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Abstract

The k-rainbow domination is a variant of the classical domina-
tion problem in graphs and is defined as follows: Given an undirected
graph G = (V, E) and a set of k colours numbered 1, 2, .. . k, we assign
an arbitrary subset of these colours to each vertex of G. If a vertex is
assigned the empty set, then the union of colour sets of its neighbours
must be k colours. This assignment is called the k-rainbow dominat-
ing function of G. The minimum sum of numbers of assigned colours
over all vertices of G, is called the k-rainbow domination number of
G. In this paper, we present some bounds on the 3-rainbow domina-
tion number of circulant networks and grid network.
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1 Introduction

A subset S of the vertex set V(G) of a graph G is called a dominating set if
every vertex in V(G)\S is adjacent to a vertex in S. The domination num-
ber v(G) is the minimum cardinality of a dominating set of G. Let G be a
graph and v € V(G). The open neighbourhood of v is the set N(v) = {u €
V(G)/uv € E(G)} and its closed neighbourhood is the set N[v] = N(v) U {v}.
Let f : V(G) = P({1,2,...,k}) be a function that assigns to each vertex of
G, a set of colours chosen from the power set of {1,2,...,k}. If for each vertex
v € V(G) with f(v) = ¢, we have J,cn (v f(u) = {1,2,...,k}, then the function
f is called a k-rainbow dominating function (kRDF) of G. The weight of the
function, denoted by w(f) is defined as w(f) = Tyev(¢)|f(v)|- The minimum
weight of a kRDF is called the k-rainbow domination number of G and is de-
noted by v«(G). In this paper we consider the 3-rainbow domination, defined as
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f: V(G) = P({1,2,3}) such that for each vertex v € V(G) with f(v) = ¢, we
have U, ¢ vy f(2) = {1,2,3}. Such a function f is called a 3-rainbow dominating
function (3RDF) and minimum weight of such function is called the 3-rainbow
domination number of G and is denoted by vr3(G).

When a graph is used to model objects or locations which can exchange
some resources along its edges, the study of ordinary domination is an optimiza-
tion problem to determine the minimum number of locations to store the resource
in such a way that each vertex either has the resource or is adjacent to one where
the resource resides. Imagine a computer network in which some of the computers
will be servers and the others are clients. There are k distinct resources and we
wish to determine the optimum set of servers, each hosting a nonempty subset of
the resources so that any client is directly connected to a subset of servers that
together contain all k resources. Assuming all resources have the same cost, we
seek to minimize the total number of copies of the k resources. This model leads
naturally to the notion of k-rainbow domination.

2 Overview of the Paper

The rainbow domination problem has been widely studied recently. Earlier
Hartell and Rall investigated the k-rainbow domination for v(G x Ki) [7]. Bre-
sar, Hennning and Rall [1,2] initiated the study of k-rainbow domination of a
graph G and showed that this parameter coincides with the ordinary domination
of the cartesian product of G with the complete graph K, that is v«(G) =
~(G x Ki). Rainbow domination problem was studied in generalized Petersen
graphs [3,11,12}, in trees [2,6], in cartesian product graphs [1]. In [3] Bresar
and Kraner Sumenjak showed that the 2-rainbow domination problem is NP
complete even when restricted to chordal graphs or bipartite graphs. Later the
results were generalized for the case of k-rainbow domination problem by Chang,
Wu and Zhu [6] and determined the exact values of paths, cycles and suns. For
any generalized Petersen graph P(n, k) where n and k are relatively prime num-
bers for k < n, they showed that [42] < 4r2(P(n,k)) < n. They also suspected
that there are infinite families of graphs that achieve the bound n and conjectured
that GP(2k+1,k) with k > 2 and GP(n,3) with n > 7 and n(mod3) # 0 are two
candidate families. However both of these two candidate families were disproved
to achieve the bound n. In {11] Tong Lin Yang and Luo obtained the 2-rainbow
domination number of GP(n,2).

The following lemma gives a lower bound for the 3-rainbow domination of
any graph G.

4

Lemma 2.1. [7] Let G be a graph. Then for any k > 2, min{|{V(G)},¥(G) + k —
2} < 1k(G) < k(G).

176



In this paper we focus on 3-rainbow domination number for the circulant
networks G(n; +{1,2}) and G(n; £{1,3}). Further, we consider the grid network
Gmn.

