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Abstract

Structures realized by arrangements of regular hexagons in the
plane are of interest in the chemistry of benzenoid hydrocarbons,
where perfect matchings correspond to kekule structures which fea-
ture in the calculation of molecular energies associated with ben-
zenoid hydrocarbon molecules. Mathematically, assembling in pre-
dictable patterns is equivalent to packing in graphs. An H-packing
of a graph G is a set of vertex disjoint subgraphs of G, each of which
is isomorphic to a fixed graph H. If H is the complete graph Ka,
the maximum H-packing problem becomes the familiar maximum
matching problem. In this paper we find a H-packing of armchair
carbon nanotube with H isomorphic to Py, 1, 4-dimethyl cyclohez-
ane and Cs. Further we determine the H-packing of zigzag carbon
nanotube with H isomorphic to 1, 4-dimethyl cyclohexzane.

1 Introduction and Terminology

Carbon nanotubes are one of the most commonly mentioned building blocks
of nanotechnology. The strength and the remarkable physical properties of
these structures make them a very unique material with a whole range of
promising applications. Carbon nanotubes based sensors have shown many
benefits over their past counterparts [15] and are suitable candidates for
wireless sensor nodes [21] which are used in many applications, ranging
from military target tracking to industrial monitoring [18, 23].

Various surface nanotemplates that are naturally or artificially designed
at the nanometre scale have been used to form periodic nanostructure ar-
rays [5]. Molecules arranging themselves into predictable designs on silicon
chips could lead to microprocessors with much smaller circuit elements.
Mathematically, assembling in predictable patterns is equivalent to packing
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in graphs. An H-packing of a graph G is a set of vertex disjoint subgraphs
of G, each of which is isomorphic to a fixed graph H. An H-packing in G
is called perfect if it covers all vertices of G. If H is the complete graph K>,
the maximum H-packing problem becomes the familiar maximum match-
ing problem.

Structures realized by arrangements of regular hexagons in the plane
are of interest in the chemistry of benzenoid hydrocarbons, where perfect
matchings correspond to kekule structures which feature in the calcula-
tion of molecular energies associated with benzenoid hydrocarbon molecules
(11). H-Packing, is of practical interest in the areas of scheduling [1], wire-
less sensor tracking (3], wiring-board design, code optimization [14] and
many others. Packing lines in a hypercube has been studied in [9]. Al-
gorithms are available for dense packing of trees of different sizes [24] and
packing almost stars [8] into the complete graph. Further H-packing is de-
termined for honeycomb [22] and hexagonal network [20]. In this paper we
find a H-packing of armchair carbon nanotube with H isomorphic to Py,
1, 4-dimethy! cyclohexane and Cg. Further we determine the H-packing of
zigzag carbon nanotube with H isomorphic to 1, 4-dimethyl cyclohezane.

2 Carbon Nanotube

Carbon nanotubes consist of carbon atoms bonded into a tube shape where
carbon atoms are located at apexes of regular hexagons on two-dimensional
surfaces. There are different shapes of carbon nanotubes such as armchair,
chiral and zigzag (6, 12, 17, 19] based on the rolling of 2D carbon hexagonal
sheet. An armchair carbon nanotube of order n x m is a tube obtained from
a carbon hexagonal sheet of n rows and m columns by merging the vertices
of last column with the respective vertices of first column and is denoted
by ACNT(n,m). We label the vertices of armchair carbon nanotube as in
Figure 1 (18]. ACNT(n,m) has nm vertices, ;=% edges and has only
odd number of rows and even number of columns. Manuel [18] proved that
perfect matching exists for armchair carbon nanotube.

Definition 2.1. [7) An H-packing of a graph G is a set of vertex dis-
joint subgraphs of G, each of which is isomorphic to a fized graph H. The
mazimum number of vertex disjoint copies of H in G is called the packing
number and is denoted by A\(G, H).

