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ABSTRACT

Given a graph G (V, E) a labeling 8: VUE— {1, 2... k} is
called an edge irregular total k-labeling if for every pair of
distinct edges uv and xy, d(u) + d(uv) + A(v) = d(x) +
d(xy) + 8(y). The minimum k for which G has an edge
irregular total k-labeling is called the total edge irregularity
strength of G. In this paper we examine the hexagonal
network which is a well known interconnection network
and obtain its total edge irregularity strength.

1. Introduction

A basic feature for a system is that its components are connected together by
physical communication links to transmit information according to some pattern.
Moreover, it is undoubted that the power of a system is highly dependent upon
the connection pattern of components in the system. A connection pattern of the
components in a system is called an interconnection network, or network, of the
system. Topologically, an interconnection network can essentially depict
structural feature of the system. In other words, an interconnection network of a
system provides logically a specific way in which all components of the system
are connected. Interconnection networks (also known as permutation networks)
are used for regular interconnections of processors in a parallel computer. In a
direct interconnection network, nodes represent processors while edges indicate
connections between processors for direct message exchange.

Interconnection networks are becoming increasingly pervasive in many different
applications with the operational costs and characteristics of these networks
depending considerably on the application. For some applications,
interconnection networks have been studied in depth for decades. This is the
case for telephone networks, computer networks (telecommunication) and
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backplane buses. However in the last fifteen years we have seen rapid evolution
of the interconnection network technology that is currently being infused into a
new generation of multiprocessor systems.

Some interconnection network topologies are designed and some borrow from
nature. For example hypercubes, complete binary trees, butterflies and torus
networks are some of the designed architectures. Grids, hexagonal networks,
honeycomb networks and diamond networks, for instance, bear resemblance to
atomic or molecular lattice structures. They are called natural architectures.

It is known that there exist three regular plane tessellations, composed of the
same kind of regular polygons: triangular, square and hexagonal. They are the
basis for the designs of direct interconnection networks with highly competitive
overall performance.

The advancement of large scale integrated circuit technology has enabled the
construction of complex interconnection networks. Graph theory provides a
fundamental tool for designing and analyzing such networks. Graph Theory and
Interconnection Networks provides a thorough understanding of these
interrelated topics. One of the main objectives of researchers is the application
of Graph Theory to the study and design of interconnection networks. The
problems usually considered include the analysis of characteristic parameters of
the network (diameter, connectivity measures, etc.), the study of special
substructures (rings, trees, etc), routing algorithms, modularity properties and
specific networks (symmetric networks, permutation networks, loop networks,
etc).

Motivated by the notion of the irregularity strength of a graph introduced by
Chartrand, Jacobson, Lehel, Oellermann, Ruiz and Saba [2] in 1988 and various
kinds of other total labelings, Baca, Jendrol, Miller and Ryan [1] introduced the
total edge irregularity strength of a graph as follows. For a graph G(V, E) a
labeling 9: VUE— {1, 2... k} is called an edge irregular total k-labeling if for
every pair of distinct edges uv and xy, d(u) + d(uv) + 3(v) = d(x) + d(xy) + 9(y).
The minimum & for which G has an edge irregular total k-labeling is called the
total edge irregularity strength of G. The total edge irregularity strength of G is
denoted by tes(G). In this paper we study the total edge irregularity strength of
hexagonal networks.
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2. Hexagonal Network

Hexagonal networks belong to the family of networks modeled by planar
graphs. These networks are based on triangular plane tessellation, or the
partition of a plane into equilateral triangles. Hexagonal networks were studied
in a variety of contexts [8]. They are applied in chemistry to model benzenoid
hydrocarbons [12] in image processing, computer graphics [9] , wireless and
interconnection networks. An addressing scheme for processors and
corresponding routing and broadcasting algorithms for hexagonal
interconnection network were proposed by Chen et al. [7]. The performance of
hexagonal networks was further studied in [8,10]. The design, implementation,
and evaluation of a distributed real-time architecture called HARTS (hexagonal
architecture for real-time systems) are discussed in [8].

Cellular communications have experienced an explosive growth recently. To
accommodate more subscribers, the size of cells must be reduced to make more
efficient use of the limited frequency spectrum. This, in turn, increases the
difficulty level of location management. A number of location management
schemes have been reported in literature. Cellular networks are commonly
designed as hexagonal networks, where nodes serve as base stations (BSs) to
which mobile users must connect to make or receive phone calls.