3 Circulant Network

Two important parameters in network design are maximum node degree (or
number of connections) and incremental extendibility (increase in the number
of nodes). Circulant graphs, a family of Cayley graphs, allow for incremental
extendibility with the number of connections to each node remaining constant in
the networks that they model. Circulant graphs have a vast number of uses and
applications to telecommunication network, VLSI design, parallel and distributed
computing.

The circulant graphs are an important class of topological structures of
interconnection networks. They are symmetric with simple structures and easy
extendibility. Circulant graphs have been used for decades in the design of com-
puter and telecommunication networks due to their optimal fault-tolerance and
routing capabilities [5]. The term circulant comes from the nature of its adjacency
matrix; a matrix is circulant if all its rows are periodic rotations of the first one.
Circulant matrices have also been employed for designing binary codes. Circulant
graphs also constitute the basis for designing certain data alignment networks for
complex memory systems. The circulant network is a natural generalization of
double loop network, which was first considered by Wong and Coppersmith [13].

Vg
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Figure 1: Circulant Network G(8;+{1,2})

Definition: A circulant undirected graph, denoted by G(n;+{1,2,...,5}), 1 <
J £ |3), » 2 3 is defined as an undirected graph consisting of the vertex
set V = {0,1,..,n — 1} and the edge set E = {(¢,j) : |j — ¢{| = s (mod n),
s€{l,2,..,5}

It is also clear that G(n;=1) is an undirected cycle Cn and G(n; £{1,2,...,|%]})
is a complete graph K,.. We observe that C, = G(n;=*1) is a subgraph of

177



G(n;£(1,2,...,5}) for every j, 1 < j < | §]. For our convenience, we denote the
vertex set V as {v1,v2,...,vn}. See Figure 1.

3.1 The 3-rainbow domination number of Circulant
network G(n;+{1,2})

To find 43(G(n; £{1,2})), we shall begin with the lemmas already known.
Lemma 3.1. [8] Let G be an r-regular graph on n vertices, then 4(G) > [£51.

Lemma 3.2. (8] Let G be the circulant graph G(n;£{1,2}), then v(G) > [£].

The following theorem gives an upper bound for the 3-rainbow domination
number of G(n; £{1,2}).

Theorem 3.3. Let G(n;+{1,2}) be the Circulant graph of dimension n. Then

2 if n =0 (mod 12);
[1+1< 9e(G(n;£{1,2H))<{ [3]1+1, ¥ n=13,9 (mod 12);
[2]+1, ifn#0,1,3,9 (mod 12).

Proof. Label the vertices of G(n;+{1,2}) as {v1,v2,...,un}. We define a function
f such that f: V(G(n;£{1,2})) = P({1,2,3}) is a 3-rainbow dominating func-
tion of G.
Case 1: n =0 (mod 12)
{1}, ifn=2,7 (mod 12);
_J {2}, ifn=6,11 (mod 12);
Let f(i)={ (3} ifn =310 (mod 12);
b, otherwise.
Case 2: n=1,2,6,9 (mod 12)
{1}, ifn=2,7 (mod 12);
{2}, ifn=6,11 (mod 12);
{3}, ifn=3,10 (mod 12);
@, otherwise.
{1}, £(wn) = {2}.
Case 3: n =3 (mod 12)
{1}, ifn=2,7 (mod 12);
_J {2}, ifn=6,11 (mod 12);
Let f(vi)= {3%, ifn =310 (mod 12);
&, otherwise.

{1}, f(wn-1) = {1} f(va) = {2}.

yfor1<i<n—1and f(vs) = ¢.

Let f(vi)= yfor1 i< n—2and f(vn-1) =

yforl1 €£i<n-—3and f(vn-2) =
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Case 4: n =4,5,8,11 (mod 12)
{1}, ifn=2,7 (mod 12);
2}, ifn=6,11 (mod 12);
Let f(v)= ES;, ifn=3,10 gmod 12;;
@, otherwise.
Case 5: n =7 (mod 12)
{1}, ifn=2,7 (mod 12);
_J {2}, ifn=6,11 (mod 12);
Let f(v)=1 (3}, ifn =310 (mod 12);
b, otherwise.
Case 6: n = 10 (mod 12)
{1}, ifn=2,7 (mod 12);
{2}, ifn=6,11 (mod 12);
{3}, ifn= 3,10 (mod 12);
b, otherwise.
{3}, f(vn) = {2}. See Figure 2

,for1 <i<n—~1and f(va) = {2}.

