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Abstract

A linear layout, or simply a layout, of an undirected graph G =
(V, E) with n = |V| vertices is a bijective function¢ : V — {1,2,...,n}.
A k-coloring of a graph G = (V, E) isamapping x : V = {c1,¢2,...,¢k}
such that no two adjacent vertices have the same color. A graph with
a k-coloring is called a k-colored graph. A colored layout of a k-
colored graph (G, k) is a layout ¢ of G such that for any u,z,v € V,
if (u,v) € E and ¢(u) < ¢(x) < ¢(v) then x(u) # x(z). Given a
k-colored graph (G, k), the problem of deciding whether there is a
colored layout ¢ of (G, ) is NP-complete. In this paper we introduce
the concept of chromatic layout of G and determine the chromatic
layout number for paths and cycles.

1 Introduction

Sequence reconstruction problem occurs in Molecular Biology at different
levels of DNA mapping. It is currently not possible to sequence large parts
of DNA or proteins at a time [6, 7, 12, 14, 15, 17]. Therefore the sequence is
cut into smaller parts, which are called fragments or colors, which can then
be sequenced. However, the order of the different fragments in the large
sequence is lost during the fragmentation processes. The reconstruction of
this order is called sequence reconstruction and a colored layout of a graph
plays an important role in the process.
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2 Preliminaries

A proper vertex coloring of a graph G is an assignment of colors to the
vertices of G, so that adjacent vertices are colored differently. A k-coloring
of a graph G = (V, E) is a mapping & : V — {e1,¢3,...,cx} such that no
two adjacent vertices have the same color. Let x(v) denote the color of
vertex v in G. A k-colored graph is a graph together with a k-coloring.
If V; is the set of all vertices in G colored c¢;, then each nonempty set
Vi,i=1,2,...,k is called a color class and the sets V;,V5,..., Vi produce
a partition of V(G). Since no two adjacent vertices are assigned the same
color, each nonempty color class V; is an independent set of vertices of G
(8).

A graph G is k-colorable if there exists a k-coloring of G. The minimum
positive integer &k for which G is k-colorable is the chromatic number of G
and is denoted by x(G). The chromatic number of G is therefore the
minimum number of independent sets into which V(G) can be partitioned.
A graph G with chromatic number k is a k-chromatic graph. A graph is
k-colorable if and only if x(G) < k (8].

A linear layout, or simply a layout, of an undirected graph G = (V, E)
with n = {V| vertices is a bijective function ¢ : V — {1,2,...,n}. A
linear layout is also called a linear ordering [1], a linear arrangement {18],
a numbering [9] or a labeling [16] of the vertices of a graph. The set of all
layouts is denoted by ®(G).

Definition 2.1. A colored layout of a k-colored graph (G, k) is a layout ¢
of G such that for any u,z,v € V, if (u,v) € E and ¢(u) < ¢(z) < ¢(v),
then k(u) # &(x). ¢ is called a k-colored layout of graph G [10].

Given a k-colored graph (G, ), deciding whether there is a colored
layout ¢ of (G, k) is called a Colored Layout Problem [3, 10]. In 1998,
Alvarez [2] showed that the colored layout problem is NP-complete for
caterpillars with hairs of length at most 2 and the problem can be solved
in NC for caterpillars with hairs of length at most 1. In 2001 [4], it was
shown that the problem is still NP-complete for four colored caterpillars
with unbounded hair length.

Given a k-colored graph (G, k), deciding whether there is an edge su-
perset E’ such that the graph G’ = (V, E’) is an interval graph and « is
still a proper coloring of G’ is called the Interval Colored Graph Problem
[4, 5, 10]. The Interval Colored Graph Problem is a special case of the
Interval Sandwich Problem [13], and has received attention as a simplified
model for reconstructing the ordering in physical DNA mapping problems
[12]. Moreover, the problem was shown to be NP-complete [12, 14} and it
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is polynomial time equivalent to the colored layout problem |2, 11].
In this paper we introduce chromatic layout of G as follows:
Definition 2.2. A k-chromatic layout of G is a k-colored layout of G such

that for any t-colored layout of G, t > k. k is called the chromatic layout
number of G and is denoted by x(G).