Determining maximum A(G, H) is called the maximum H-packing prob-
lem in G. When H is a connected graph with at least three vertices, Kirk-
patrick and Hell proved that the maximum H-packing problem is NP-
complete [14]. In the sequel let C,, and P, denote a cycle and a path

196



= Column 3
-» Column 4
~~» Column &

> ROw9
—» Row 8
—» Row7
wp Row 6
—> Row 3
—» Rowd
,\ -+ Row 3
...... » Row2

wb Row 1

N7 N TS s Column |

Figure 1: An armchair carbon nanotube

on n vertices respectively. The vertices belonging to the subgraph H of
a H-packing are said to be saturated by the H-packing. The others are

unsaturated. A perfect H-packing is a packing that saturates every vertex
of G.

Theorem 2.2. [22] Let G be a graph and H be a subgraph of G. Then

G, H) < H;%J

2.0.1 Packing with P,

In view of Theorem 2.2 we have the following result.

Theorem 2.3. Let G ~ ACNT(n,m), and H ~ Py. Then MNG,H) <
L= ]-

Lemma 2.4. Let G ~ ACNT(2k+1,2), k > 1 and H ~ Py. Then
NG, H) = | 252 |,

Proof. We prove the result by induction on k. When k =1, A(G,H) =1
= |2]. See Figure 2 (a). Assume that A(ACNT((2k —1,2),H) = |_2'°,;1_|.
Now ACNT(2k+1,2) is obtained by adding a hexagon Cs to ACNT(2k —
1,2) sharing the top two vertices of ACNT(2k — 1,2). The remaining
vertices of Cg induce path P,. See Figure 2 (b). Thus A(ACNT((2k +
1,2), P) = M(ACNT((2k — 1,2), P1) + 1 = | 21| +1 = | %}
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Figure 2: Dark lines show Py-packing of (¢) ACNT(3,2) (b) ACNT(9,2)
(¢) ACNT(9,4)

We proceed to prove that A(ACNT((n, m), Py) = |2|. Let the
subgraph induced by the vertices of columns j and j 41 be denoted by A;,
1<j<m.

Procedure PACKING (ACNT, Py)
Input: An armchair carbon nanotube ACNT(n,m) and H ~ P,.

Algorithm:

(i) Obtain a H-packing of A; as in Lemma 2.4. Then obtain a H-packing
of Az by taking the mirror image of the H-packing of A,, placing the mirror
perpendicular to the horizontal edges of A2. Include the path induced by
the vertices (1, 2), (2,2), (2,3) and (1, 3).

(ii) Repeat step (i) for the subgraphs A; U 441 U Ajy2, j = 4k — 3,
2<ks (2]

(iii) Obtain a H-packing of A,, as in A; when m = 2mod4.

Output: There exists a perfect H-packing of ACNT(n,m) with | 2|
copies of H where H ~ P;.

Proof of Correctness: In ACNT(n,m), the induced subgraphs A;, j
odd, 1 < j < m are vertex disjoint. The algorithm covers all vertices of
ACNT(n,m) when m = Omod4 and leaves two vertices unsaturated when
m = 2mod4. Thus A\(G,H) = |22|. O
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Figure 3: (a) Butane CyH)o (b) Cyclohexane CsHiz (c) 1,4-dimethyl
cyclohexane

Chemists use diagrams to picture molecules, and these diagrams are
also graphs. Usually the hydrogen atoms are omitted from the diagrams
by the chemists using shorthand structure [13]. Figure 3 (a) shows CyH1o
butane structure and Figure 3 (b) shows Cg H}3 cyclohexane structure. The
removal of hydrogen atom leaves a path P, in the place of butane and Cs
in the place of cyclohexane.

2.0.2 Packing with 1, /-dimethyl cyclohexzane

The neighborhood of a vertex v, N(v), is {z € V(G)/(z,v) € E(G)} and
the closed neighborhood N[v] = {v} U N(v). The graph in Figure 3 (c)
is known as 1, 4-dimethyl cyclohezane in chemistry. Let a and b be the
vertices of degree 3 as shown in Figure 3 (¢). We refer to a and b as a pair
of opposite vertices.