,for1<i<n—1and f(va)={1}.

Let f(v:)= ,for1 <i<n—2and f(va-1) =

\ 4/

V3
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Vs
Figure 2: Circulant Network G(7;+{1,2})

Then f is a 3-rainbow dominating function of G. In all the above cases, the
3 if n =0 (mod 12);
weight of fisw(f)=¢ [3]1+1, ifn=1,3,9 (mod 12); This implies that,
123]+1, ifn#0,1,3,9 (mod 12).
13(G) £ w(f) and from Lemma 2.1, 4,3(G) > v(G)+1. Hence the required result
follows from Lemma 3.1 and Lemma 3.2.
O

Proof of correctness: Since the neighbourhood of every v; with f(v:) = ¢
is such that |, Ny fu) = {1,2, 3}, the function yields a 3-rainbow dominating
function.
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3.2 The 3-rainbow domination number of Circulant
network G(n;+{1,3})

To find 7,3 of Circulant network G(n;=+{1,3}), we begin with the following
lemma.

Lemma 3.4. [9] For any integer n > 6,
. [2]1+1, i n=4 (mod5);
Gy s { [E1+h Insmedd

The following theorem gives an upper bound for the 3-rainbow domination
number of G(n; £{1,3}).

Theorem 3.5. Let G(n;=%{1,3}) be the Circulant graph of dimension n. Then
21+1, i n=4 (mod6);
WO (1,3 +15 yaGm i aps{ [F10 472t

Proof. We label the vertices of G(n; £{1,3}) as {v1,v2, ..., vn} and define a func-
tion f such that f : V(G(n;£{1,3})) — P({1,2,3}) is a 3-rainbow dominating
function of G.

Case 1: n =4 (mod 6)

{1}, fn=2 (mod 6);
{2}, ifn=0 (mod 6);
{3}, ifn=4 (mod 6);
b, otherwise.

Case 2: n #Z 4 (mod 6)

{1}, ifn =2 (mod 6);
{2}, ifn=0 (mod 6);
{3}, ifn=4 (mod 6);
@, otherwise.

Let f(vi)= yfor1<i<n—1and f(va) = {2,3}.

Let f(vi)= ,for1<i<n-—1and f(va) = {2}. See

Figure 3.

Figure 3: Circulant Network G(14;+{1,3})
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From the proof of Theorem 3.3, we can easily observe that the function de-
fined above is 3-rainbow dominating function of G. The weight of f is w(f) =
[2]+1, ifn=4 (mod6); .
{ a1, ifn # 4 (mod 6). Since vr3(G) < w(f), the theorem follows.
(w0}

4 Grid Network

In more recent time, grid graphs have been used to model a variety of routing
problems in street networks. Berge [4] relates the problem to keep all the points
in a network under surveillance by a set of radar stations. Consequently, the
importance of studying the graph-theoretic properties of grid has attracted more
interest.

Definition: An m x n grid graph G has the vertex set V = {v;; : 1 £
i < m,1 < j < n} with two vertices v;; and vy;» being adjacent if ¢ = i’ and
[i—3|=1orif j =35 and |i — i| = 1 and is denoted by G n. The m x n grid
graph can also be presented as a Cartesian product P,, x P, of a path of length
m — 1 and a path of length n — 1.

To begin, we start with few known results on domination number of grid
network mentioned in [10].

Lemma 4.1. [10] Let G be the 2 x n grid graph, then 4(G) = | 232].
Lemma 4.2. [10] Let G be the 3 x n grid graph, then v(G) = |33t ].

Theorem 4.3. Let G be the grid graph of dimension 2xn. Then for any, n > 4,
1242) + 1< 1a(Cam)S n+ 2.

Proof. Label the vertices of Ga,n as vij, 1 €1 < 2,1 < j < n. We define a func-
tion f such that f : V(Gan) = P({1,2,3}) is a 3-rainbow dominating function
of G.
{1}, ifj=1 (mod 6);
. _ N ) {2}, ifj=3 (mod 6);
For1<j<n—1, f(un;)= {3}, ifj=5 (mod86); and
@, otherwise.
{1}, ifn=0,1 (mod 6);
f(rin)=¢ {2}, ifn=2,3 (mod 6);
{3}, ifn=4,5 (mod 6).

{213}’ if j=2;
{1}, if j = 4 (mod 6);
Also for 1 £ j <n—1, f(v2,;)=¢ {2}, if j = 0 (mod 6); , and
{3}, ifj=2 (mod 6),j # 2
®, otherwise.
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{2}, ifn=0,5 (mod 6); See Figure 4.