Definition: Hexagonal network HX(r), where r is the number of vertices on one
side of the hexagon[8] has six vertices of degree three which we call as corner
vertices. There is exactly one vertex v at distance » — 1 from each of the corner

vertices. This vertex is called the centre of HX(r) and is represented by O.

The vertex set V is partitioned into sets inducing concentric cycles around O.
Call vertex O as level 1, the first cycle around O as level 2 denoted by C, and so
on and the last cycle farthest from O as level r denoted by C,. The level i cycle
has 6(i-1) vertices, i > 2. The subgraph induced by the vertices of C, and C,,, in
HX(r) is called a circular channel and is denoted by CC(r+1) (see Figure 1).
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Fig 1. Channels of HX(4)

The number of vertices and edges of HX(r) are 3r>-3r+1 and 9r2-15r+6
respectively. The diameter is 2r-2. The edges connecting the cycle C,; and the
cycle C,, 2 <r <s, where s is finite, are called spoke edges. The three lines at the
point O which are at mutual angle of 120 degrees between any two of them are
considered as three axes as shown in Figure 2. The lines parallel to the three
axes are called as a,, f,and y, lines correspondingly.

We begin with few known results on res(G).

Theorem 1: Every multigraph G = (V, E) without loops of order n, size m, and

3
maximum degree Q<A < 107m satisfies res(G) =i7£;—2—‘

Ten

Theorem 2: Every graph G = (V, E) of order n, minimum degree & > 0, and
maximum degree A such that & « 10— Vo 2 n satisfies res(G) =[m_+2—i .

3] 42 3
Theorem 3: For every integer A > I, there is some n(A) such that every graph G
= (V, E) without isolated vertices with order n > n(A), size m, and maximum

degree at most A satisfies tes(G) =["’ 5 z-l.
3
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Fig 2: HX(3) with a,, f» and y, lines
We now give an algorithm to prove that for the Hexagonal networks HX(n), the
bound on tes given in Theorem 1 is sharp. In the proof, by ‘edge sum label’ of
an edge (u,v) in HX(n) we mean the sum of the labels of vertices u, v and the

edge (u.v).

Lemma fes(HX(4)) = 31.
Proof : Let HX(4) be labeled as in Figure 3. It is easy to check that res(HX(4)) =
31.

Procedure tes(HX(r))

Input:

r-dimensional hexagonal network, HX(r), r > 5.
Algorithm:
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31
Fig 3: tes(HX(4)) = 31

Let k(r) = [9’_'518]
3

(1) Label the vertices and edges of HX(4) as in Lemma.

(2) In this labeling we note that the outer cycle vertices in HX(4) as seen in
Figure 3 are labeled as k(4).
Having labeled HX(r), label HX(r+1), r = 4 as follows:

(a) We begin with labeling all outer cycle vertices of C.,; in HX(r+1) as
k(r+1).

(b) Label the outer cycle edges in the anticlockwise direction about the 4,
line (see Figure 2) with consecutive numbers beginning with k(r) - 1.

(c) Label the spoke edges e; starting from the edge along the 8 line with
consecutive numbers in the anticlockwise direction of CC(r+l1)
beginning with l(e;) = 3tes(HX(r)) + i - (l(u)) + I(v})), where e; = (u;.v)
with vertex labels I(«;) and I(v;).
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End Procedure res(HX(7)).

Output: tes(HX(r)) = ‘:’%.8‘,

Proof of Correctness:

We prove the result by induction on r. By actual verification, it is easy to
check that the labels given in Figure 3 yield tes(HX(4)) = 31. This proves the
result when r = 4. Assume the result for HX(r). Consider HX(r+1). Since the
labeling of HX(r) is an edge irregular k-labeling, it is clear that the labeling of
HX(r+1) by step 2 (b) and (c) is also an edge irregular k-labeling. Since the
labels are consecutive, the edge sum labels of HX(r+1) are also consecutive
integers which are clearly distinct.o

Theorem Let HX(r) denote a r-dimensional hexagonal network. Then
tes(HX(r)) = [ﬁ"’-_l-s"'_ﬂ, r>a.
3

Conclusion

In this paper, we have proved that Hexagonal Networks are total edge
irregular and we have also obtained the total edge irregularity strength of this
network. The problem of determining the total edge irregularity strength is under
investigation for certain other architectures like Honeycomb, Honeycomb Torus
and Circulant Networks.
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