Theorem 2.5. Let G ~ ACNT(n,m) and H ~ 1, {-dimethyl cyclohezane.
Then A< "] - [7].

Proof. We claim that in any H-packing of ACNT(n,m) with H =~ 1, 4-
dimethyl cyclohezane, there are at least 77 number of vertices in row 1
which remain unsaturated. There are at least [3{;‘] copies of H induced hy
vertices in row 1, 2 and 3 consisting of 3m vertices. For m = Omod4, if (1,
j)and (1, 5+1), j odd, 1 < j < m are saturated, then (1, 7 —2), (1,7 —1),
(1, 7+2), (1, 7+ 3) jmodm, 1 < j < m remain saturated. Therefore rows
1, 2 and 3 are packed by at most [3,;" _| — 1 copies of H. This implies at
least 7 vertices of row 1 remain unsaturated. Similarly when, m = 2mod4
there are at most | %" | — 2 copies of H induced by rows 1, 2 and 3, which
implies that at least 73 vertices of row 1 are unsaturated. If the subgraph
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H is induced by vertices of rows 1, 2, 3, 4 and 5 then the five rows are
packed by [%@J copies of H. If vertex (1, j), 1 £ j < m is saturated
then (1, j — 1) remains unsaturated. Therefore there are at most |32 | —1
copies of H if m = O0mod8 and I_ST'"J copies of H otherwise. In all cases in
any H-packing, 2 number of vertices remain unsaturated in row 1. In a

2
similar manner ' number of vertices remain unsaturated in row n. Since

|V(H)| =8, we have A < | 22| — | 2]. 0
Procedure PACKING (ACNT, 1, 4-dimethyl cyclohezane)

Input: An armchair carbon nanotube ACNT(n,m), n = lmod4 and
H ~ 1, 4-dimethyl cyclohezane.

Algorithm:

Identify the vertex a in H with (¢,7), i = 2mod4, jodd, 1 £ j < m
and identify the corresponding vertex b with (¢,7), ¢ = Omod4, j even,
1 < j < m. See Figure 4 (a).

End PACKING (ACNT, 1, 4-dimethyl cyclohezane)

Output: A maximum H-packing of ACNT with H =~ 1, 4-dimethyl cy-
clohezane is || — | 7]

Proof of Correctness: Ifa and b is a pair of opposite vertices, then the
subgraph induced by N[a]UN [b] is isomorphic to 1, 4-dimethyl cyclohezane.
Now N{a]nN{b] = & for all pairs of saturated vertices. Each row i = 2mod4,
1 < i < n contains 7 number of a’s in a 1, {-dimethyl cyclohezane. Hence

r=ilx7=1"%]-1%]0
Thus we have the following result.
Theorem 2.6. Let G ~ ACNT, and H ~ 1, 4{-dimethyl cyclohezane.
Then A = |%2] = | 3.
2.0.3 Packing with Cs
Though armchair carbon nanotube is a Cg tessellation, it is interesting to

note that armchair carbon nanotube has perfect H-packing with H ~ Cg
only when n = Omod3. In this section we give an algorithm for H-packing
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Figure 4: (a) H-packing of ACNT(9,8) with H ~ 1, 4-dimethyl cyclohex-
ane (b) Shaded hexagons in A3 are saturated

with H ~ Cg when n = 0mod3 and improve the upper bound for all other
cases. Further we prove that the upper bound obtained is sharp.

Theorem 2.7. Let G ~ ACNT(n,m) and H ~Cs. Then A< | 7| x 2.

