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ABSTRACT

A kernel in a directed graph O(V, £) is a set S of vertices of D
such that no two vertices in S are adjacent and for every vertex
tin V\ Sthere is a vertex Vin S, such that (&, V) is an arc of D.
The problem of existence of a kernel is /P — complete for a
general digraph. In this paper we introduce the acyclic kernel
problem of an undirected graph G and solve it in polynomial
time for uniform theta graph and even quasi — uniform theta

graph.

1. Introduction

A kernél [7] in a directed graph O(V, £) is a set S of vertices of J such that no
two vertices in S are adjacent and for every vertex ¢ in V/\ Sthere is a vertex Vin
S, such that (&, V) is an arc of [. The concept of kernels in digraphs was
introduced in different ways [13,18].

Kemels arise naturally in the analysis of certain two-person positional games.
Von Neumann and Morgenstern [18] were the first to introduce kernels when
describing winning positions in 2 person games. They proved that any directed
acyclic graph has a unique kernel. Not every digraph has a kernel and if a
digraph has a kernel, this kernel is not necessarily unique. All odd length
directed cycles and most tournaments have no kernels [2, 3].

If D is finite, the decision problem of the existence of a kernel is /P- complete
for a general digraph [6, 17], and for a planar digraph with in degrees < 2, out
degrees < 2 and degrees < 3 [8]. It is further known that a finite digraph all of
whose cycles have even length has a kernel [15], and that the question of the
number of kernels is /P- complete even for this restricted class of digraphs [16].
The concept of kernel is widespread and appears in diverse fields such as logic,
computational complexity, artificial intelligence, graph theory, combinatorics
and coding theory [2, 3]. Efficient routing among a set of mobile hosts is one of
the most important functions in ad hoc wireless networks. Dominating set based
routing in networks with unidirectional links is proposed in [I, 12]. A new
interest for these studies arose due to their applications in finite model theory.
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Indeed, variants of kernel are the best properties to provide counter examples of
0 - 1 laws in fragments of monadic second order logic [11].

In this paper we view the kernel problem from a different perspective. In the
literature, only the existence of kernel of a digraph 0 and its application are
extensively studied [14]. Qur aim in this paper is to investigate all acyclic
orientations of an undirected graph G and determine the acyclic kernel number
of G.

2. Kernel in Oriented Graphs

An orientation of an undirected graph G is an assignment of exactly one
direction to each of the edges of G. There are 2/€! orientations for G. Let 0,(G)
denote the set of all orientations of G. For an orientationO € 0,, let G(0) denote
the directed graph with orientation 0 and whose underlying graph is G.

An orientation 0 of an undirected graph G is said to be an acyclic orientation if
it contains no directed cycles. Let 0,(G) denote the set of all acyclic
orientations of G.

Definition 1 [7): A kernel in a directed graph D(V, ) is a set S of vertices of D
such that no two vertices in S are adjacent and for every vertex #in /\ Sthere is
a vertex vin S, such that (i, ¥) is an arc of J. ¢ s called the fa// and v is called
the /16ad of the arc (i, v).

Definition 2: Let O(V, £) be any directed graph. The in-neighborhood of a
vertex ¥, denoted by N~ (v) is the set of tail vertices with head vertex V. The out-
neighborhood of a vertex ¥, denoted by N*(v) is the set of head vertices with
tail vertex V. [N*(v) | is called the out-degree of vand [N~(v) | is called the in-
degreg of v.

Definition 3 [14): The kernel number k, of G is defined as x,(G) =
min{x(0): 0 € 0,(G)} where k(0) = min{|K|: K is a kernel of G(0)}.
Definition 4 [14): The acyclic kernel number k, of G is defined as k,(G) =
min{k(0): 0 € 0,(G)} where k(0) = min{|K|: K is a kernel of G(0)}.

The acyclic kernel problem: The acyclic kernel problem of an undirected
graph G is to find a kernel K of G(0) for some acyclic orientation 0 of G such
that |K| = k,.

In this paper we construct a minimum paired dominating set and a minimum
total dominating set for infinite diamond lattice. We also demonstrate that the

total domatic number of infinite diamond lattice is 4.

