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Abstract

Let G(V, E) be a simple graph. For a labeling 8: VUE — {1,2,3, ...,k}
the weight of a vertex « is defined as wt(z) = 8(z)+ > O(zy). 0 is called
ryeE

a vertex irregular total k-labeling if for every pair of distinct vertices z and
y, wt(z) # wi(y). The minimum k for which the graph G has a vertex
irregular total k-labeling is called the total vertex irregularity strength of
G and is denoted by tvs(G). In this paper we obtain a bound for the
total vertex irregularity strength of honeycomb and honeycomb derived
networks.

1 Introduction

A graph labeling is an assignment of labels, represented by integers, to
the vertices, edges or both of a graph. Formally, given a graph G, a vertex
labeling is a function mapping vertices of G to a set of integers [8]. A graph
with such a function defined is called a vertez-labeled graph. Likewise, an
edge labeling is a function mapping edges of G to a set of labels. In this
case, G is called an edge-labeled graph. Most graph labelings trace their
origins to labelings presented by Alex Rosa [9]. Rosa identified three types
of labelings, which he called a, 8 and p labelings. S-labelings were later
renamed as graceful by S.W.Golomb and the name has been popular since.
Motivated by the notion of the irregularity strength of a graph intro-
duced by Chartrand et al. [6] in 1988 and various kinds of other total
labelings, Baca et al. [4] introduced the total vertex irregularity strength
of a graph as follows: Let G(V,E) be a simple graph. For a labeling
d: VUE — {1,2,3,...,k} the weight of a vertex z [10] is defined as
wt(x) = 0(z) + Y O(zy). 8 is called a vertex irregular total k-labeling if
zyeR
for every pair of distinct vertices z and y, wt(z) # wt(y). The minimum &
for which the graph G has a vertex irregular total k-labeling is called the
total verter irregularity strength of G and is denoted by tvs(G). In Figure
1 (a), tvs(G1) = 2 and in Figure 1 (b), tvs(Gz) = 2.
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Figure 1: (a) Gi; (b) G2

Baca, Jenrol, Miller and Ryan [4] proved that tvs(C,) = ﬁ;—z ,

n+1 2n+3

n 2> 2; tus(K,) = 2; tvs(Ky ) = —2—-| ; tws(Cp X Pp) = T IfT

is a tree with m pendent vertices and no vertex of degree 2, they proved that

I'%-‘ < tws(T) < m. They also proved that if G is a (p,q) graph with

Z:ﬂ < tvs(G) <
p+ A —20+ 1. Ahmad et. al 1, 2, 3] found the total vertex irregularity
strength for Jahangir graphs, circulant graphs, convex polytope and wheel
related graphs.

In this paper we investigate the total vertex irregularity strength of
honeycomb networks and honeycomb derived networks and obtain a bound
for the total vertex irregularity strength of these networks.

minimum degree § and maximum degree A, then

2 Honeycomb Networks

A unit honeycomb network is a hexagon denoted by HC(1). Honeycomb
network of size 2 denoted by HC(2) can be obtained by adding six hexagons
around the boundary edges of HC(1). Inductively honeycomb network
HC(r) can be obtained from HC(r — 1) by adding a layer of hexagons
around the boundary edges of HC(r — 1).

The number of vertices and edges of HC(r) are 6r% and 9r2 — 3r respec-
tively. Cellular phone station placement, the representation of benzenoid
hydrocarbons, computer graphics and image processing are mainly based
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Figure 2: tvs(H(3)) <29

on hexagonal tesselations. Honeycomb architectures begin with hexagonal
tessellations but use cells (instead of vertices) as processors (7).

Theorem 1 tvs(HC(r)) <3r?+r—-1,7r>1.

Procedure Upper Bound for tvs(HC(r))
Input: HC(r),r > 1

Algorithm:

Case 1: r even

Step 1 Vertices and edges of HC(1) in the anticlockwise direction starting
from v;receive label as shown in Figure2.

Having labeled the vertices and edges of HC(r — 1), the vertices and
edges of HC(r),r > 1 are labeled inductively as follows.

Step 2 Consecutive vertices of HC(r) in the outer cycle receive labels using
consecutive integers from 3(r —1)2 + 7 — 1 to 372 + 7 — 1 in the
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anticlockwise direction, starting with the vertex adjacent to the first
vertex labeled in HC(r — 1).

Step 3 Remaining adjacent vertices of HC(r) in the same cycle in the anti-
clockwise direction receive labels using integers from 3r2 +r — 2 to
3(r — 1)2 + r in the descending order.

Step 4 Consecutive edges of HC(r) in the outer cycle in the anticlockwise
direction receive labels in the same way starting with the edge incident
at the vertex labeled first in HC(r — 1).

