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Abstract

Graph embedding is an important technique used in the study
of computational capabilities of processor interconnection networks
and task distribution. In this paper, we present an algorithm for
embedding the Hypercubes into Banana Trees and Extended Banana
Trees and prove its correctness using the Congestion lemma and
Partition lemma.

1 Introduction

In the field of interconnection networks, the study of graph embeddings
is motivated by the problem of efficient simulation of interconnection net-
works and parallel algorithms on a different interconnection network. Sev-
eral types of networks have been considered like the hypercubes, shuffle ex-
change networks, butterfly networks, trees and complete binary trees and
a number of papers have been published in the last ten years on embed-
ding a given network into another. Thus, graph embedding is an important
technique used in the study of computational capabilities of processor in-
terconnection networks and task distribution. They also have applications
in different areas of computer science. For example, any finite graph can
be considered as a model of a parallel computer, where the vertices cor-
respond to processors and the edges represent the communication links
between them. A good embedding is said to exist when the adjacent pro-
cessors in the guest network are mapped to reasonably close processors in
the host network and the paths between adjacent processors in the guest
network are chosen in such a way that the congestion across each host edge
is moderately small.

*This work is supported by UGC, Project No.F. No. 39-47 / 2010.

JCMCC 92 (2015), pp. 147-157



The quality of an embedding can be measured by certain cost criteria,
namely dilation, expansion, congestion and wirelength. The dilation of an
embedding is the maximum distance between the images of adjacent nodes.
It is the measure for the communication time needed when simulating one
network on another. The bandwidth is the dilation if the host graph is a
path. The expansion of an embedding f is the ratio of the number of ver-
tices of H to the number of vertices of G. The congestion of an embedding
f of G into H is the maximum number of edges of the graph G that are
embedded on any single edge of H. The congestion sum or the wirelength
of a graph embedding arises from the VLSI designs, data structures, data
representations, networks for parallel computer systems, biological models
that deal with cloning and visual stimuli, parallel architecture, structural
engineering and so on.

There are several results on the congestion problem of various architec-
tures such as trees on cycles [2], trees on stars [3], hypercubes into grids
(4], complete binary tree into grids (5], grids into grids (6], ladders and
caterpillars into hypercubes (7], binary trees into hypercubes (8], complete
binary trees into hypercubes [9], incomplete hypercube in books [10], m-
sequencial k-ary trees into hypercubes [11], ternary tree into hypercube {12],
enhanced and augmented hypercube into complete binary tree {13], circu-
lant into arbitrary trees, cycles, certain multicyclic graphs and ladders [14],
and hypercubes into cylinders, snakes and caterpillars [15].

In this paper, we present an algorithm for embedding the hypercubes
into Banana Trees and Extended Banana Trees and prove its correctness
using the Congestion lemma and Partition lemma.

2 Preliminaries

Definition 2.1. [4] Let G(V, E') and H(V, E) be finite graphs with n ver-
tices. An embedding f of G into H is defined as follows:

1. f is a bijective map from V(G) — V(H)
2. f is a one-to-one map from E(G) to {P(f(u), f(v)) : Ps(f(u), f(v))
is a path in H between f(u) and f(v) for (u,v) € E(G)}.

The graph G that is being embedded is called a virtual graph or a guest
graph and H is called a host graph. Some authors use the name labelling
instead of embedding.

The edge congestion of an embedding f of G into H is the maximum
number of edges of the graph G that are embedded on any single edge of
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H. Let EC¢(G, H(e)) denote the number of edges (u,v) of G such that e
is in the path Ps(f(u), f(v)) between f(u) and f(v) in H. In other words,

ECs(G, H(e)) = [{(u,v) € E(G) : e € Pr(f(w), f(v))}]

where Pg(f(u), f(v)) denotes the path between f(u) and f(v) in H with
respect to f.

The edge congestion problem of a graph G is to find an embedding of
G into H that induces EC(G, H).

Definition 2.2. [16] The wirelength of an embedding f of G into H is
given by

WLi(G,H)= > du(f(u),f(®)= D> ECs(G,H(e))

(u,W)EE(G) ecE(H)

where dg (f(u), f(v)) denotes the length of the path Py(f(u), f(v)) in H.
Then, the wirelength of G into H is defined as

WL(G, H) = min WL (G, H)

where the minimum is taken over all embeddings f of G into H.