3. Topological Ordering

A graph labeling is an assignment of integers to the vertices or edges or both
subject to certain conditions. Graph labeling has a wide range of applications.
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For instance, we can find labeling of graphs showing up in x-rays,
crystallography, coding theory, radar, astronomy, circuit design and
communication network addressing [4,5]. Their theoretical applications are
numerous, not only within the theory of graphs but also in other areas of
mathematics such as combinatorial number theory, linear algebra and group
theory admitting a given type of labeling [9].

Definition 5: Let G be a graph. A labeling f from the vertex set V(G) to
{1,2,...,[V|} is said to induce an ascent graph G( 1) if E(G(f)) satisfies the
following condition: (@, V) € E(G(f)) if and only if f(u) < f(v). The labeling
is called a lopological ordering [23].

Theorem 1:[10] A digraph G is an ascent graph if and only if it is acyclic.

In the following section we obtain a lower bound for the acyclic kernel number

of biregular graphs. In the next section we prove that the lower bound is tight.

4. Lower Bound on x,for Biregular Graphs

Definition 6: A graph G is said to be biregular if there exist integers r; and 7,
such that for every vertex Vin G, degree of Vis either 17 or r,.
Lemma 1: Let n,k,r; and r, be integers such that (r; + 1) = 2(r; + 1) and

nz(n+ 1)k Thenforany t < k,t + r‘ (r’H)'] =2k+ [ _(r'“)kl.
Proof: If t = k, there is nothing to prove.

If t<k, we claim that ['(““)t] [—Z‘:)k]>k—t. We are given
(ri+1)
that( D 2 2.

Case(i): (m +1)/(n—=(ry + 1)t) and (r; + 1)/(n — (r; + 1)k)
n—-(ri+1)t _ n—(ry+1)k

LHS=
ra+1 mn+1
_n (n+ 1t n (n+ Dk
_7’2+1 T2+1 7'2+1 T2+1
(1) (k-t) _
= > (k—t).
Case (ii): (n+ 1 t(n—(m +1)t)and (r, + 1)/(n — (r; + k)
L.H.S="'Z‘——%"+a "—M 0<a<i

_n (r1+1)t n (n+ Dk
_Tz+1 7'2+1 T2+1 Tz+1

=0 a > Kk-D+a> k-0,
Case (ii): (7, + 1)/(n = (r, + D) and (2 + 1) § (n — (13 + D)

(r1+1) (r1+1) =
e = =2, let( e 14+x, x21.

n—(r1+1)t =(ry+1)k
LHs =21 -(® o +8).0<p<1

Since ——
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_n (n+ 1t n (r1+1)k_
'("rz+§(_ rz)+1 R+l 41 A
_ T1+1 k-t _ _ _
——rz'_l_l—--ﬂ =1+x)k-t)-B
=tk-t)+xtk—t)—p >k -1).
Since(k—t)>p=2>2xk—t)>px=>x(k—-t)-5>0.
Case(iv:(n+1t(n—(m+Dt)and (n + 1) § (n = (1 + 1)k)
LHS =220ty g (iR 4 5) 0< f < 1,0<a <1

r2+1 ra+1
-B+a

_ n (7'1 + l)t n (r1 + 1)k
n+l n+l n+l n+1
(n+Dk=-1t)
== +1 P e

Subcase (i): a =8

LHS§ = o
r2+1

Subcase (ii): a > 8
Here,a — f > 0.

LH.S > Qtk=0)
r2+1

Subcase (iii): a < 8

Here,a — 8 < 0.

LH.S = {udk=0
r2+1

L tgr‘ﬁ;— 1+x x2>1.

ThusLHS=(1+x)(k—-t)—-y=k-t)+xtk—-t)—y>k—t.

Since(k—t)>y=2xtk—t)>yx=>xtk—t)-y>0.

We thus have the following theorem.

Theorem 2: Let G be a graph on 77 vertices such that every vertex is of degree

either ny or 1 and (r; + 1) = 2(73 + 1). Let & be the number of vertices of

degree ry, subject to the condition n > (r; + 1)k. Thenk, = k + [ _g‘_:)kl

Proof: Every vertex v in G of degree r;, has r; incoming edges in G(0).
Suppose all the vertices of degree r; are in the kernel and dominate (r; + 1)k
vertices in G(0), then the kernel members for the remaining n — (r; + 1)k

. . —(r +1)k
vertices are to be determined. Thus k, = k + [" 5;1:; k]

> (k- o).
> k-1

-7.0<y<1

5. Kernel in Uniform Theta Graph and Even Quasi —
Uniform Theta Graph

Definition 7: A generalized theta graph ©(n,[) or simply a theta graph with 7
vertices has two vertices N and S of degree /such that every other vertex is of
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degree 2 and lies in one of the / paths joining the vertices &/ and S. The two
vertices // and § are called the North Pole and the South Pole respectively. A
path between the North Pole and the South Pole is called a longitude and is
denoted by L. @(n,l) has / number of longitudes denoted by Ly, L, ..., L;. See

Figure 1.