{1}, ifn= 3,4 (mod 6);
f(vz.n)={
{3}, ifn=1,2 (mod 6).

Figure 4: Grid Ga2,7

Thus the above labeling of the function f yields a 3-rainbow dominating function
of G. The weight of f is w(f) = n + 2, n > 4. Hence v3(G) < w(f) and also
satisfies the relation v4,3(G) > 4(G) + 1. This completes the proof. D

Proof of correctness: Since the neighbourhood of every v; with f(v) = ¢
is such that U, ey f(u) = {1,2,3}, the function yields a 3-rainbow dominating
function.

Theorem 4.4. Let G be the grid graph of dimension 3xn. Then for any, n > 4,

3n o .
3ntd 242, ifniseven;
l. 4 J + IS 7r3(03.n)s I'?bzn'l, zfn is Odd

Proof. Label the vertices of G3,» as vij, 1 <4< 3,1 < j < n. We define a func-
tion f such that f : V(Gs,n) = P({1,2,3}) is a 3-rainbow dominating function
of G.
Case 1: n is odd
{1}, ifj=1 (mod 4),i=1and j =3 (mod 4),i=3;
{2}, ifj=1(mod4),i=3and j=3 (mod4),i=1;
{3}, ifj=0 (mod?2),i=2;
?, otherwise.
j € n. Then f is a 3-rainbow dominating function of G. Also the weight of f is
w(f)=[Fifn 24
Case 2: n is even

{1}, ifj=1 (mod4),i=1and j =3 (mod4),i=3;

_J) {2}, ifji=1 (mod4),i=3and j=3 (mod4),i=1;

Let f(vi)=1 (3}, ifj=0 (mod2),i=2;

&, otherwise.
j€n—1and f(v2,n) = {1,2,3}. Then f is a 3-rainbow dominating function of
G and the weight of fis w(f) =3¢ +2ifn > 4.
This implies that 4-3(G) < w(f). By using a similar argument as in Theorem 4.3
we obtain the required result. a

Let f(vi;)= ,forl <

,for1 <

Theorem 4.5. Let G be a grid graph. Then ~vr3(Gait1,4541) < 8ij+2i+25+1
for i and j are integers and 1 < i < j.
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Proof. To achieve this upper bound, we consider 3-rainbow domination of Gs s
first. Let Pattern A be a colour assignment of Gs 5 which consists of v1,1, v2,4, 4,2,
vs,5 with a colour set {1}, vertices v1,3,v3,1,v3,3,v3,5, Us,3 With a colour set {2}
and vertices v1,s, 2,2, V4,4, Us,1 With a colour set {3}. Let Pattern B be a colour
assignment of G5 s which consist of v1,5, 2,2, v4,4, v5,1 With a colour set {1}, ver-
tices v1,3,vs,1,v3,3, V3,5, Us,3 With a colour set {2} and vertices v1,1,v2,4,4,2, 5,5
with a colour set {3}. Figure 5(a) and 5(b) shows Pattern A and B, respectively.
It is easy to verify that both Pattern A and B are 3-rainbow dominations of Gs s.

Figure 5(a): Pattern A Figure 5(b): Pattern B

Next, we consider 3-rainbow domination of Gs 4;4+1 for j > 2. We give a colour
assignment which consists of alternate Pattern A and B and the last row of k**
Pattern is overlapping with the first row of (k + 1)** Pattern for 1 < k < j. The
colour assignment of G4i41,45+1 for j > i > 2 is similar to the above discussion.
For i > 2, we give a colour assignment consisting of alternate Pattern A and B
and the last column of k** Pattern is overlapping with the first column of (k+1)**
Pattern for 1 < k < 7. Sum of the numbers of assigned colours over all vertices
of G4is1,4j+1 is [L‘h—"'l-;ij—tll] =8ij+21+25+ 1. O

After considering all possible values of m and n we obtain the following result:

Theorem 4.6. The 3-rainbow domination number of Gm n satisfies,
e3(Gomm) S{ [%2], if m and n odd;

R + 2, otherwise.

5 Conclusion

In this paper we find an upper bound for the 3-rainbow domination number
of circulant networks G(n;+{1,2}), G(n;%{1,3}) and grid networks. Finding
3-rainbow domination number for other interconnection networks is quite chal-
lenging.
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