The edge isoperimetric problem [18] is used to solve the wirelength prob-
lem when the host graph is a path and is N P-complete [17].The following
two versions of the edge isoperimetric problem of a graph G(V, E) have
been considered in the literature [18].

Problem 1: Find a subset of vertices of a given graph such that the edge
cut separating this subset from its complement has minimal size among all
subsets of the same cardinality. Mathematically, for a given m, if 8g(m) =

min  |0g(A)| where 8g(A) = {(u,v) € E : u € A,v ¢ A}, then the
ACV, [Al=m

problem is to find A C V such that |A| = m and 8g(m) = |0c(A)|.

Problem 2 : Find a subset of vertices of a given graph such that the
number of edges in the subgraph induced by this subset is maximal among
all induced subgraphs with the same number of vertices. Mathematically,

for a given m, if Ig(m) = Ac&nm— |Ig(A)| where Ig(A) = {(u,v) €

E : u,v € A}, then the problem is to find A C V such that |A] = m and
Ig(m) = |Ic(A)l.

For a given m, where m = 1,2, ..., n, we consider the problem of finding
a subset A of vertices of G such that |[A| = m and |0c(A)| = 8g(m). Such

149



subsets are called optimal. We say that optimal subsets are nested if there
exists a total order @ on the set V such that for any m = 1,2,...,n, the
collection of the first m vertices in this order is an optimal subset. In
this case we call the order O an optimal order [18]. This implies that

WL(G, P,) = f_:ooc(m).

Further, if a subset of vertices is optimal with respect to Problem 1,
then its complement is also an optimal set. But, it is not true for Problem
2 in general. However for regular graphs a subset of vertices S is optimal
with respect to Problem 1 if and only if S is optimal for Problem 2 [18].
In the literature, Problem 2 is defined as the mazimum subgraph problem.

Lemma 2.3. (Congestion Lemma) [16] Let G be an r-regular graph and
f be an embedding of G into H. Let S be an edge cut of H such that
the removal of edges of S leaves H into 2 components H; and H. and
let Gy = f~Y(H,) and Gy = f~'(H,). Also S satisfies the following
conditions:

(i) For every edge (a,b) € Gi, i = 1,2, P¢(f(a), f(b)) has no edges in S.

(ii) For every edge (a,b) in G with a € Gy and b € G2, Ps(f(a), f(b))
has ezactly one edge in S.

(iii) Gy is an optimal set.

Then EC(S) is minimum and ECf(S) =7 |V(G,)| - 2|E(Gy)]. O

Lemma 2.4. (Partition Lemma) [16] Let f : G — H be an embedding.
Let {51, S, ..., Sp} be a partition of E(H) such that each S; is an edge cut
of H. Then

P
WLs(G,H) =) EC(S:). O
i=1

The hypercube is a very popular interconnection network for parallel
computation because of its regularity and the relatively small number of
interprocessor connections [1].

Definition 2.5. [19] For r > 1, let Q" denote the graph of r-dimensional
hypercube. The vertex set of Q" is formed by the collection of all r-
dimensional binary representations. Two vertices z,y € V(Q") are ad-
jacent if and only if the corresponding binary representations differ exactly
in one bit.

Definition 2.6. [16] An incomplete hypercube on 4 vertices of Q" is the
subcube induced by {0,1,,i — 1} and is denoted by L;, 1 <¢ < 2",
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Figure 1: Banana Tree B(2;4)

Definition 2.7. [23] Let T be a tree having root r with sons v, vz, , vk, k >
0. In the case k = 0, the tree consists of a single vertex r. A postorder
traversal of T is defined recursively as follows:

(i) Visit in postorder the subtrees with roots vy, vs,,vx in that order.
(ii) Visit the root 7.

Theorem 2.8. [16] Let Q" be an r-dimensional hypercube. For1 <i <27,
L; is an optimal set or a composite set.

Lemma 2.9. Fori=1,2, . ,7r — l,NcutSfi =2{2041,.-.,2¢! 45 an
optimal set in Q7.

Proof. Define ¢ : NcutSfi — Ly by ¢(2' + k) = k. If the binary rep-
resentation of 2* + k is a;,ay,- - -, oy, then the binary representation of
k is 00 00a,-1+1a,._,+2 .a,. Thus the binary representation of two

r—t tlmes
numbers z and y differ exactly in one bit < the binary representation of

@(x) and p(y) differ in exactly one bit. Therefore, (z,y) is an edge in
NcutS? & (p(x),¢(y)) is an edge in L. Hence NcutS? and Ly are
isomorphic. By Theorem 2.8, N cut.S'2 is an optimal set in Q". (|

Lemma 2.10. [20] For i = 1,2,---,r — 1, NcutS? = 2¢,2¢ +1,,2¢+! 1
is an optimal set in Q.

