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Abstract

In 2004, Blinco et al [1] introduced «-labeling. A function h
defined on the vertex set of a graph G with n edges is called v-
labeling if,

(1) his a p-labeling of G,
(ii) G admits a tripartition (4, B, C) with C = {c} and there exist
be BB suc_h that (b, ¢) is the unique edge with the property that
h(c) — h(b) = n,
(iii) for every edge (a,v) € E(G) with a € A, h{a) < h(v).
In [1] they have also proved a significant result on graph decompo-
sition that if a graph G with n edges admits a «-labeling then the
complete graph Kacn4+1 can be cyclically decomposed into 2cn + 1
copies of the graph G, where ¢ is any positive integer.

Motivated by the result of Blinco et al [1], in this paper we prove
that the well known almost-bipartite graph, the grid with an addi-
tional edge, (P..0P,) + é, admits v-labeling. Further, we discuss a
related open problem.
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1 Introduction

In an attempt to settle the Ringel’s conjecture that if T is any tree with
m edges then the complete graph Ka,41 can be decomposed into 2m + 1
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copies of T, Rosa in his classical paper (5] introduced a series of labelings
called a, 8 and p-valuation.

Let G be a graph with n edges. A p-labeling of G is a one-to-one func-
tion f : V(G) - {0,1,2,...,2n} such that {min{|f(ux) — f(v)|,2n +1 —
|f(u) = f(¥)|}/(u,v) € E(G)} = {1,2,...,n}.

Let G be a graph with n edges. A one-to-one function f : V(G) —
{0,1,2,...,n} is a B-labeling of G if {|f(v) — f(v)|/(v,v) € E(G)} =
{1,2,...,n}. A B-labeling f of a graph G with n edges is an a-labeling if
there exists an integer k such that f(u) < k < f(v) or f(v) <k < f(u) for
every edge uv € E(G). (It is clear that every a-labeling is a B-labeling and
every f3-labeling is a p-labeling.)

Further, Rosa [5] proved the following two significant theorems.

Theorem 1.1. If G is a graph with n edges then there exists a cyclic G-
decomposition of Koy if and only if G has a p-valuation.

Theorem 1.2. Let G be a graph with n edges that has an a-labeling. Then
there ezxists a cyclic G-decomposition of Koeny1, where ¢ is any positive
integer.

From the definition of a-labeling, it is clear that if a graph G admits
a-labeling then it must be bipartite. An almost-bipartite graph is a non-
bipartite graph with the property that the removal of a particular single
edge renders the graph bipartite. In order to have a cyclic G-decomposition
in the complete graph Kj.,,1, where G is an almost-bipartite graph, Blinco
et al introduced «y-labeling. A function h defined on the vertex set of a graph
G with n edges is called v-labeling if,

(i) nis a p-labeling of G,

(ii) G admits a tripartition (4,B,C) with C = {c} and there exist
b € B such that (b,c) is the unique edge with the property that
h{c) — h(b) = n,

(iii) for every edge (a,v) € E(G) with a € A, h(a) < h(v).

Further, in (1] they have also proved the following significant theorem.

Theorem 1.3. Let G be a graph with m edges having v-labeling. Then
there exists a cyclic G-decomposition of Kocm+1, where ¢ is any positive
integer.
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Motivated by Theorem 1.3 due to Blinco et al 1], the almost-bipartite
graphs Ky, n+e, Coky1, Com+e, C3UCqm, Cok41UCn 42 are shown to have
v-labeling [Refer [1-3]]. In this paper, we show that the almost-bipartite
graph, the grid with an additional edge (P,,0PF, ) + ¢ admits y-labeling and
we discuss a related open problem.

2 ~-labeling of (P,0F,) + é

In this section, we show that the almost-bipartite graph (P,0F,) + é ad-
mits vy-labeling.

The cartesian product of two graphs G and H, denoted GOH is & graph
having the vertex set V(G)x V(H) and any two vertices (uy, v1) and (u2, v2)
of GOH are adjacent if and only if u; = us and v is adjacent to vo in H
or v; = vy and u; is adjacent to us in G.

The cartesian product of paths P, and P,, P,,0P,, where P, : ujus-...un
and P, : vjva...v, is a graph with vertex set {(u;,v;)/1<i<m,1 <7<
n} and two vertices (u;,v;) and (uf,v}) in P,0P, are adjacent if and only
if u; = u} and v; is adjacent to v;. in P, or v; = v} and u; is adjacent to u]
in P,,. The graph P,, 0P, is also called grid or mesh. The grid P,0F; is
given in Figure 1.