3 Main Results

In this section, we obtain a lower bound for x.(G) and prove that the
bound is sharp for paths and cycles.

Theorem 3.1. Let G be a graph. Then xr(G) = x(G).

Proof. Since a colored layout of G requires G to be a k-colored graph,
xL(G) = k. But x(G) < k. Hence xL(G) = x(G). O

Theorem 3.2. Let G be a graph and H be a subgraph of G. Then x1(H) <
xL(G).

Proof. Consider any chromatic layout ¢ of G and remove the label ¢(v) if
v is not in V{(H). Continue the process until no such vertex exists. The
resultant layout is a colored layout of the subgraph H with at most x1(G)
colors. Hence x1(H) < x.(G). O

It is clear that for a connected graph G, x.(G) = 1 if and only if G is
isomorphic to P;.

3.1 The chromatic layout of Paths

Theorem 3.3. Let P, denote the path on n vertices. Then xp(P,) =
2,n>2.

Proof. Let P, : vy,v2,v3,...,Un,n = 2. Since x(Pn) = 2, x.(Pr) = 2.
We define a layout ¢ of P, as ¢(v;) = i. In any chromatic coloring of
P, k(vi) = k(vig2), t = 1,2,...,n. For every edge (u,v) € E(F,), either
d(u) = é(v) + 1 or ¢(v) = ¢(u) + 1. Hence ¢ is a chromatic layout of P,
and xr(Pn) = 2. a

Lemma 3.4. In any chromatic layout of P, : vy,v2,v3,...,Un, > 5,
o(v;) #1, fori#1,2,n—1,n.

169



«v’,)' . 'd .v“_i)' . .‘ﬂ.v “l.). ........... (Rv‘v:l')' .............. (a)

Qv Aviar) Pvi1) RKvin2)

Figure 1: Illustration of Lemma 3.4 : (a) Case 1, (b) Case 2 and (c) Case
3.

Figure 2: Illustration of Lemma 3.5.

Proof. Suppose there exists a v; such that ¢(v;) =1, for i # 1,2,n — 1, n.
Without loss of generality, let ¢(viy1) < @(vi-1) (See Figure 1).

Case 1: ¢(viy2) < ¢(vit1). Then ¢(vi) < d(viy2) < ¢(vi41) and
K(vi) = K(vit2).

Case 2: ¢(viy1) < d(vite) < d(vi—1). Then ¢(v;) < P(vit2) < (vi-1)
and £(v;) = k(vig2).

Case 3: ¢(viy2) > @d(vi—1). Then ¢(vit1) < d(vi—1) < @(viy2) and
K(vig1) = k(vizy).

All three cases lead to a contradiction to the definition of colored layout.
Hence ¢(v;) # 1, for i #1,2,n—1,n. J

Lemma 3.5. In any chromatic layout of P, : v1,v2,v3,...,05,0 > 5,

$(v:) #n, fori#1,2,n—1,n. B

Proof. Suppose there exists a v; such that ¢(v;) = n, fori #1,2,n—1,n.
Without loss of generality, let ¢(vi1) < P(vi-1). We have ¢(vit1) <
d(vi—1) < ¢(v;) and K(vit1) = K£(vi—1) (See Figure 2), a contradiction to
the definition of colored layout. Hence ¢(v;) #n, fori #1,2,n-1,n. O

Lemma 3.6. In any chromatic layout of P, : v1,v2,v3,...,Un,n 2> 5, the
adjacency is maintained for the vertices vy, i #1,2,n— 1,n.
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Figure 3: Illustration of Lemma 3.6: (a) Case 1, (b) Case 2 and (c) Case 3.

Proof. Suppose the adjacency is not maintained. Then we have the follow-
ing three cases.

Case 1: ¢(viy2) < o(vi) < d(vi41) and k(viga) = &(vi).

Case 2: ¢(vi) < d(vis2) < $(vip1) and &(v;) = K(viga).