Step 5 All other edges receive label 2.
Case 2: r odd

Step 1 Vertices and edges of HC(1) in the anticlockwise direction starting
from vireceive labels as shown in Figure 2.

Having labeled the vertices and edges of HC(r — 1), the vertices and
edges of HC(r), r > 1 are labeled inductively as follows.

Step 2 Consecutive vertices of HC(r) in the outer cycle in the anticlockwise
direction receive labels using consecutive integers from 3(r—1)2+r—1
to 3r2 +r — 1 starting with the vertex diagonally opposite to the first
vertex labeled in HC(r —1).

Step 3 Remaining consecutive vertices of HC(r) in the same cycle in the
anticlockwise direction receive labels using integers from 3r% +r — 2
to 3(r — 1)2 + r in the descending order.

Step 4 Consecutive edges of HC(r) in the outer cycle in the anticlockwise
direction receive labels in the same way starting with the edge incident
at the vertex labeled first in HC(r).

Step 5 All other edges receive label 2. See Figure 2.
Output: tvs(HC(r)) <3r2+r—1,7r> 1.
End Procedure Upper Bound for tvs(HC(r)).

Proof. We prove that the weights of the vertices of HC(r) are distinct us-
ing induction method. The weights of the vertices of HC(1) constitute the
set {5,6,7,8,9,10, 14,15,16,17, 19, 22, 23, 24, 25, 26, 28, 31, 32, 33, 34, 35, 37,
40}. Now we assume that the weights of the vertices of HC(r — 1) are dis-
tinct.We claim that the weights of the vertices of HC(r) are distinct. The
weights of the vertices of HC(r) adjacent to the vertices of HC(r — 1)
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are obtained using 4 integers and each integer is greater than the labels
of the corresponding vertex of HC(r — 1) and hence all the weights of
HC(r) are distinct. The weights are obtained using the labels from the set
{1,2,3,...,3r2 + r — 1}. Hence tvs(HC(r)) <3r>+r—1,r> L.

This concludes the proof. (1

3 Honeycomb Derived Networks

In this section we determine an upper bound for the total vertex irregularity
strength of honeycomb derived networks.

A honeycomb derived network [5] is obtained from HC(r) by joining
pairs of vertices in each hexagon which are diametrically opposite to each
other and is denoted by HC,(r).

Theorem 2 tvs(HC(r)) <3r?+r—-1,7>1.

Procedure Upper Bound for tvs(HCi(r)), r > 1
Input: HCi(r),r>1
Algorithm: Upper Bound for tus(HC\(r)), r > 1

Step 1 Vertices and edges of HC;(1) in the anticlockwise direction starting
from v; receive labels as shown in Figure 3.

Having labeled the vertices and edges of HC(r —1), the vertices and
edges of HC(r), r > 1 receive labels inductively as follows.

Step 2 Consecutive vertices of HC)(r) in the outer cycle receive labels using
consecutive integers from 3(r — 1)2 +7 — 1 to 3r2 + r — 1 in the
anticlockwise direction, starting with the vertex adjacent to the first
vertex labeled in HCi(r).

Step 3 Remaining adjacent vertices of HC(r) in the same cycle receive la-
bels in the anticlockwise direction using integers from 3r2 +r — 2 to
3(r — 1)2 + r in the descending order.

Step 4 Consecutive edges of HCy(r) in the outer cycle in the anticlockwise
direction receive labels in the same way starting with the edge incident
at the vertex labeled first in HC; (7).

Step 5 All other edges receive label 1. See Figure 3.
Output: tvs(HCy(r)) < 3r2+r—-1,7r>1
End Procedure Upper Bound for tvs(HC,(r)).
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Figure 3: tvs(HC:1(3)) <29

Proof. We prove that the weights of the vertices of HC)(r) are distinct
using induction method. The weights of the vertices of HC)(1) constitute
the set {4,5,6,7,8,9} and the weights of the vertices of HC}(2) constitute
the set {7,8,9,10,11,12,15, 16,17, 18,21, 23, 24, 25, 26, 27, 29, 32, 33, 34, 35,
36,38,41}. Now we assume that the weights of the vertices of HC)(r — 1)
are distinct. We claim that the weights of the vertices of HC\(r) are
distinct. The weights of the vertices of HC)(r) adjacent to the vertices of
HC\(r — 1) are obtained using 4 integers and each integer is greater than
the labels of the corresponding vertex of HCi(r — 1) and hence all the
weights of HC)(r) are distinct. The weights are obtained using the labels
from the set {1,2,3,...,3r% + r — 1}. Hence tvs(HCi(r)) < 3r2 +r -1,
r > 1.This concludes the proof. O

4 Conclusion
In this paper we have obtained a bound for the total vertex irregularity

strength of honeycomb and honeycomb derived networks. Total vertex
irregular k-labeling for networks like hexagonal network, butterfly network
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and benes network is under investigation.
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