(w1,v2) (u1,vs) (u1,va)
e B W— P o O

(u1,v1) (w1, vs)
(u2,v1) (uz,vs)
(u3,v1) us,vs) o(us,0) Gy, 05)
(ua,v1) (ua,vs)

(ua;v2) (ua;v3)  (uq;va)
Figure 1: The grid P,0OPs
For the convenience, we consider the vertex set of P,,0P,, V(P,,0P,) =

{vij = (us,v5)/1 £ i <m,1 < j < n}. Then, P,0P, can be described as
in Figure 2.
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Figure 2: The grid P,,0P,

A graph is called grid with first diagonal edge if it is obtained from the
grid P,,[0F, by adding a new edge between the (first) pair of non-adjacent
diagonal vertices vy; and vsp and it is denoted by (P,0P,) + é. Then
observe that
V((P‘HI.DRL) + é) = V(PmDPn) = {'Uij/l S ) S m, 1 S .7 < n},
E((PmDPn) +é) = E(PmDPn) U {('Ull sv22)}-

It is clear that (P,,0P,) + ¢ is an almost-bipartite graph.

In the following Theorem 2.1 we show that grid with first diagonal edge
admits vy-labeling.

Theorem 2.1. Grid with first diagonal edge (P,0OP,)+€é admits y-labeling.

Proof. By definition, the grid with first diagonal edge (7,0P,) + é has

V((PnOP,) + &) = V(P,0OP,) = {v;;/1 <i<m,1 < j <n},

E((PmDPn) +é) = E(P,0PF,) U {(Uu,vzg)}.

Thus, |V ((PnOP,)+¢é)| = mn and |E((P,0P,) +é)| = 2mn+1—(m+n).

Let M =2mn+1— (m +n).

Without loss of generality we assume m < n.

For the convenience of defining «-labeling on (P, 0F,) + é we define a

tripartition (A, B,C) on V((P,0OP,) + é) as given below.

Let A = {v;;/1 <i<m,iodd and 2 < j < n,j even}u
{vi;/2<i<m,ievenand 1 <j <n,jodd},

B ={v;/3<j<mn,jodd}u
{vij/3<i<m,1<j<n,iandjare odd}u
{vij/2<i<m,2<j<n,iand jare even} and

C= {'Uu}.
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We define f : V((P,0OP,) +é) = {0,1,2,...,2M} in the following way.
First we define f on the unique vertex vy; of C as f(vy;) = 2M — 1.

Then we define f on the vertices of A.

For that, we arrange the vertices of A as three different sets of sequences
and for each such set of sequences of vertices we give labels in the order of
the sequence.

The first set of sequences of vertices of A.
(Vi(2k)s V2(2k—1)s U3(2k=2), - - - , Vo), Where 1 < k < [ F],
a=m, =2k — (m—1) when m is even or
a=m-—1, =2k — (m—2) when m is odd.
[Note that the sequence is terminated whenever the second index becomes
1]

Labeling of the first set of sequences of vertices of A.
Define f(v12) = 1, f(va1) = 2.
For each k, 2 < k < | 3], define f(viax)) = f(von—2y1) +2k -1
and for each i, 2 <i< 2k, define f(vi(2k+1_,-)) = f(v(i—l)(2(k+l)—-i)) + 1.

The second set of sequences of vertices of A.

(Vi(m+k)s V2(m+k—1)s V3(m+k—2)» - - - » Um(k+1))» Where the choice of the in-
dex k is defined depending on m is even or odd as below.
(i) If m is even, then 2 < k < n — o and k even, where @ = m when n is
even or & = m + 1 when n is odd.
(ii) If m is odd, then 1 < k < n — o and & odd, where a = m when n is
even or o = m + 1 when n is odd.

Labeling of the second set of sequences of vertices of A.

Define, for odd m, f(vi(m+1)) = f(Vm—-1)1) + m and

Figme2—i)) = f(V—1yme3-iy) +1fori,2 <i<m.

Let k be the index. The choice of k is defined depending on m is even or
odd. If m is even then 2 < k < n ~ « and k even, where o = m when n is
even while when n is odd a = m + 1. If m is odd then 3 < k < n — a and
k odd, where o = m when n is even while when n is odd o = m + 1.
For every choice of k described above, define

f(vl(m+k)) = f(vm(k-l)) + m and

FWitmak+1-9)) = f(VU-1)onik+a—i)) + 1 for i, 2 <i <m.