Case 3: ¢(v;) < ¢(vj) < d(vit1), § # 1,4+ 1 then either x(v;) = &(v;)
or k(v;) = K(viy1).

All the cases contradict the definition of colored layout. See Figure
3. |

Lemma 3.7. In any chromatic layout of P, : v1,v2,v3,...,0n,n 2> 5, if
d(vi) £2,i=1,2 thenp(v;)=j,j=n—-1,nand if (v;) <2,i=n—-1,n
then ¢(v;) =n—j+1,j=1,2,

Proof. Case 1: Given ¢(v;) < 2, ¢ = 1,2, by Lemma 3.5, ¢(v;) # n, for
J#1L,2,n~-1,n If ¢(v,) < $(vn-1), then ¢(vn_2) < $(vn) < $(vn-1) and
k(vn-2) = K(v,) giving a contradiction to the definition of colored layout.
Hence ¢(v;) =j,j=n—1,n.

Case 2: Given ¢(v;) < 2,7 =n—1,n, by Lemma 3.5, ¢(v;) # n, for
J#1L,2,n—1,n If ¢(v1) < ¢(v2), we have ¢(v3) < ¢(v1) < ¢(v2) and
#(v3) = k(v1) giving a contradiction to the definition of colored layout.
Hence ¢(v;) =n—j+1, j=1,2. a

Theorem 3.8. There are four chromatic layouts to any path P, : v,

Vo, V3y...,Un, > 3.

Proof. By Lemma 3.4 and Lemma 3.5, we have ¢(v;) < ¢(viy1) or ¢p(vip1) <
¢(v;), 3 £ i £ n—2 and by Lemma 3.6 and Lemma 3.7, we have the
following 4 layouts.

Case 1: ¢(v1) < d(v2) < ¢(v;) < P(vit1) < P(Vn-1) < (vn)
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Case 2: ¢(v2) < ¢(v1) < d(vi) < $(vi+1) < $(vn-1) < P(vn)
Case 3: ¢(vn) < P(vn-1) < $(vit1) < $(vi) < P(v2) < d(v1)
Case 4: ¢(vn-1) < $(vn) < P(vit1) < $(vi) < B(v2) < $(v1) O

3.2 The chromatic layout of Cycles

Theorem 3.9. Let C,, be a cycle on n vertices. Then xr(Cr) =3,n > 3.

Proof. When n is odd, x(C,) = 3 and hence by Theorem 1, x.(C.) > 3.
When n is even, x(Cr) = 2 and hence by Theorem 1, x(C») > 2.

Suppose that x.(Cr) = 2, when n is even, consider C, with vertices
v1,V2,VU3,...,V,. Consider a linear layout ¢ of C,, where the vertices
v1,v3,...,Un_1 are assigned the color ¢; and the vertices vs,vy,...,v, are
assigned the color ca. Suppose ¢ is a colored layout of C,, with x(Cp) = 2.
Without loss of generality, let ¢(v;) = 1, ¢(viz1) < d(vi—1).

Case 1: ¢(vip1) < d(vi—1) < ¢(vig2) With £(vig1) = £(vi-1), which is
a contradiction to the definition of colored layout.

Case 2: ¢(v;) < ¢(vi42) < d(vi—1) with k(v;) = k(viy2) which is a
contradiction to the definition of colored layout.

Both the cases lead to a contradiction to the assumption that x.(Cr) =
2 and hence x1(Cp) > 3.

Therefore we redefine ¢ on C,, as ¢(v;) = ¢ with x(vy) = ¢c3, (Vi) = ¢y,
i=3,5,... and k(v;) = cg, © = 2,4,.... Since the adjacency is maintained
in the layout for all the edges except for the edge v1v, and the color c3
is assigned to the vertex v, alone, ¢ is a colored layout. Therefore ¢ is a
chromatic layout and xr(C,) = 3. ]

4 Conclusion

In this paper we have obtained lower bound for x1(G) and proved that the
bound is sharp for paths and cycles.
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