Lemma 2.11. [20] Fori=1,2,---,r— 1,Ncut5'i2‘ — 2i'2i + 1”2i+1 -9
is an optimal set in Q7.

3 Wirelength of Hypercubes into Banana Trees

Definition 3.1. [21, 22] A B(n,k) Banana Tree, is a graph obtained by
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Figure 2: B(nlv N, -y nm;klakz'r Tt Y kM)

connecting one leaf of each of n copies of an k-star graph with a single root
vertex that is distinct from all the stars. See Figure 1.

Note : For our discussion, we impose the condition that nk = 2".
Embedding Algorithm A
Input : The r-dimensional hypercube Q7,7 > 1 and Banana Tree B(n, k).

Algorithm : Label the vertices of Q™ by using lexicographic labeling [18]
and label the vertices of B(n, k) using the post order labeling.

Output : An embedding f of Q" into B(n,k) given by f(z) = = with
minimum wirelength.

Proof of correctness : For 1 < i < n, let S; = (2" — 1,ki), S; =
(ki ki — 1) and 87 = (ki — 1,ki — 1 — j), where 1 < j < k - 2. Thus
{Si:1<ig<n}u{Si:1<i<nju{s:1<i<nl1<j<k-2}
is a partition of E(B(n,k)). For each i,1 < i £ n, E(B(n, k))\S; has two
components H;; and H;z, where V(H;;) = {ki—1,ki—2,..., k(i — 2)}. Let
Gi1 = f~YH;;) and Gy = f~}(Hi2). By lemma 2.9, G;; is an optimal set
and each S; satisfies conditions (i), (ii) and (iii) of the Congestion Lemma.
Therefore, EC¢(S;) is minimum.
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Figure 3: Embedding of Q" into B(2,1;4,8)

For each i,1 < ¢ < n, we see that, E(B(n, k))\S; has two components
H;, and H,, where, V(H},) = {ki — 2,ki — 3,...,k(i — 1)}. Let G}; =
f~YH}) and G, = f~Y(H,). By lemma 2.10, G;; is an optimal set
and each S; satisfies conditions (i), (ii) and (iii) of the Congestion Lemma.
Therefore, EC(S;) is minimum.

For each 1 <i < n,1<j < k-2, we see that, E(B(n, k)\S! has two
components H}; and H7, where, V(H?,) = {ki—(k—1), ki—(k—2), ..., ki—
(k—j—1)}. Let G}, = f~Y(HY) and G%, = f~1(H%). By lemma 2.11,
G{l is an optimal set and each S7 satisfies conditions (i), (ii) and (iii) of
the Congestion Lemma. Therefore, ECf(Sf ) is minimum.

The proof of the following theorem is an easy consequence of Embedding
Algorithm A.

Theorem 3.2. The ezact wirelength of Q" into B(n,k),is given by
WL(Q",B(n,k)) = 3ra(k—1)~2| E(Q"(Lk-1)) | -2 | E(Q"(Lk)) |

4 Wirelength of the Hypercube into the Ex-
tended Banana Tree

Definition 4.1. An Extended Banana Tree denoted by B(ny, na, -+, m; ki1, ka2, -+
-, km) is a graph obtained by connecting one leaf of each of {n1,nz,--,nm}
copies of {ki, ka2, -« ', kn} - star graphs with a single root vertex that is
distinct from all the stars. See Figure 2.

Note : In this paper we consider the Extended Banana Tree satisfying
the following conditions:
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(i) For 1 < < m, k;contains 2™ vertices.
(ii) The nmth copy of k., contains 2™ vertices.

(iii) Z:n:l n;k; =27
Remark : Lett; = Z:Z-l n;k; such that tog = ko = 0.
Embedding Algorithm B

Input: The r-dimensional hypercube Q",r > 1 and an Extended Banana
Tree B(nla 2y y Ny kl, k27 s ak‘m)

Algorithm : Label the vertices of Q by using lexicographic labeling 18]
and label the vertices of B(n),nga, -+, im; k1, k2, -+, km) using the post order
labeling.