N

Figure 1: A Generalised Theta graph ©(40,8).
Definition 8: A theta graph ©(n,l) is uniform if |L,] = |L;| = -+ = |L;]| and
quasi-uniform if |L;| = |L,| = +-- = |L;]. A quasi - uniform theta graph is said to
be even or odd according as |L,| + |L;] is even or odd. Clearly a uniform theta
graph is an even quasi - uniform theta graph. See Figure 2.
N

s
Figure 2: A Uniform Theta graph 6(32,6).
We proceed to prove that the acyclic kernel problem is polynomially solvable
for uniform theta graph and even quasi - uniform theta graph.
Theorem 3: Let G be an uniform theta graph @(n,l) withm=3i—-1,i =2

number of vertices on each longitude. Then k, = 2 + ! —?—2— .

Proof: By Theorem 2, k, = 2 + "—_-2—“—“—)] =2+ [3‘12_—2(“—1)] =2+ [M] =
- 3 3 3

2+1 _m3__

DKg=22+1 [—"’T_%]

We proceed to prove the existence of a kernel A'of G with 2 + | [—'"—;3]

Since each of the / number of longitudes contains /7 internal vertices, we have
n = ml + 2. Name the vertices of ©(n, ) as follows:
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The North Pole and the South Pole are named as # and S. Name the vertices on
the longitude L, as vf v%,..,v% where 1 <k <. Orient each longitude
unidirectionally from North Pole to South. See Figure 3.

Figure 3: Naming of vertices in an Uniform Theta Graph @(32,6).
Define a labeling f:V(G) - {1,2,...,Im+2} by f(N) =n,f(S) =n—1 and
f(vh) where 1<j < mT-z and 1 < k < [ be labeled arbitrarily as n — 2,n —
3,..,n— (2 +1 [mT-Z] - 2),n— (2 + l[—"i;—z - 1). . Let the remaining
n-— (2 +1 ['"T_ZD vertices be labeled 1,2,...,n - (2 +1 [—'—"3;2]) arbitarily by f
Orient the edge (u,v) in G from ¢ to Vv if f(u) < f(v). This assigns a

topological ordering O of W{G) such that the vertices labeled n — ((2 +

l mT_ZD - 1),n - ((2 +1 [mT-z ) - 2), ..,n have in-degree 2 or |. By
Theorem 1, G(0) is acyclic.
We claim that the set K of vertices labeled n — ((2+l[ﬂs——z)— 1),n—

((2 +1 mT-z ) - 2) , ..., L constitute an acyclic kernel set K of G.

For u € V\ K and v € K, we have f(u) < f(v). Therefore, if (u,v) € E(G)
then (w,v) € E(G(0)). The set K constituting vertices named N, S and vk,
where 1< < mT-z and 1 £ k <1 form an independent set of vertices in G,
where G is an uniform theta graph @(n,l) with m = 3i — 1,i = 2 number of
vertices on each longitude. Thus K is a kernel of G and hence k, = 2 + | ['"T_z .
See Figure 4.
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Figure 4: Encircled vertices form a kernel in 8(32,6).
Theorem 4: Let G be an even quasi - uniform theta graph @(n, 1) with m =

3i — 1,i 2 2 number of vertices on each longitude. Then x, = 2 + [ ["'T-z .

Proof: The proof is similar to that of Theorem 3.

We now have the following theorem.

Theorem 5: The acyclic kernel problem for uniform theta graph and even quasi
- uniform theta graph is polynomially solvable.

Conclusion

We have discussed the acyclic kernel number for oriented graphs and also
estimated the lower bound for the acyclic kernel number for biregular graphs. In
this paper, we have proved that the acyclic kernel problem for uniform theta
graph and even quasi — uniform theta graph is polynomially solvable. Further
the acyclic kernel number for Butterfly Networks and Benes Networks are under
investigation.
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