Proof. Each A; is adjacent to A;_; and A;41, 1 < j < m, jmodm and each
hexagons lies in three consecutive rows. If a hexagon is saturated in the
row ¢, i+ 1, i+ 2 of A; then the hexagonsin therowi—1,4,i+1,74+2,i+3
of A;_1 and A;4; and the hexagons in therowi+2,i43,i+4,i—-2,i—1,
i of A; are unsaturated. Without loss of generality consider A;, A2, Aa
and A4. Suppose alternate hexagons in A3 are saturated then none of the
hexagons in A; and A, are saturated. The saturated alternate hexagons
leaves a row in between and the hexagons in that row of A2 and A4 are
adjacent to saturated hexagon which cannot be saturated. See Figure 4
(b)-

Suppose hexagons in a column are saturated in As; by skipping two
columns of hexagons in between. In other words there are two unsaturated
hexagons between two saturated hexagons. Then the hexagons adjacent
to those two unsaturated hexagons in As and A, are saturated. Thus
the maximum number of hexagons saturated in each A; and A;41, j odd,
1<j<mis |3 x % O

Procedure PACKING (ACNT,Cs)
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Figure 5: H-packing of ACNT(9,8) with H ~ Cs, shaded hexagons are
saturated hexagon.

Input: An armchair carbon nanotube ACNT (n,m) and H ~ Cs.

Algorithm:

Saturate the hexagon induced by the vertices (61 — 5, j), (6 — 5,75 + 1),
(61 —4,7), (61 —4,7+1), (6i—3,7) and (6t —3,5+1),i=1,2, ..., 7 odd
1 < j < m and also saturate the hexagon induced by the vertices (61 —2, 7),
(6i—2,5+1), (6i—1,5), (6i—1,5+1), (6i,5) and (6i,5+1),i=1,2, ..,
jeven 1 < j <m, jmodm. See Figure 5.

End PACKING (ACNT, Cy)

Output: A perfect H-packing of ACNT when n = Omod3 and a maxi-
mum H-packing of ACNT otherwise.

Proof of Correctness: The hexagons saturated in the row 6, 6i —1 and
67 — 2 are independent of the hexagons saturated in the row 6i — 3, 6i — 4
and 67 — 5. Further the number of hexagons in the rows induced by i, i + 1
and i42,i=1, 2, ... is . Therefore A = [EJ e

Theorem 2.8. Let G ~ ACNT(n,m), and H ~ Cg. Then A =9 x |2].
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Figure 6: (a) Zig-zag carbon nanotube ZCNT(6,8) (b) H-packing of
ZCNT(6,12) with H ~ 1, 4-dimethyl] cyclohexane

3 Zig-Zag Carbon Nanotube

The Zig-zag carbon nanotube ZCNT'(n, m) has n rows and m columns is
shown in Figure 6 (a). The zig-zag carbon nanotube has only even number
of rows and even number of columns and it has nm vertices.

Procedure PACKING (ZCNT(n,m), 1, 4-dimethyl cyclohexzane)

Input: A zig-zag carbon nanotube ZCNT(n,m), m = Omod4 and H ~
1, 4-dimethyl cyclohezane.

Algorithm: Identify the vertex a in H with (¢,4j—3), i even, 1 <i < n,
1< j < |7] and identify the corresponding vertex b with (3,45 —1), i odd,
1<i<n, 1<j<|%] SeeFigure 6 (b).

End PACKING (ZCNT(n,m), 1, 4-dimethyl cyclohexzane)
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Output: A perfect H-packing of ZCNT (n, m) when m = Omod4.

Proof of Correctness: Let a and b be a pair of opposite vertices. The
subgraph induced by N[a]UN[b] is isomorphic to 1, 4-dimethy! cyclohezane.
Further N[u]JNN[v] = & for all pairs of saturated vertices. For m = Omod4,
the subgraph induced by the verticesinrowsiandi+1,70dd,1<i<n
contains 3 number of saturated vertices. The closed neighbourhoods of
these saturated vertices together cover 8 x 7' x § = nm vertices. Therefore

the H-packing is perfect and A = |"f*]. O

Open Problem Does there exists a perfect H-packing of ZCNT (n,m)
when m = 2mod4 ?

4 Conclusion

In this paper we investigate various patterns embedded in the carbon nan-
otube. It would be interesting to consider packing in other nanotubes.
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