) =m+n — 4.

proof: By Lemma 3, dil(G, H) 2 m = n — 4 and by Dilation Algorithm
D, dil(G.H) < m+n—4. Hence &il(G,H)=m +n — 4.
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Algorithm 4 Dilation Algorithm D

Input: The circulant graph G(nm,%{1,2,...,|nm/2] — 2}) and grid
M(n,m),m > n.

Algorithm: Label the consecutive vertices G(nm,%1) in
G(nm,x{1,2...., [nm/2) — 2}) as 1,2,...,nm in the clock- wise
sense. Label the vertices of degree 2 as 0, %], | 22|, 22| in the
clockwise sense in M (n,m) beginning from the top leftmost corner of
the grid. Label the open neighbourhood N(0) of 0 as 1 and nm — I,
N(|nm/4]) as |[nm/4] + 1 and |nm/4] — 1, N(|nm/2]) as |nm/2] + 1
and |nm/2] — 1 and N(|3nm/4]) as |3nm/4] + 1 and |3nm/4] — 1.
Output: An embedding f of G(nm,%{1,2,...,|nm/2]}) into grid
M (n,m) with dilation at most m +n — 4.

5 Conclusion

In this paper, we have obtained minimum dilation for embedding grid,
cylinder and torus into certain circulant networks. Also, we have obtained
minimum dilation of certain circulant networks into torus and grid. Finding
minimum average congestion of embedding circulant network G(nm, +{1, 2,
...»J}) into grid, cylinder and torus is under investigation.
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