The third set of sequences of vertices of A.

(Vn, Ylk+1)(n—1)s V(k+2)(n=2)1+ - +» 'Um(n—(m—k))), where the choice of the
index k is defined depending on = is even or odd as below.
(i) If n is even then 3 < k < «v and k odd, where & = m — 1 when m is even
or & = m — 2 when m is odd.
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(if) If » is odd then 2 < k < & and k even, where a = m —1 when m is odd
or a =m — 2 when m is even.

Labeling of the third set of sequences of vertices of A.

Let k£ be the index. The choice of k is defined depending on n is even
or odd. If n is even then 3 < k < a and k odd, where & = m — 1 when m
is even while when misodda=m -2. If nisodd then2 < k<« and &
even, where « = m — 1 when m is odd while when m is even o = m — 2.
For every choice of k described above, define

f(Wkn) = f(Umn—(m-k+2))) + m—k+2 and

FWitn=5)) = fWi-1yn—-1)) + 1L k+1<i<m, 1< j<m—k.

The first set of sequences of vertices of B.

(V1(2k+1)r V2(2k)1 U3(26—1)1 - - - » V(2k41)1), Where 1 < k < 0,
o= "'T‘l when m isodd or a = "—‘2"—2 when m is even.

Labeling of the first set of sequences of vertices of B.

Define f(vi13) = M, f(vee) =M -1, fva1) =M - 2.
For each k, 2 < k < @, where a = 25! when m is odd or @ = 252 when
m is even, define

F(vik+1)) = f(ver—1y1) — 2k and

Fvik+1)-9)) = f(vi-1y2x+3-iy) — 1 foreach i, 2<i <2k + 1.

The second set of sequences of vertices of B.

(n (m4k)s V2(m4-k—1)s U3(m+k=2)s -+ s Um(k-{—l)), where the choice of the in-
dex k is defined depending on m is even or odd as helow.
(i) If m is even then 1 < k < n—~« and k odd, where & = m when 7 is odd
or a =m -+ 1 when n is even.
(ii) If m is odd then 2 € k < n — a and k even, where &« = m when n is
odd or a = m + 1 when =n is even.

Labeling of the second set of sequences of vertices of B.

Define, for even m, f(viin+1)) = f(¥(m-1)1) — m and

.f(vi(m+2—i)) = f(v(i—l)(m+3-i)) —1 for is 2 < i <m.

Let & be the index. The choice of k is defined depending on m is even or
odd. If m is even then 3 < k < n — « and k odd, where @« = m when n is
odd while when nisevena =m+ 1. If m is odd then 2 < k < n — a and
k even, where @ = m when n is odd while when n is even « = m + 1.
For every choice of k described ahove, define

f(vim+r)) = f(Um(r-1)) —m and

fWitmak+1-9)) = F(UG-1)(m+ks2-)) — 1 for i, 2 < i <m.
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The third set of sequences of vertices of B.

(Vkns U(k41)(n=1)s Y(k+2)(n=2) 1+ + + » Um(n—-(m—k))), Where the choice of the
index k is defined depending on n is even or odd as below.
(i) If n is even then 2 < k < o and k even, where @ = m — 1 when m is
odd or @ = m — 2 when m is even.
(ii) If n is odd then 3 < k < @ and k odd, where & = m —1 when m is even
or « = m — 2 when m is odd. .

Labeling of the third set of sequences of vertices of B.

Let & be the index. The choice of k is defined depending on n is even
or odd. If n is even then 2 < k < o and k even, where « = m — 1 when m
is odd while when m is even a =m — 2. If nis odd then 3 <k < @ and &
odd, where @ = m — 1 when m is even while when m is odd o = m — 2.
For every choice of k described ahove, define

flvgn) = f(vm(n—(m—-k+2))) —(m—#k+2) and

fitn-5) = fWi-1yn--1))) ~ L, k+1<i<m, 1< j<m -k
Now, f(vmn) = f(vm(n-—l)) -1 ?f vmn € 4

f('Um(n—l)) +1 ifvn, €B

By definition, we observe that f(v;;), vij € A form a monotonic increas-
ing sequence and f(vi;), vij € B form a monotonic decreasing sequence.
Further, when m and n are of same parity, we have,
maz{f(vi;)/vij € A} = 421 and min{f(vi;)/vi; € B} = MEL,
When m and n are of opposite parity, we have
maz{f(vi;)/vi; € A} = % + 2 and min{f(vi;)/vij € B} = & + 3.
Thus, min{ f(vi;)/vij € B} > maz{f(vij)/vij € A}.
Also, f(v11) is greater than the labels of all the vertices in the sets A and
B. Thus the vertex labels are distinct.