Output : An embedding f of Q" into B(n1,n2,- - -y fum; k1, k2, -« * km)
given by f(z) = = with minimum wirelength. See Figure 3.

Proof of correctness : We assume that the labels represent the vertices
to which they are assigned. For,

i#Em,Si={2 L tii+lki—1}1<1<ny

i=m,S = {2 L tiey +lki—1)},1 <1< n; 1

i#m,S = {2 tic1 + 1k —2)},l=n;

it m, T = {(ticy + ki — 1, ti_ + 1k —2)},1 <L < my

i=m, T} ={(tie1 +lhi — 1, t;i1 + ki —2)},1<1<n; -1

i#Em T} = {(ticy +1ki —2,ti1 + ki =3}, =n,

i#Em, U} = {(tic1 +lki=2,tim +lki—2—-j)},1<j < ki —2,1 <1< ny
i=m,Uf = {(ti=1+1ki=2,tic1+1ki—2-)},1<j < ki—2,1<I<m;
i#m U} = {(tic1 +lki=3,tic1 +lki—3-7)},1<j < ki—2,1<1<n;

See Figure 3. Then {S}, T}, U} } is a partition of E(B(ny, ng, -+, tm; k1, k2, -
) km)-

For 1 < I < n;, we see that, E(B(n1,n2, * *,im; k1, k2, - - -, km) S} has
two components H;; and H;s, where, for,
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i#m V(S ={(tici+ (= Dk +1,tic1 + (I —1)k; +2,- -+, ti1 + 1k;}
i=m, V(S = {(fic1 + (U= Dks+ 1 timy + (I = Dk + 2, -, iy + Uk}
i=m,V(Sf) = {(tic1 +({=Vki+1,ticy+ (- )ki+2,- -, ti 1 +1ki—1}

Let Gi1 = f~Y(H;) and G = f~1(Hi2). By lemma 2.9, Gy is an op-
timal set and each S} satisfies conditions (1), (ii) and (iii) of the Congestion
Lemma. Therefore, EC(S}) is minimum.

For 1 < I < n;, we see that, E(B(n1,n2," - -, im; k1, k2, + -, km) T} has
two components H;, and H;,, where, for,

1 # m,V(T,i) = {(ti-l -I-(l—-l)k,'-l-l,t,‘_1+(l—1)ki+2,---,ti_1+lki—1}
t=m, V(Tli) ={(tic1+({-Dki+1,6;1+(1—-1)k;+2,---,ti_1 +lk;—1}
1 =1m, V(Tli) = {(ti_1+(l— )k'+1,ti_1+(l—1)k,’+2, --',t,‘_1+”€i-—2}

Let G, = f~Y(H,) and G}, = f~1(Hy). By lemma 2.10, G}, is
an optimal set and each T} satisfies condltlons (i), (ii) and (iii) of the
Congestion Lemma. Therefore, ECy(T}) is minimum.

For 1 <! < n;, we see that E(B(ni,na," - +,nm; k1, ka2, + -, km) Uj has
two components H;; and H;,, where, for,

1 #£m, V(Uli) = {(ti_l-l-(l— )ki+1,ti_1+(l—1)ki+2, ceeyticy +lki—2}
1 =1m, V(Uli) = {(tic1+({—-Dki+1, 61+ (1 —1)k; 42, ti +“€5—2}
i = m, VU}) = {(Bim1 + (1= kit 1, i1+ (= 1) ki 42, - tio 1 + ki — 3}

Let G;; = f~Y(H;)) and G = f~'(Hs). By lemma 2.10, G}, is
an optimal set and each U} satisfies conditions (i), (ii) and (iii) of the
Congestion Lemma. Therefore, ECy(U}) is minimum.

The proof of the following theorem is an easy consequence of Embedding
Algorithm B.

Theorem 4.2. The exact wirelength of QT into B(ny,na,- - -, m; k1, k2, - -
,km),is given by

WL(QT,B(TII,‘RQ," 'anm;klka)' "1km)) =

2T =2(n1+no+ - +np) - 1) +r[ik,~—m]

i=1

m

~2[Z7’i21'i—1 - 'I‘i] —(rm —1) +T[z k‘] - Q[ZT 21‘.—1] —

i=1
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5 Conclusion

In this paper, we present an algorithm for embedding the hypercubes into
the Extended Banana Trees . The algorithm which generates these embed-
ding is not only fast and efficient but also simple and elegant.
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