To understand the edge values of the edges of (12,,[0F,) +é more clearly,
we decompose the edge set of (P,0PF,) + é into sequence of paths in
(Pn0OP,) + é as given below.

By Umn—1)UmnV(m—1)n,
Py : viv11091,

P : vyyup,

Py : v13v12022091 033,

Py : v14v13v23v22v32031 041,

Py : v15014v24023V33V32042041 V51,

P,: VimV1(m-1)V2(m—-1)V2(m-2) - + - VU(m—1)1Ym1,
Prt1 : V1(m41)VImV2mU2(m—1) - - - Um2Vm1,
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Pyt v1n01(n-1)V2(n-1)V2(n-2) - - -

o Vim—1)(n—(m=2YV(m—-1)(n—(m—-1))Vm(n—(m-1))Vm(n-m),
Pn+1 U V2nV2(n-1)V3(n-1) - - -

o Ym—1)(n—(m-3))V(im-1)(n—(m=2))Um(n—(m—2))Um(n—(m-1))
Pota : U2nU3nV3(n—1)V4(n—-1) - - -

v ’U(m—l)(n—(m-—4))v(m—l)(n—(m—-3))vm(n—-(m—3))vm(1t—(m~—2))~

Poym-3: V(m=-3)nV(m-2)nV(m—-2)(n—1)V(m-1)(n—=1)V(m—1)(n—-2) Um(n—2) Vm(n-3)
Poym—2: VYm-2nV(m—-1)nV(m-1)(n-1)Vm(n-1)Vm(n-2)-

The following Table 1 gives the edge labels of the edges of the cor-
responding P;, 0 < i < n+m — 2 given in the above path sequence of
(PnOP,) +é.

Table 1: Edge labels of edges in the sequence of paths in (P,,0P,) + é

Path Edge labels of the edges in the ahove path of decomposition of
(P,,0P,) + é (in the order of edges appear in the path)

P, 1,2

Py 3,4

P, M

P, M-1,M-2,M-3M-4

Py M-5M-6M-7M-8M-9,M-10

Py M-11,M —-12,M — 13, M — 14, M — 15, M — 16,

M-17,M —18

Piim-a ] 22,21, 20, 19, 18, 17, 16, 15
P11+771—3 14’ 131 12) 11’ 10, 9
Pn+m-2 8» 7) 6) 5

It is clear from the Table 1 that the edge labels are distinct and the
edge labels ranges from 1 to M. Hence f is a y-labeling.

Corollary 2.2. For every grid with first diagonal edge (P,,0F,) + ¢, there
exists a cyclic decomposition of the complete graph Kacq41 into subgraphs
isomorphic to (P,OP,) + é where ¢ = |E((Pn0OP,) + é)| and ¢ is an
arbitrary positive integer.
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Illustration:
v-labeling of (PsOFy) + ¢ is illustrated in Figure 3.
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Figure 3: 4-labeling of (FP;0F%) + ¢

3 Discussion

We ohserve from the Figure 4(a) through Figure 4(d) that the almost-
bipartite graph (P,0P,) + é admits y-labeling even if the edge é is added
between a pair of non-adjacent vertices of P,[JP, randomly. Thus we
feel that the edge é can be added between any two non-adjacent vertices
of P,0P, to get the almost-bipartite graph (P,0PF,) + é that can have
v-labeling. Thus we pose the following conjecture and an open question.

Conjecture: The almost-bipartite graph (P,0P,) + uv always admit +-
labeling for every edge uv which is added between any two
non-adjacent vertices u and v of P,0OP,.

Question: Is it true that the almost-bipartite graph (P,,0P,)+uv admits
v-labeling, for every edge uv which is added between any two
non-adjacent vertices » and v of P,,(0P,, for all values of m and
n?
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Figure 4: (a) v-labeling of (P40Fs) + (v11v22),
(b) y-labeling of (P;0OP;) + (vo3vs2),
(C) ~-labeling of (P4DP4) + ('0121)41),
(d) y-labeling of (P40OPF,) + (vosvaq1).
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